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Abstract: With the introduction of Internet of Things (IoT) technology in several sectors, wireless,
reliable, and energy-saving communication in distributed sensor networks are more important than
ever. Thereby, wake-up technologies are becoming increasingly important as they significantly
contribute to reducing the energy consumption of wireless sensor nodes. In an indoor environment,
the use of wireless sensors, in general, is more challenging due to signal fading and reflections and
needs, therefore, to be critically investigated. This paper discusses the performance analysis of wake-
up receiver (WuRx) architectures based on two low frequency (LF) amplifier approaches with regard
to sensitivity, power consumption, and package error rate (PER). Factors that affect systems were
compared and analyzed by analytical modeling, simulation results, and experimental studies with
both architectures. The developed WuRx operates in the 868 MHz band using on-off-keying (OOK)
signals while supporting address detection to wake up only the targeted network node. By using
an indoor setup, the signal strength and PER of received signal strength indicator (RSSI) in different
rooms and distances were determined to build a wireless sensor network. The results show a wake-up
packets (WuPts) detection probability of about 90% for an interior distance of up to 34 m.

Keywords: wake-up receiver (WuRx); operational amplifier; transistor; ultra low-power design;
passive RF architecture; envelope detector; Schottky diode; performance

1. Introduction

Wireless sensor networks (WSNs) have gained more and more interest in the recent
period due to their importance in the IoT area, including wide applications, e.g., Industry
4.0, smart buildings, smart environment [1], precision farming [2], and health care [3]. Due
to the availability of small, inexpensive, and smart sensors [4], wireless sensor networks
have emerged as one of the most promising technologies of the future [5]. However,
a number of challenges must be overcome to facilitate the wider deployment of WSN
technologies in real-world settings, e.g., limited energy budget and processing capabilities,
dynamic environmental conditions, interference and collisions in radio communications,
and susceptibility to node failures [6]. WSNs are usually powered by batteries with limited
lifetime. Depending on system applications, energy requirements, and availability of
energy sources [7,8], other solutions, e.g., energy transfer [9] or energy harvesting [10],
could be mentioned in order to ensure a continuous power supply. On the other hand, to
reduce the WSN power consumption, investigation of the hardware design of nodes and
the optimization of the network regarding the communication such as modulation [11], the
data rate [12], network protocol [13], and clustering [14] are needed.

The communication between sensor nodes can be purely synchronous [15], purely
asynchronous [16], or pseudo-asynchronous [17]. Purely synchronous communication
aims to establish a communication between the nodes in a certain time specified by a
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counter, which limits the flexibility of communication in real applications. Due to the
clock synchronization and the clock drifts, the necessity of correction could additionally
increase the power consumption. Pseudo-asynchronous communication exchanges data
without the need for clock synchronization. The node is switching between the active and
sleeping mode. The transmitter uses a preamble with an integrated address to communicate
with the receiver according to an asynchronous schedule, where the reception readiness
is confirmed with an acknowledgment. Usually, this leads to long latency. In order to
optimize this approach, a wake-up receiver could be added. The wake-up receiver is
always able to receive signals, so an on-demand communication could be realized, which
reduces the power consumption of the WSN devices [18]. The so-called WuRx is connected
to the sensor node, and the main microcontroller unit (MCU) (Figure 1) remains in the
power-saving sleep mode. The WuRx listens for special telegrams called WuPts. If such a
packet is received, an interrupt is generated and the MCU changes from the sleep mode to
the active mode.

Wake-up
Receiver

MCU

Sensor

...

Power Source

Radio
Transceiver

...

...

Signal

Data

Wake-up

Figure 1. Block diagram of sensor node’s functional units.

The typical structure of a sensor node consists of an MCU, a radio transceiver, one
or more sensor elements, and a power source [19]. Sensor elements acquire data on the
environmental conditions, including the processing unit, to handle and forward information
wirelessly to other sensor nodes or a base station via the radio transceiver. For WuRx
reception, a second antenna is used. The WuRx is connected to the MCU for configuration
and wake-up signaling.

In this paper, the performance and reliability of sensor nodes with integrated wake-up
receivers based on commercial of the shelf (COTS) components are investigated in an
indoor environment. The goal is to achieve a very low PER up to the sensitivity limit in
the sub-10 µW range. Therefore, two different LF amplifier are introduced to increase the
WuRx sensitivity. The focus is on the reliable reception of the WuPts in view of obstacles
in the interior, such as masonry and furniture. Sensitivity, range, data rate, and power
requirements are taken into account.

The structure of this paper is as follows: In Section 2, the approach is compared and
discussed with techniques from State of the Art (SoA). Based on passive and low-power
components, a WuRx architecture is built. Section 3 describes the theoretical investigation
and simulation of the individual components of the structure with respect to the application
of a wireless sensor node in the 868 MHz band. Subsequently, the results are verified with
experiments in the laboratory and under real test conditions. The experimental setup and
measurements are presented in Section 4. Finally, all results are discussed in Section 5.
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2. Related Works

A common mechanism for reducing power consumption in listening mode is duty-
cycling. When duty-cycled, devices wake up at selected times, listen for defined time slots,
and go back to a sleep mode; hence, the battery lifetime could be extended. Unfortunately,
the planned duty-cycling technique is always a trade-off between energy consumption,
sensitivity, and a higher mean communication latency [20]. Since the WuRx is usually in
listening mode for a long time period, the selection of the circuit elements of WuRx is very
critical, especially for high-frequency signals where the energy consumption, the sensitivity,
and the reliability of the received packets are significantly challenging, especially with
regard to their interactions between each other. The WuRx hardware is generally based
on special electronic circuits designed to reduce power consumption without reduction
in sensitivity, reliability, and data rate. The hardware design of WuRx can be based on
integrated complementary metal-oxide semiconductor (CMOS) circuits [21–23], where
they show a complicated fabrication process that may need a longer development time
period within expensive procedures, in contrast to circuits based on COTS components
that are usually cheaper in setup, maintenance, expansion, and development. In order to
save required energy in listening mode, the WuRx based on COTS uses generally passive
components for the continuous listening to the radio channel to activate the MCU [24].

