Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = wake-up receivers (WuRXs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7977 KiB  
Article
Active RFID Wake-Up Receiver Subsystem for Freight Wagon Localization Devices
by Łukasz Krzak and Cezary Worek
Sensors 2025, 25(4), 1124; https://doi.org/10.3390/s25041124 - 13 Feb 2025
Cited by 1 | Viewed by 804
Abstract
This paper presents the concept, design, and performance analysis of an active radio wake-up and radio identification subsystem as part of an advanced localization device intended to operate within a large-scale freight wagon localization system. The system provides an efficient and cost-effective way [...] Read more.
This paper presents the concept, design, and performance analysis of an active radio wake-up and radio identification subsystem as part of an advanced localization device intended to operate within a large-scale freight wagon localization system. The system provides an efficient and cost-effective way to localize freight carriages, which, in the majority of cases, are currently not tracked. The localization device is battery-powered and uses an ultra-low-power radio interface for detecting wake-on-radio signals from nearby operator devices. The same interface is also used for communication within an ad-hoc wireless mesh network, which allows the localization devices to select the best device to send out localization information from the whole cluster through a cellular connection in order to minimize overall battery energy usage. The article presents the overall system architecture construction of the radio interface, including the wake-up subsystem, as well as the results of performance measurements. Full article
(This article belongs to the Special Issue RFID-Enabled Sensor Design and Applications)
Show Figures

Figure 1

15 pages, 755 KiB  
Article
A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications
by Alessia Maria Elgani, Matteo D’Addato, Luca Perilli, Eleonora Franchi Scarselli, Antonio Gnudi, Roberto Canegallo and Giulio Ricotti
Sensors 2024, 24(19), 6369; https://doi.org/10.3390/s24196369 - 30 Sep 2024
Viewed by 1316
Abstract
This paper presents a passive Envelope Detector (ED) to be used for reception of OOK-modulated signals, such as in Wake-Up Receivers employed within Wireless Sensor Networks, widely used in the IoT. The main goal is implementing a temperature compensation mechanism in order to [...] Read more.
This paper presents a passive Envelope Detector (ED) to be used for reception of OOK-modulated signals, such as in Wake-Up Receivers employed within Wireless Sensor Networks, widely used in the IoT. The main goal is implementing a temperature compensation mechanism in order to keep the passive ED input resistance roughly constant over temperature, making it a constant load for the preceding matching network and ultimately keeping the overall receiving chain sensitivity constant over temperature. The proposed ED was designed using STMicroelectronics 90 nm CMOS technology to receive 1 kbps OOK-modulated packets with a 433 MHz carrier frequency and a 0.6 V supply. The use of a block featuring a Proportional-to-Absolute Temperature (PTAT) current yields a 5 dB reduction in sensitivity temperature variation across the −40 °C to 120 °C range. Moreover, two different implementations were compared, one targeting minimal mismatch and the other one targeting minimal area. The minimal area version appears to be better in terms of estimated overall chain sensitivity at all temperatures despite a higher sensitivity spread. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

24 pages, 2368 KiB  
Article
Modeling of Packet Error Rate Distribution Based on Received Signal Strength Indications in OMNeT++ for Wake-Up Receivers
by Mohamed Khalil Baazaoui, Ilef Ketata, Ahmed Fakhfakh and Faouzi Derbel
Sensors 2023, 23(5), 2394; https://doi.org/10.3390/s23052394 - 21 Feb 2023
Cited by 8 | Viewed by 2567
Abstract
Wireless sensor network (WSN) with energy-saving capabilities have drawn considerable attention in recent years, as they are the key for long-term monitoring and embedded applications. To improve the power efficiency of wireless sensor nodes, a wake-up technology was introduced in the research community. [...] Read more.
Wireless sensor network (WSN) with energy-saving capabilities have drawn considerable attention in recent years, as they are the key for long-term monitoring and embedded applications. To improve the power efficiency of wireless sensor nodes, a wake-up technology was introduced in the research community. Such a device reduces the system’s energy consumption without affecting the latency. Thereby, the introduction of wake-up receiver (WuRx)-based technology has grown in several sectors. The use of WuRx in a real environment without consideration of physical environmental conditions, such as the reflection, refraction, and diffraction caused by different materials, that affect the reliability of the whole network. Indeed, the simulation of different protocols and scenarios under such circumstances is a success key for a reliable WSN. Simulating different scenarios is required to evaluate the proposed architecture before its deployment in a real-world environment. The contribution of this study emerges in the modeling of different link quality metrics, both hardware and software metrics that will be integrated into an objective modular network testbed in C++ (OMNeT++) discrete event simulator afterward are discussed, with the received signal strength indicator (RSSI) for the hardware metric case and the packet error rate (PER) for the software metric study case using WuRx based on a wake-up matcher and SPIRIT1 transceiver. The different behaviors of the two chips are modeled using machine learning (ML) regression to define parameters such as sensitivity and transition interval for the PER for both radio modules. The generated module was able to detect the variation in the PER distribution as a response in the real experiment output by implementing different analytical functions in the simulator. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