Various WuRx circuit architectures have been developed to reach a compromise be-
tween the sensitivity and data rate, as well as power consumption. Analyzing the data
communication and wake-up functionalities into one WuRx hardware was presented
in [25]. The latency, the current consumption, and the overall operation range performance
under different transmit power levels were characterized. The authors developed a WuRx
without an LF amplifier. The system was evaluated in an outdoor setup with a performance
range up to 40 m by a transmission power of 11 dBm. The presented approach of WuRx
without any amplification stage and no RF bandpass filter can affect the sensitivity and
reliability, where interferences from other RF devices can affect the system dramatically.

Ref. [26] presents a WuRx with a comparator situated between envelope detector and
low-power microcontroller to sense smaller input signals and generate the interrupt to the
MCU. A wide range of sensitivity with the received packets sequences has been tested in
the case of two working frequencies, 433 MHz and 868 MHz. Results present experiments
evaluated within the same region of the nodes up to 24 m, a packet receiving sequence
of 99% and 96% for the outdoor and indoor scenarios, respectively. The proposed WuRx
achieved a sensitivity of −55 dBm, but the data rate is not mentioned.

An approach to enhance the sensitivity focuses on the use of voltage multiplier to
collect the weak RF energy from the antenna. Proposed in [27], the envelope detector circuit
with two or more voltage stages acts as a charge pump. However, increasing the number
of voltage stages will reduce the whole efficiency of the envelope detector. The voltage at
the input decreases because of smaller input resistance of envelope detector and higher
conductance [28].

Another technique is the use of an RF amplifier, or low noise amplifier (LNA) situated
between antenna and detection circuit. The authors in [29] propose an LNA circuit that
consists of a commercial component with a low shutdown current, short turn-on time,
and high amplification. The developed circuit reaches a sensitivity up to −71 dBm, but
with a current requirement of 5.8 mA when permanently active. A data rate of 250 kbit/s
and an average power consumption of 8.1 µA can be achieved. Due to the duty-cycling,
the transmitter has to be active until WuPt is received from WuRx. On the other hand,
this affects the latency, reliability, and current consumption of the system. The authors
in [30] used a two-stage LNA based on bipolar junction transistors (BJTs) and achieved
a sensitivity of −90 dBm. However, the presented architecture means a higher circuitry
effort due to numerous passive components. The average power consumption comes to
3 µW and data rate is 128 kbit/s. The higher data rate is necessary to reach the listening
time of the WuRx when using during duty-cycling protocol. Furthermore, the extended
active time of transmitter increases the current consumption.
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In [28], the authors used an additional amplifier stage situated between detection
circuit and interrupt generator. The developed circuit with LF-amplification stage based
on OAs achieves a sensitivity of −55 dBm with a power requirement of 1.2 µW. The
study does not mention the data rate. In [31], a higher sensitivity of −70 dBm is gained
with this approach. The signal is amplified with an OA, and the comparator is used as
preamble detector, using an additional microcontroller for address-matching of the WuPt
and triggering the MCU in order to process the signal. The high sensitivity is achieved
but only for a very low data rate of around 40 bit/s. Compared to data rate in the range of
1 kbit/s, the latency and current requirement increases by a factor of 25.

On the other hand, in [32,33], the research study shows a WuRx circuit with LF-
amplifier made from two high-gain BJTs. The results provide high sensitivity with an input
power of −63 dBm to supply a WuRx with a power of 8.7 µW and 7.4 µW. It has to be
noted that these designs are working in the 433 MHz band. A slight increase of sensitivity
compared to 868 MHz can be expected. The presented circuits show a high sensitivity due
to the integration of a BJT amplifier based on discrete components integrated between the
enveloped detector and the interrupt generator. The authors investigate proposed WuRx
circuit performances for wireless sensor networks under laboratory conditions. A reliability
study is not provided.

It should be noticed that sensitivity, power consumption, and data rate are always
a trade-off in terms of performance of the WuRx architecture. Table 1 summarizes the
mentioned properties of the approaches from the SoA.

Table 1. Comparison of data rate and wake-up packets.

Reference [25] [27] [29] [30] [31] [32] [33] This Work

Frequency (MHz) 868 868 868 868 868 433 433 868
Sensitivity (dBm) −53 −51 −71 −90 −70 −63 −63 −62

Voltage amplification none VM LNA LNA OA BJT BJT OA and BJT
Listening mode AO 1 AO DC 2 DC AO AO AO AO

Data rate (kbit/s) 2.7 1.0 250 128 0.04 1.0 1.0 1.2
Current requirement
transmitter 3 (µAs) 148 400 165 803 10,000 400 400 345

1 Always on. 2 Duty-cycle. 3 Estimate for 16-bit address and 25 mA supply current.

Figure 2 shows an overview of the described WuRx architectures based on their power
consumption, sensitivity, carrier frequency, and LF amplifiers. It can be seen that WuRx with
RF amplifiers [29,30] achieves sensitivity better than −70 dBm with a power consumption
of 8 µW. However, the integration of the LNA increases the average current consumption
and the latency of the system compared to an always-on listening approach. On the other
hand, WuRx architectures with voltage or LF amplifier circuit [26–28] are considered as
low power consumption WuRx of less than 2 µW, where their sensitivity is considered
low, in the range of only −55 dBm. This suggests a correlation between sensitivity, data
rate, and power requirement. Thus, there are trade-offs to be made when designing WuRx
architectures. The use of amplifiers in LF range is important to enhance the performance of
WuRx without increasing power consumption and decreasing sensitivity and data rate. It
can be seen that the architecture based on transistor and operational amplifier show a high
performance on low power consumption and high sensitivity, respectively.