24 pages, 6726 KiB  
Article
Design and Implementation of Low Noise Amplifier Operating at 868 MHz for Duty Cycled Wake-Up Receiver Front-End
by Ilef Ketata, Sarah Ouerghemmi, Ahmed Fakhfakh and Faouzi Derbel
Electronics 2022, 11(19), 3235; https://doi.org/10.3390/electronics11193235 - 8 Oct 2022
Cited by 18 | Viewed by 7880
Abstract
The integration of wireless communication, e.g., in real- or quasi-real-time applications, is related to many challenges such as energy consumption, communication range, quality of service, and reliability. The improvement of wireless sensor networks (WSN) performance starts by enhancing the capabilities of each sensor [...] Read more.
The integration of wireless communication, e.g., in real- or quasi-real-time applications, is related to many challenges such as energy consumption, communication range, quality of service, and reliability. The improvement of wireless sensor networks (WSN) performance starts by enhancing the capabilities of each sensor node. To minimize latencies without increasing energy consumption, wake-up receiver (WuRx) nodes have been introduced in recent works since they can be always-on or power-gated with short latencies by a power consumption in the range of some microwatts. Compared to standard receiver technologies, they are usually characterized by drawbacks in terms of sensitivity. To overcome the limitation of the sensitivity of WuRxs, a design of a low noise amplifier (LNA) with several design specifications is required. The challenging task of the LNA design is to provide equitable trade-off performances such as gain, power consumption, the noise figure, stability, linearity, and impedance matching. The design of fast settling LNA for a duty-cycled WuRx front-end operating at a 868 MHz frequency band is investigated in this work. The paper details the trade-offs between design challenges and illustrates practical considerations for the simulation and implementation of a radio frequency (RF) circuit. The implemented LNA competes with many commercialized designs where it reaches single-stage 12 dB gain at a 1.8 V voltage supply and consumes only a 1.6 mA current. The obtained results could be made tunable by working with off-the-shelf components for different wake-up based application exigencies. Full article
Show Figures

Figure 1

22 pages, 6035 KiB  
Article
Wake-Up Receiver-Based Routing for Clustered Multihop Wireless Sensor Networks
by Maximilian Weber, Ghofrane Fersi, Robert Fromm and Faouzi Derbel
Sensors 2022, 22(9), 3254; https://doi.org/10.3390/s22093254 - 23 Apr 2022
Cited by 11 | Viewed by 3526
Abstract
The Wireless Sensor Network (WSN) is one of the most promising solutions for the supervision of multiple phenomena and for the digitisation of the Internet of Things (IoT). The Wake-up Receiver (WuRx) is one of the most trivial and effective solutions for energy-constrained [...] Read more.
The Wireless Sensor Network (WSN) is one of the most promising solutions for the supervision of multiple phenomena and for the digitisation of the Internet of Things (IoT). The Wake-up Receiver (WuRx) is one of the most trivial and effective solutions for energy-constrained networks. This technology allows energy-autonomous on-demand communication for continuous monitoring instead of the conventional radio. The routing process is one of the most energy and time-consuming processes in WSNs. It is, hence, crucial to conceive an energy-efficient routing process. In this paper, we propose a novel Wake-up Receiver-based routing protocol called Clustered WuRx based on Multicast wake-up (CWM), which ensures energy optimisation and time-efficiency at the same time for indoor scenarios. In our proposed approach, the network is divided into clusters. Each Fog Node maintains the routes from each node in its cluster to it. When a sink requires information from a given node, it’s corresponding Fog Node uses a multicast wake-up mechanism to wake up the intended node and all the intermediate nodes that will be used in the routing process simultaneously. Measurement results demonstrate that our proposed approach exhibits higher energy efficiency and has drastic performance improvements in the delivery delay compared with other routing protocols. Full article
(This article belongs to the Topic Wireless Sensor Networks)
Show Figures