Based on the SoA, the amplifiers with OAs and transistors are used to reach a sensitiv-
ity of more than −50 dBm within a power consumption lower than 10 µW. Compared to
other works based on LF amplifier approach, a higher sensitivity of −62 dBm is reached
with the frequency range 868 MHz. For that, an analytically and experimental analysis and
comparison between both architectures in terms of simple hardware design, low power
requirement, and high data rate is proposed. Furthermore, to determine reliability, the
relationship between sensitivity and number of WuPts received is examined.
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Figure 2. Comparison of SoA WuRx architectures.

Their analysis will be within the proposed application, and an indoor setup is built
to test the performance of both architectures, which may be of interest for building a
wireless sensor network across different rooms and floors. Since the implementation of LF-
amplifiers in WuRx circuits represents a very interesting compromise between sensitivity,
data rate, latency, and low power consumption, further investigations are required in order
to find out the best operating mode.

3. Analytical Expressions

The different parts of WuRx are investigated analytically as well as with simulations.
These will include the power consumption from each stage and operating mode.

3.1. General Structure of the Adopted WuRx Circuit

The general structure of a WuRx is shown in Figure 3, which is composed of antenna,
RF bandpass filter, impedance matching, envelope detector, LF-amplifier, and LF wake-up
receiver IC.

Antenna RF Band-pass
Filter

Envelope
Detector LF-Amplifier

MCU
Wake

LF Wake-up
Receiver IC

SPI

Impedance
Matching

Figure 3. Block diagram of the WuRx architecture.

To reduce interference with other radios and to avoid disturbances from different
frequency bands, a bandpass filter is used to let the input signals of a certain frequency
range pass. The Schottky diodes after the filter demodulate the incoming wake-up signal.
For encoding the WuPt, a low-power microcontroller [34,35], flip-flops [36], or preamble
detector [37] are employed. To identify the intended received signal and prevent false
wake-ups, the WuPt can contain an address field with a node ID. After address matching,
the decoder generates an interrupt to the main MCU.

As shown in Figure 3, the architectures of OA and BJT as LF-amplifier approach
consist of a bandpass filter for 868 MHz, a matching network, the detector diodes, and the
low-power LF wake-up receiver IC for address matching of the wake-up signal. After the
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detector diodes, the LF signal is amplified by an LF-amplifier circuit. To identify the right
signal, an address decoder is used. Usually, the AS3933 is employed as a decoder and is
able to detect signals with a minimum voltage level of at least 80 µVRMS. This means that
the AS3933 limits the overall sensitivity of the WuRx. For this reason, amplification has to
be implemented in order to increase the sensitivity of the whole receiver to the minimum
detectable voltage level. The AS3933 chip analyses the wake-up signal in order to check the
validity of the message and the matching to the predefined address. In case of validation
and matching, the MCU is woken up by an interrupt of the LF wake-up receiver chip.

The main differences between these both architectures are concerning the amplification
stage. The first architecture uses a transistor-based amplifier (named as BJT) and the second
one uses operational amplifier in a transimpedance amplifier configuration (named as TIA).

3.2. Energy Consumption

Both architectures are based on always-on technique. Figure 4 displays a simplified
timing diagram of channel listening and WuPt. The transmission node (TX-node) is sending
a packet and the WuRx (RX-node) is continuously listening to the channel for the WuPt.
After data receiving, the LF wake-up receiver chip is matching the address before sending
the interrupt to the MCU.

α1 αn

tWuPt

tlisten

WuPtTX-

RX-

node

node
time

time

Figure 4. Signal timings of wake-up intervals.

During a wake-up interval α, the time of channel listing tlisten the energy consumption
of listening mode Elisten can be calculated as shown in Equation (1).

Elisten = (PAS3933_listen + PLF_Amp + PMCU_LPM + PRF_LPM) · tlisten (1)

where PAS3933_listen, PMCU_LPM, and PRF_LPM are the power consumption of low-power
mode during listening mode of the LF wake-up receiver chip, microcontroller, and RF
transceiver, respectively. PLF_Amp is the active current of the LF amplifier.

ERX_WuPt = (PAS3933 + PLF_Amp + PMCU_LPM + PRF_LPM) · tWuPt (2)

ERX_WuPt represents the energy required for WuPt reception, as expressed in Equation (2).
The supply power of BJT or transimpedance amplifier (TIA) is written as PLF_Amp and
PAS3933 is the power of AS3933 in detecting mode. The energy of receiving the WuPt is
determined by tWuPt. The energy requirement during sending the WuPt is displayed in
Equation (3) with a transmission power of the transceiver PRF.

ETX_WuPt = (PMCU + PRF) · tWuPt (3)

3.3. Path and Antenna Losses

The frequency band of 868 MHz is used as the radio channel for the wake-up signal.
This frequency band is regulated in terms of transmission power and duty cycle and often
used for many application, e.g., building automation. The use of high frequencies for
the wake-up signal leads to high power consumption in the receiver due to switching
losses. On the other hand, the use of low frequencies leads to larger antenna and lower
gain [34,36]. The amplitude shift keying (ASK) is known for its simplicity to modulate the
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carrier signal and create the WuPt sequence pattern. By switching the carrier frequency on
and off—OOK—the pattern is generated. Therefore, the OOK modulation enables a simple
and energy-efficient hardware design for demodulation, e.g., by using an envelope detector
consisting only of diodes. Here, the frequency and phase remain unchanged and only
the amplitude varies to represent the two binary values. When the WuPt is received, the
envelope detector demodulates the high-frequency carrier signal to obtain a low-frequency
wake-up signal [38]. A disadvantage of ASK modulation is that noise and interference
affect the amplitude. Another modulation option for wake-up receivers is frequency shift
keying (FSK), as it is less susceptible to noise compared to ASK. However, the FSK circuit
consumes more power because a frequency synthesizer is needed to distinguish between
the central frequency and the frequency deviation.

In indoor applications, interferences, as well reflections, diffraction, and attenuation,
are expected and should be taken into consideration. For that purpose, many research
activities focused on the development of path loss models to predict the propagation of
electromagnetic waves. The basic path loss model is the free space model (Equation (4)) [39],
which predicts an inverse square dependence of the average received power on the distance
between the transmitter and receiver.

Pr

Pt
= Gt · Gr ·

(
λ

4πd

)2
(4)

where Pr and Pt are the received and transmitted signal powers, Gr and Gt are the gains
of the antennas, d is the distance between antennas, and λ is the wavelength. Modified
models attempt to account for the complex nature of real wireless channels.

The International Telecommunication Union (ITU) model for indoor attenuation con-
siders loss through multiple floors, as well as transmission through walls. The coefficients
from [40] implicitly take into account obstacles and other loss mechanisms that may occur
inside a floor in buildings. The basic model is given by

Ltotal[dB] = L(d0) + N log10
d
d0

+ Lf(n) (5)

where N is the distance power loss coefficient, Lf the floor penetration loss factor,
L(d0) = 20 dB · log10 f − 28 dB is basic transmission loss at reference distance d0 and carrier
frequency f in MHz and assuming free-space propagation. Figure 5 shows the losses for a
distance from up to 40 m across one floor and through walls.
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Figure 5. Theoretical attenuation over a distance up to 40 m.
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3.4. Impedance Matching and Envelope Detector

An impedance matching network is required to maximize the received RF power of
the antenna. To ensure the best possible performance of the diode circuit, the load should
be equal to the conjugate of the source impedance. The Schottky diode SMS7630 from
Skyworks was chosen as the detector diode due to its sensitivity to the lowest RF power.
The most common measure of mismatch is return loss S11. To create an effective impedance
matching, passive elements such as capacitors and inductors are used, which reduce the
losses due to the reflection of a certain part of the energy of the incident waves. The antenna
and the SAW filter are designed for 50 Ω source impedance. For the defined transmission
frequency of 868 MHz, the load impedance ZL is defined as shown in Equation (6).

ZL = 50 Ω · 1 + S11

1− S11
. (6)

The reflection coefficient is simulated in ADS Keysight (Figure 6) and the SPICE
parameters of the SMS7630 diode. It is found that the diodes are almost entirely capacitive
and are matched with two inductors to achieve the best resonant frequency.

Figure 6. ADS simulation of reflection coefficient S11.

The matching network evaluated by ADS consists of a reversed L network (Figure 7),
L1 = 22 nH and a parallel inductance L2 = 3.3 nH. The exact values of the matching network
are determined directly on the board using the input reflection coefficient S11 measurement
on the network analyzer.

Zin Zout

Z1

Z2

Figure 7. Reversed L network [41].

The maximum diode RF voltage sensitivity at room temperature at 868 MHz, assuming
ideal impedance matching, is derived from [42], which is expressed in Equation (7).

γRF = βi · RV. (7)
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The current sensitivity can be described in Equation (8), which is defined by the
angular frequency ω, junction capacitance Cj0, and video resistance RV ' nVT/Is with
saturation current Is, and the thermal voltage VT, as well as the series resistance Rs and the
ideality factor n.

βi =
1

2nVT(1 + (ωCjo)2RVRS)
. (8)

Furthermore, the envelope detector diodes influence the WuRx sensitivity. For that,
the tangential signal sensitivity (TSS), expressed in Equation (9), is used to describe the sen-
sitivity of the detector diodes and is the lowest input signal power level [43] where BV is the
bandwidth, T expresses the environmental temperature, and k is the Boltzmann constant.

PTSS =
2.5
√

4kTRVBV

γRF
(9)

The curve of voltage sensitivity and tangential sensitivity are shown in Figure 8. With
T = 298 K and BV = 18.7 kHz at 868 MHz, the voltage sensitivity is more than 90 mV/µW;
according to this value, the lowest input power level of the diodes is −74.7 dBm.

0.5 1 1.5 2 2.5 3

60

70

80

90

100

−75

−74.5

−74

−73.5

−73

−72.5
Voltage Sensitivity Tangential Sensitivity

Carrier Frequency [GHz]

Vo
lta

ge
 S

en
si

tiv
ity

 [m
V

/μ
W

]

Ta
ng

en
tia

l S
en

si
tiv

ity
 [d

B
m

]
Figure 8. Voltage sensitivity and tangential sensitivity depending on signal frequency.

The envelope detector circuit is designed using Greinacher voltage multipliers as
given in Figure 9. It is used to demodulate the received wake-up signal, as well as the
amplification of the input voltage (Vin,ED). Typically, the output voltage of the voltage
multiplier (Vout,ED) is almost the double of the input voltage, where the used ones affect
the voltage level by their reverse voltage.

Vin,ED Vout,EDL1

L2

D1

D2 C2 R1

C1

Figure 9. Schematic of the envelope detector.