Figure 1

24 pages, 4965 KiB  
Article
Analytical and Experimental Performance Analysis of Enhanced Wake-Up Receivers Based on Low-Power Base-Band Amplifiers
by Lydia Schott, Robert Fromm, Ghada Bouattour, Olfa Kanoun and Faouzi Derbel
Sensors 2022, 22(6), 2169; https://doi.org/10.3390/s22062169 - 10 Mar 2022
Cited by 13 | Viewed by 3625
Abstract
With the introduction of Internet of Things (IoT) technology in several sectors, wireless, reliable, and energy-saving communication in distributed sensor networks are more important than ever. Thereby, wake-up technologies are becoming increasingly important as they significantly contribute to reducing the energy consumption of [...] Read more.
With the introduction of Internet of Things (IoT) technology in several sectors, wireless, reliable, and energy-saving communication in distributed sensor networks are more important than ever. Thereby, wake-up technologies are becoming increasingly important as they significantly contribute to reducing the energy consumption of wireless sensor nodes. In an indoor environment, the use of wireless sensors, in general, is more challenging due to signal fading and reflections and needs, therefore, to be critically investigated. This paper discusses the performance analysis of wake-up receiver (WuRx) architectures based on two low frequency (LF) amplifier approaches with regard to sensitivity, power consumption, and package error rate (PER). Factors that affect systems were compared and analyzed by analytical modeling, simulation results, and experimental studies with both architectures. The developed WuRx operates in the 868 MHz band using on-off-keying (OOK) signals while supporting address detection to wake up only the targeted network node. By using an indoor setup, the signal strength and PER of received signal strength indicator (RSSI) in different rooms and distances were determined to build a wireless sensor network. The results show a wake-up packets (WuPts) detection probability of about 90% for an interior distance of up to 34 m. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

12 pages, 642 KiB  
Article
Towards a Battery-Free Wake-Up Radio
by C. Achille Fumtchum, Florin Doru Hutu, Pierre Tsafack, Guillaume Villemaud and Emmanuel Tanyi
Electronics 2021, 10(20), 2449; https://doi.org/10.3390/electronics10202449 - 9 Oct 2021
Cited by 1 | Viewed by 2041
Abstract
This paper proposes a contribution to the development of autonomous wake-up radios from the energy supply perspective. More precisely, a rectifier circuit, designed and manufactured in order to provide the energy needed for a quasi passive wake-up radio receiver (WuRx). The WuRx is [...] Read more.
This paper proposes a contribution to the development of autonomous wake-up radios from the energy supply perspective. More precisely, a rectifier circuit, designed and manufactured in order to provide the energy needed for a quasi passive wake-up radio receiver (WuRx). The WuRx is intended to operate continuously and to ensure a zero energy consumption in standby mode.After the presentation of the said WuRx, the energy requirement for its power supply is defined. Then, the energy harvesting circuit, able to power up the quasi-passive WuRx, is designed, implemented, and then measured. Compared to the state of the art, the energy harvester that we present here is among the few recent designs that replaced the matching network lumped component by butterfly stubs, which brings compactness to the circuit. The rectifier is built on a high efficiency substrate which increases its performance and reduces its form factor. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 4061 KiB  
Article
A High Efficiency Low Noise RF-to-DC Converter Employing Gm-Boosting Envelope Detector and Offset Canceled Latch Comparator
by Thithuy Pham, Dongmin Kim, Seohyeong Jeong, Junghyup Lee and Donggu Im
Electronics 2021, 10(9), 1078; https://doi.org/10.3390/electronics10091078 - 2 May 2021
Viewed by 3397
Abstract
This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for [...] Read more.
This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for wake-up receiver (WuRx) applications. The proposed envelope detector is based on a fully integrated inductively degenerated common-source amplifier with a series gate inductor. The LC-CL balun circuit is merged with the core of the envelope detector by sharing the on-chip gate and source inductors. The proposed technique doubles the transconductance of the input transistor of the envelope detector without any extra power consumption because the gate and source voltage on the input transistor operates in a differential mode. This results in a higher RF-to-DC conversion gain. In order to improve the sensitivity of the wake-up radio, the DC offset of the latch comparator circuit is canceled by controlling the body bias voltage of a pair of differential input transistors through a binary-weighted current source cell. In addition, the hysteresis characteristic is implemented in order to avoid unstable operation by the large noise at the compared signal. The hysteresis window is programmable by changing the channel width of the latch transistor. The low noise baseband amplifier amplifies the output signal of the envelope detector and transfers it into the comparator circuit with low noise. For the 2.4 GHz WuRx, the proposed envelope detector with no external matching components shows the simulated conversion gain of about 16.79 V/V when the input power is around the sensitivity of −60 dBm, and this is 1.7 times higher than that of the conventional envelope detector with the same current and load. The proposed RF-to-DC conversion circuit (WuRx) achieves a sensitivity of about −65.4 dBm based on 45% to 55% duty, dissipating a power of 22 μW from a 1.2 V supply voltage. Full article
Show Figures