3.5. Low-Frequency Amplifiers

The amplification of the signal after the detector circuit is important to reach the minimum
detectable voltage level from AS3933 of VAS3933,RMS = 80 µV [44]. With γ = 40 mV/µW, a
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peak-to-peak value, output voltage of the envelope detector of VED,PP = 12 µV at −65 dBm,
can be approximated. Equation (10) shows the calculation of the required voltage gain G.

G =
VAS3933,RMS

VED,RMS
= 2
√

2
VAS3933,RMS

VED,PP
= 17.9 (10)

These amplification stages can be implemented by different circuits. As can be seen
from Figure 2 OAs and BJT, amplifiers are the most common. Both architectures shall be
investigated in the following subsections.

3.5.1. Transimpedance Amplifier (TIA)

The envelope detector circuit can be modeled as a Thévenin equivalent with an internal
current source that can be easily useful for the modeling with other WuRx stages. The
TIA circuit acts similar to a current-to-voltage amplifier with an adjustable conversion
factor. TIA circuits are typically implemented as OA-based amplifiers. Figure 10 shows the
schematic used in this implementation. The TIA is supplied by VV+ = 3.0 V.

Vbias

VD

Rf

C1

RD
Vout,TIAID

Figure 10. Schematic of the TIA amplifier.

The TIA output voltage is defined as shown in Equation (11), which depends on RD the
diode’s Thévenin resistance, ID the diode’s source current, and Rf the TIA’s feedback resistor.

Vout,TIA = −Rf · ID = − Rf
RD
·Ud (11)

With Rf = 200 kΩ and RD ≈ 10 kΩ, the required voltage gain of 20 was reached. A
reference voltage of 1.2 V was used to ensure that the proper output voltage swings. C1 is
the corresponding bias-blocking capacitor interrupting the DC current flow towards the
envelope detector.

The performance of the TIA is mainly related to the used OA where the supply current
and gain bandwidth product (GBWP) are the main challenging elements during their
selection within an application. In fact, the current requirement of the OA should be as
small as possible, resulting in a low GBWP value.

3.5.2. BJT-Based Amplifier Circuit

The bipolar transistor can be operated in three basic circuits: common emitter, common
collector, or common base configuration. Because of its high voltage gain and high input
impedance, the common emitter circuit was selected for a single-stage amplifier, as shown
in Figure 11, where the BJT transistor is named as Q1.

Typically, the amplifier based on BJT requires a specific operation point. These opera-
tion points can be highly influenced by temperature changes and component tolerances.
These problems can be solved by connecting RB parallel to collector and base. This creates
the stable operating point, but limits the output voltage span, due to VCE ≈ 0.7 V.

A small-signal analysis according to [45] was made in order to investigate the voltage
amplification. Figure 12 shows the small-signal circuit of the amplifier. Equation (12) shows
the result of the small-signal analysis with rBE, rCE, and β the small-signal parameters.
Further approximations were made in order to simplify the formula. The resulting approx-
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imation is only dependent on supply voltage VS, thermal voltage VT, load resistance RL,
and collector resistor RC.

RCRB

RL
C1

C2
Q1

Vs

Vin,BJT
Vout,BJT

Figure 11. Schematic of the BJT amplifier with emitter architecture.

Vin,BJT

rBE

RB

β IBIB rCE RC RL

Vout,BJT

Figure 12. Small-signal circuit of the BJT amplifier according to [45].

G =
rCE||RC||RL

rBE
· rBE − β · RB

RB + (rCE||RC||RL)
≈ −VS

VT
· RL

RC + RL
(12)

Practically, for WuRx, the RL is the equivalent model of input resistance of AS3933.

3.6. Low-Frequency Wake-Up Chip

The low-frequency wake-up chip is used to generate an interrupt to the MCU with
minimal influences of interferences. Typically, in real applications, the WuRx are used in en-
vironments, where interferences are expected due to the presence of other electromagnetic
waves. This aspect influences the working behavior of the WuRx and leads to false wake-up
events. To avoid false positives, one method based on the pattern correlation can be used
to activate and to match incoming signal with valid pattern stored in the wake-up chip.
The LF WuRx chip AS3933 is a low-power, three-channel ASK receiver that can generate
a wake-up call to the MCU. The AS3933 is designed for carrier frequencies of 15 kHz
to 150 kHz using OOK. This is not sufficient for radio transmission in the sub-gigahertz
band. Therefore, the OOK signal is digitally modulated to a sub-carrier of 18.7 kHz and
up-converted to 868 MHz. When the signal is detected at the receiver part, the passive
envelope detector converts it back to the kHz band. It is then captured by the AS3933.
For the use of the internal crystal oscillator as reference clock, the signal frequency can be
chosen with Equation (13).

fcarr = fRC ·
8
14

(13)

Based on the specification of AS3933, incoming wake-up packets must be Manchester-
coded [44]. If the wake-up protocol is valid, the AS3933 will generate an interrupt to
the MCU.

Figure 13 shows the demodulated WuPt used throughout this work. The packet
with enabled pattern detection is displayed in Figure 13a and consists of a carrier burst,
preamble, and 16-bit address, whereas Figure 13b exposes the amplitude modulation of
the signal.
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Figure 13. Manchester coded wake-up packet. (a) Pattern with carrier burst, preamble, and address;
(b) OOK signal on kilohertz band.

For each active channel, the AS3933 provides a RSSI value. The RSSI indicates how
strong the input signal is and the inverse representation of the gain of the variable gain
amplifier (VGA). The gain of all channels is set to maximum in listening mode. As soon as
a signal is detected, the automatic gain control (AGC) is activated and the gain of the VGA
is set to the correct value and is between 0 and 31 [44]. The relationship between gain and
RSSI can be shown with Equation (14) [46].

G [db] = Goffset − 20 dB · log10

(
Vin

Vref

)
(14)

The offset gain of the AS3933 Goffset corresponds to 62 dB, and Vref represents the
minimum detectable power of the input signal 80 µVRMS.

4. Investigation Results
4.1. Overall System

In this section, the two proposed designs of the two prototypes are implemented and
built on two-layer PCBs. The used BJT and TIA boards are shown in Figure 14, respectively.
Their dimensions are about 40× 50 mm. The main characteristics and power parameters of
used components are summarized in Table 2.

Both WuRx architectures are equipped with ANT-868-CW antenna and the B39871B
bandpass filter to pass the signal in the 868 MHz frequency band. The envelope detector
consists of two SMS7630 Schottky diodes from Skyworks Solution Inc. to demodulate the
received signal. As explained in Section 3.4, the chosen diodes reach the lowest detectable
RF power of −74 dBm.
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1 2 1 2

3 3

4
5

Figure 14. PCBs of the proposed architectures. 1—bandpass filter, 2—envelope detector, 3—LF WuRx
IC, 4—TIA amplifier, 5—BJT amplifier.

Table 2. Summary of component values for the wake-up receiver.

Components Parameters Values

Antenna
ANT-868-CW

Center Frequency 868 MHz
Impedance 50 Ω
Peak Gain −2.3 dBi
Bandwidth 30 MHz

SPIRIT1
SPSGRFC-868

Supply Current TX Mode 21 mA
Supply Current RX Mode 9 mA

SAW Filter
B39871B

Center Frequency 869 MHz
Maximum Insertion

Attenuation
2.5 dB

Usable Pass band 2 MHz

Schottky Diodes
SMS7630

Voltage Sensitivity 40 mV/µW
Video Resistance 5 kΩ

BFP405 NPN
RF Bipolar Transistor

Maximum Gain 23 dB
Minimum Noise Figure 1.25 dB

Collector Current 1.3 µA

MIC861
Operational Amplifier

Supply Current 4.2 µA
Gain Bandwidth Product 350 kHz

AS3933
LF Wake-Up-Chip

Supply Current
Scanning Mode

3.1 µA

Supply Current
Preamble Detection

12 µA

MSP430
Microcontroller

Supply Current Standby 860 nA
Supply Current Active 2 mA

System Clock 8 MHz

The demodulated signal is amplified by the MIC861 OA at the TIA implementation or
by BFP405 RF transistor at the BJT implementation. Microchip’s MIC861 OA was selected
because of its GBWP of 400 kHz at a low supply current of 4.6 µA [47]. With G = 20, the
resulting upper corner frequency is 20 kHz, sufficient to amplify the 18.7 kHz LF signal.
LTspice simulation shows that general-purpose transistors are not suitable due to a corner
frequency lower than 18.7 kHz. This is coursed by high parasitic capacitance and the high
RC. The BFP405 is a high-frequency transistor, which was utilized due to its low parasitic
capacitance, resulting in a corner frequency of more than 100 kHz. From Equation (12),
with VV+ = 3.0 V, VT = 26 mV, RC = 2.4 MΩ, and the AS3933 load resistance, RL = 2 MΩ [44]
will result in G ≈ −58. The voltage gain is not strongly dependent on the transistor’s
current gain β.

For the investigation, the WuPt transmission is generated by the SPSGRFC-868 radio
module from STMicroelectronics. The MCU utilized on the boards is a 16-bit MSP430G2553
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manufactured by Texas Instruments running at 8 MHz. The MSP430 can enter multiple
low-power modes. In order to keep a clock crystal for timing active, the LPM3 is used.
When in low-power mode 3, it consumes PMSP_LPM3 = 2.55 µW. To power the WuRx nodes,
3.0 V batteries are used.

4.2. Energy Consumption

The energy consumption of the WuRx mainly depends on the operating mode such
as wake-up period and amount of data, as well as the used circuit elements. The length
of the active time depends on the data rate and the amount of data. The data rate for the
WuPt is 1160 kbit/s at a signal frequency of 18.7 kHz and with Manchester coding. The
number of bits and the length of the WuPt are displayed in Table 3. Results show that the
total duration of the WuPt (tWuPt) is about 27.7 ms.

Table 3. Structure of the WuPt with length.

Segment Length Duration (ms)

Carrier burst 32 pulses 8.3
Preamble 6.5 periods 5.6
Address 16 bits 13.8

During the transmission of a WuPt, the energy consumption of the node depends
on the active mode of the components. PMCU and PRF are the power consumption of
microcontroller and RF transceiver during transmission mode. With tWuPt, the energy
consumption is ETX_WuPt, as expressed in Equation (3). Figures 15 and 16 show the power
consumption of BJT and TIA according to the installed components and working mode. In
listening mode, the OA of the TIA board consumes the most current compared to the other
components, while for the BJT, the AS3933 has the highest amount of current consumption.

4.2µ3.1µ

1.3
µ 850n

12µ

4.2µ

1.3µ

850n

21m

2.0m

4.2µ
3.1µ

OpAmp
AS3933
Microcontroller
Radio Module

TIA Amplifier

Listen WuPt RX WuPt TX

Figure 15. Current need of WuRx with TIA amplifier.