Figure 1

16 pages, 6257 KiB  
Article
A Gated Oscillator Clock and Data Recovery Circuit for Nanowatt Wake-Up and Data Receivers
by Matteo D’Addato, Alessia M. Elgani, Luca Perilli, Eleonora Franchi Scarselli, Antonio Gnudi, Roberto Canegallo and Giulio Ricotti
Electronics 2021, 10(7), 780; https://doi.org/10.3390/electronics10070780 - 25 Mar 2021
Cited by 4 | Viewed by 4053
Abstract
This article presents a data-startable baseband logic featuring a gated oscillator clock and data recovery (GO-CDR) circuit for nanowatt wake-up and data receivers (WuRxs). At each data transition, the phase misalignment between the data coming from the analog front-end (AFE) and the clock [...] Read more.
This article presents a data-startable baseband logic featuring a gated oscillator clock and data recovery (GO-CDR) circuit for nanowatt wake-up and data receivers (WuRxs). At each data transition, the phase misalignment between the data coming from the analog front-end (AFE) and the clock is cleared by the GO-CDR circuit, thus allowing the reception of long data streams. Any free-running frequency mismatch between the GO and the bitrate does not limit the number of receivable bits, but only the maximum number of equal consecutive bits (Nm). To overcome this limitation, the proposed system includes a frequency calibration circuit, which reduces the frequency mismatch to ±0.5%, thus enabling the WuRx to be used with different encoding techniques up to Nm = 100. A full WuRx prototype, including an always-on clockless AFE operating in subthreshold, was fabricated with STMicroelectronics 90 nm BCD technology. The WuRx is supplied with 0.6 V, and the power consumption, excluding the calibration circuit, is 12.8 nW during the rest state and 17 nW at a 1 kbps data rate. With a 1 kbps On-Off Keying (OOK) modulated input and −35 dBm of input RF power after the input matching network (IMN), a 10−3 missed detection rate with a 0 bit error tolerance is measured, transmitting 63 bit packets with the Nm ranging from 1 to 63. The total sensitivity, including the estimated IMN gain at 100 MHz and 433 MHz, is −59.8 dBm and −52.3 dBm, respectively. In comparison with an ideal CDR, the degradation of the sensitivity due to the GO-CDR is 1.25 dBm. False alarm rate measurements lasting 24 h revealed zero overall false wake-ups. Full article
(This article belongs to the Special Issue Energy Efficient Circuit Design Techniques for Low Power Systems)
Show Figures