3.1µ

1.3µ

1.3µ

85
0n

12µ

1.3µ1.3µ
850n

21m

2.0m

3.1µ
1.3µ

AS3933
Transistor
Microcontroller
Radio Module

BJT Amplifier

Listen WuPt RX WuPt TX

Figure 16. Current need of WuRx with transistor.
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Table 4 shows the results of the current consumption of the WuRx using the BJT and
the TIA amplifiers. These results have been calculated based on Equations (1)–(3) shown
in Section 3.2. This includes the different working modes such as listening, receiving, and
transmission for a wake-up period of 1 s. Results show that typically the listening mode
is characterized with the highest energy consumption of more than 15 times compared to
other working modes. Furthermore, it can be seen that the BJT amplifier leads to a lower
energy consumption compared to TIA of around 1.7 µJ and 0.24 µJ in the listening and the
receiving mode, respectively. In the transmission mode, both architectures consume about
1.91 mJ. This can be explained by the high current requirement of the SPSGRFC-868 radio
module when sending the packets in the range of 21 mA, so that the power requirement of
the amplifiers can be neglected.

Table 4. Energy consumption of BJT and TIA amplifiers.

Mode TIA BJT

Listening * [µJ] 28.35 25.05
Receiving [µJ] 1.52 1.28

Transmission [mJ] 1.91 1.91
* tlisten = 1 s.

The BJT architecture has a lower energy consumption than TIA in listening mode,
whereas in active states, both PCBs require nearly the same energy. Figure 17 displays the
current waveforms of the transmitting mode, receiving mode with BJT, and receiving mode
with TIA, respectively.
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Figure 17. Cont.
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Figure 17. Current curve of WuPt. (a) Transmitter node, (b) receiver node with BJT, and (c) receiver
node with TIA amplifiers.

The energy consumption reaches its maximum in the transmitting mode, where
the current consumption reaches a value higher than 15 mA during 27 ms. The current
consumption on the transmitter is related to transmitting power of 11 dBm of SPSGRFC-868
radio module, which is lower than the specified current consumption of the data sheet. The
measured current is lower than specified in the data sheet because of ASK modulation with
a duty-cycle of around 50%.

Figure 17b,c (BJT and TIA, respectively) show the signal progression at the receiver
architectures. Their peak of consumption is related to the MCU, which is waking up. It
can be seen also that based on Figure 17c, the signal of the TIA amplifier is very distorted,
which is mainly related to AS3933. Since the LF wake-up IC is always ON and listening to
the channel, the LDO is very noisy. It refers to the amount of ripple on the output coming
from ripple on the input. Due to the measurement inaccuracy of the oscilloscope, the
current values of Figure 17b,c are different from the calculations. Here, the effects of the
RC constant are clearly visible, whereas in Figure 17a, they are not visible due to the larger
measuring range in the mA range.

4.3. Sensitivity Measurements

The minimum theoretical sensitivity of the WuRx defines the minimum detectable sig-
nal. The amplification performance of each architecture is evaluated with signal generator
and an input signal with various sensitivity level. Figure 18 shows the voltage after the
amplification stage of BJT and TIA board.

A poor detection mechanism will lead to packet errors, therefore the number of
received WuPts versus transmitted packets is examined to study the noise immunity of the
WuRx. Furthermore, the RSSI measured by the AS3933 is another value for evaluating and
comparing the performance of the two architectures. The amount of transmitted packets
N is calculated using the probability of arrival and the confidence interval and is seen
in Equation (15) where z is the standard score, and p represents the probability of e the
confidence level.

N =
z2 · p(1− p)

e2 . (15)

At a confidence level of 99%, the standard deviation corresponds to a value of 2.58.
The probability was determined by a sample measurement of 1000 packets, in which all
packets arrived with a probability of 90%. This leads to a sample size of 6000 packets.

The relationship between PER and RSSI was investigated with a signal generator. Start-
ing with an input power of −35 dBm, this is reduced in 1 dBm steps to −65 dBm. In each
stage, 6000 packets are transmitted. For each successfully decoded WuPt, the AS3933 issues
an interrupt to the MSP430. NWuPt_Rx indicates the total number of interrupts. Then, the
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interrupts are logged and compared with the total number of transmitted WuPts NWuPt_Tx.
To obtain a practical indication of the sensitivity of the WuRx, the PER is measured at each
iteration. The PER can be calculated as presented in Equation (16).

PER = 1− NWuPt_Rx

NWuPt_Tx
(16)

The relationships of received WuPts against input power, as well as the RSSI value, are
shown in Figure 19. With a probability of 96%, the TIA and BJT platines detect the packets
at an input signal down to −48 dBm. Both architectures receive reliably up to a sensitivity
of almost −50 dBm. With a packet receiving rate of around 1%, the lowest sensitivity of
the BJT is −62 dBm and RSSI drops to 1, whereas the TIA can only detect packets up to an
input power of −54 dBm, due to the noisy LDO of the AS3933. This shows that it is not
only the sensitivity of the WuRx that matters, but the reliability of the reception rate must
also be taken into account.
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Figure 18. Amplification level of BJT and TIA architecture.
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Figure 19. Packet error rate depending on input power.

4.4. Indoor Operational Range Evaluations

The performance of the WuRx is influenced by various environmental parameters.
Especially indoors, various influencing factors can affect the communication between
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nodes. The wake-up receiver has been tested in the building of Faculty of Engineering of
Leipzig University of Applied Science (Figure 20a) to ensure the reliability of the complete
wake-up system when transmitting the complete WuPt with 16 bit node address. The
building provides a challenging environment to explore limits of wireless communication
with WuRx. Materials such as stone, glass, concrete, and steel are built in and restrict the
propagation of waves.

The experimental investigation is performed in different rooms and floors. Among
other things, the PER and RSSI are used as comparison values to investigate influences
of masonry and furniture. Although the SAW filter at the input of the WuRx provides
higher immunity to signal interference and the passive amplifier increases sensitivity, the
maximum range and reliability of delivered packets are still affected.