Figure 1

21 pages, 11804 KiB  
Article
A Highly Reliable, 5.8 GHz DSRC Wake-Up Receiver with an Intelligent Digital Controller for an ETC System
by Imran Ali, Muhammad Asif, Muhammad Riaz Ur Rehman, Danial Khan, Huo Yingge, Sung Jin Kim, YoungGun Pu, Sang-Sun Yoo and Kang-Yoon Lee
Sensors 2020, 20(14), 4012; https://doi.org/10.3390/s20144012 - 19 Jul 2020
Cited by 6 | Viewed by 5345
Abstract
In this article, a highly reliable radio frequency (RF) wake-up receiver (WuRx) is presented for electronic toll collection (ETC) applications. An intelligent digital controller (IDC) is proposed as the final stage for improving WuRx reliability and replacing complex analog blocks. With IDC, high [...] Read more.
In this article, a highly reliable radio frequency (RF) wake-up receiver (WuRx) is presented for electronic toll collection (ETC) applications. An intelligent digital controller (IDC) is proposed as the final stage for improving WuRx reliability and replacing complex analog blocks. With IDC, high reliability and accuracy are achieved by sensing and ensuring the successive, configurable number of wake-up signal cycles before enabling power-hungry RF transceiver. The IDC and range communication (RC) oscillator current consumption is reduced by a presented self-hibernation technique during the non-wake-up period. For accommodating wake-up signal frequency variation and enhancing WuRx accuracy, a digital hysteresis is incorporated. To avoid uncertain conditions during poor and false wake-up, a watch-dog timer for IDC self-recovery is integrated. During wake-up, the digital controller consumes 34.62 nW power and draws 38.47 nA current from a 0.9 V supply. In self-hibernation mode, its current reduces to 9.7 nA. It is fully synthesizable and needs 809 gates for its implementation in a 130 nm CMOS process with a 94 × 82 µm2 area. The WuRx measured power consumption is 2.48 µW, has −46 dBm sensitivity, and a 0.484 mm² chip area. Full article
(This article belongs to the Special Issue Integrated Circuits and Systems for Smart Sensory Applications)
Show Figures

Graphical abstract

21 pages, 3242 KiB  
Article
A Tuned-RF Duty-Cycled Wake-Up Receiver with −90 dBm Sensitivity
by Sadok Bdiri, Faouzi Derbel and Olfa Kanoun
Sensors 2018, 18(1), 86; https://doi.org/10.3390/s18010086 - 29 Dec 2017
Cited by 22 | Viewed by 6928
Abstract
A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication [...] Read more.
A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication is presented. All the WuRx blocks are studied to obey the duty-cycle operation. For a mean interval time for the data exchange cycle between a transmitter and a receiver over 1.7 s and a 64-bit wake-up packet detection latency of 32 ms, the average power consumption of the wake-up receiver (WuRx) reaches down to 3 μ W . It also features scalable addressing of more than 512 bit at a data rate of 128 k bit / s −1. At a wake-up packet error rate of 10 2 , the detection sensitivity reaches a minimum of 90 dBm . The combination of the MAC protocol and the WuRx eases the adoption of different kinds of wireless sensor networks. In low traffic communication, the WuRx dramatically saves more energy than that of a network that is implementing conventional duty-cycling. In this work, a prototype was realized to evaluate the intended performance. Full article
(This article belongs to the Special Issue Low Power Embedded Sensing: Hardware-Software Design and Applications)
Show Figures

Figure 1

17 pages, 2227 KiB  
Article
An FSK and OOK Compatible RF Demodulator for Wake Up Receivers
by Thierry Taris, Hassène Kraimia, Didier Belot and Yann Deval
J. Low Power Electron. Appl. 2015, 5(4), 274-290; https://doi.org/10.3390/jlpea5040274 - 30 Nov 2015
Cited by 7 | Viewed by 14723
Abstract
This work proposes a novel demodulation circuit to address the implementation of Wake-Up Receivers (Wu-Rx) in Wireless Sensor Nodes (WSN). This RF demodulator, namely Modulated Oscillator for envelOpe Detection (MOOD), is compatible with both FSK and OOK/ASK modulation schemes. The system embeds an [...] Read more.
This work proposes a novel demodulation circuit to address the implementation of Wake-Up Receivers (Wu-Rx) in Wireless Sensor Nodes (WSN). This RF demodulator, namely Modulated Oscillator for envelOpe Detection (MOOD), is compatible with both FSK and OOK/ASK modulation schemes. The system embeds an LC oscillator, an envelope detector and a base-band amplifier. To optimize the trade-off between RF performances and power consumption, the cross-coupled based oscillator is biased in moderate inversion region. The proof of concept is implemented in a 65 nm CMOS technology and is intended for the 2.4 GHz ISM band. With a supply voltage of 0.5 V, the demodulator consumes 120 μW and demonstrates the demodulation of OOK and FSK at a data rate of 500 kbps. Full article
(This article belongs to the Special Issue Low-Power Systems on Chip Enabling Internet of Things)
Show Figures

Figure 1

Back to TopTop