(a)

2nd floor

1st floor

0W2 E2W4 E4W34 E32. . . . . .

RXTX

TX

(b)

Figure 20. Setup of indoor range test. (a) Range test at the Faculty of Engineering of HTWK Leipzig
(credit: Swen Reichhold/HTWK Leipzig); (b) Schematic side view of the measurement setup.

The main receiver of the BJT and TIA boards was located on the second floor in
the middle of the corridor, while the main transmitter was placed on two floors. Firstly,
the same floor as the receiver was located, and, secondly, the floor underneath and the
adjacent rooms. The experimental study was conducted at a room temperature of 25 °C
and a distance starting from 0 m. The transmitter was moved towards the WuRx in 4-m
increments in the corridor and in 2-m increments in the rooms (see Figure 20b).

Once the WuRx boards were placed—marked in figures with (x)—the transmitter was
started to send the wake-up packets. For each configuration, a result grid was created
representing the packet error rate. The WuPt signals were transmitted every 50 ms with
a transmission power of 11 dBm. For each grid point, the receiver counts the arriving
packets and records the RSSI. The maximum distance (d) on the plane was 34 m with a
maximum orthogonal distance of 8 m and a height difference of 0.5 m between transmitter
and receiver.
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Using Equation (16), Figures 21–26 show the PER of BJT and TIA boards set up in
the building.
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Figure 21. Packet error rate of BJT board with WuRx and WuTx on the same floor.
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Figure 22. Packet error rate of TIA board with WuRx and WuTx on the same floor.
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Figure 23. Packet error rate of BJT board with WuRx and WuTx on different floors.
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Figure 24. RSSI of BJT board with WuRx and WuTx on different floors.
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Figure 25. RSSI of TIA board with WuRx and WuTx on different floors.
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Figure 26. RSSI of BJT board with WuRx and WuTx on different floors. TIA implementation was not
able to receive a single packet at this floor level.

Figures 21 and 22 display the receiving and transmitting device placed in the same
floor. The x-axis represents the east–west direction of each floor. The y-axis represents
the north–south direction of each floor, where southwards are limited by zero. If both
units—transmitter and receiver—are located on the same floor, a lower PER value for
distance is displayed. This applies to BJT and TIA amplifiers.

The maximum reception rate is displayed when the devices are close to each other.
Expanding the distance by placing one of the devices on another floor, the PER between
WuRx with BJT amplifiers is almost higher than 10%, even at the ideal horizontal distance.
By communication over floors, at a distance of 22 m in the west direction (W22) and of 18 m
in the east direction (E18), the PER between WuRx with TIA amplifier at 100% means no
signal is received. Additionally, with the TIA amplifier, the PER increases rapidly when
the devices are placed in different rooms. Comparing the BJT and TIA amplifiers, it can
be seen that the amplifier circuitry is very sensitive to vertical and horizontal distances.
In ideal positions, both amplifiers provide a similar PER between WuRx of about 0%. In
the indoor corridor case, reliable awakening was found up to a distance of 34 m, where
awakening success was 90% or more.

At a distance greater than 20 m and placement of each equipment in different floors,
with the TIA amplifier, not a single packet was received. The second comparison criterion
is the RSSI provided by the AS3933. When a signal is detected, the value is set between 0
and 31. The measured signal strengths of the received WuPts are shown in Figures 24–26.

The highest RSSI was achieved when both devices were on the same floor and close to
each other. At a distance of more than 4 m, the RSSI dropped abruptly from 30 to below
15. The RSSI was significantly lower when the transmitters were placed in a room, similar
to the PER. When both devices were positioned on different floors, the maximum signal
strength did not exceed 10.

The measurements were performed under realistic, unshielded indoor conditions.
Due to this, reflections, as well as interference, may be present in the ISM band, causing
error modes in the passive front-end architecture of the receiver. This occurs at a certain
power level (the power of the interfered at the wake-up receiver) because the power level
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of the coherent interferences does not vary with a Gaussian probability distribution like the
receiver noise [48]. This results in a more abrupt transition from a low PER to not a single
successful WuPt reception. Similarly, the attenuation due to furniture can be clearly seen in
the results. No signal was received in grid points W8(2–8) to W12 in Figures 21 and 24 due
to the metal cabinets, which attenuates the radio signal to less than the lowest detectable
power of 80 µVRMS.

5. Conclusions

WuRx and asynchronous communication offer significant energy savings for wireless
sensor networks compared to synchronized communication protocols. Various approaches
are possible to enhance the performance of WuRx, including the use of RF and LF amplifiers
to increase the range of sensor nodes. As RF amplifiers, LNAs achieve sensitivities of up
to −90 dBm and a data rate of several 100 kbit/s, but, on the other hand, higher latency,
longer listening times, and higher power consumption. In order to achieve a sensitivity
of more than −50 dBm within a power consumption lower than 10 µW, two LF amplifiers
based on OA and BJT are introduced. However, the hardware of WuRx is still challenging
in terms of compromise between sensitivity, data rate, latency, and low power consumption.
In this work, two WuRx architectures based on LF amplifiers were investigated. In order
to build a wireless sensor network for indoor localization and a multi-hop structure, the
results were determined by analytical modeling, simulation, and experimental testing to
compare the architectures in terms of influencing factors.

The first architecture uses for the amplification stage a BJT architecture where the
second one is based on OA. Results show that the BJT architecture can be placed at a
distance of 34 m with a reliability of the WuPt reception with a PER below 10%, where the
other architecture presents a distance of 6 m with a PER below 10%. When communicating
between rooms through masonry, a high reception rate can be expected at a distance of
more than 10 m, depending on the presence and, ultimately, the amount of furniture and
objects in the rooms. Communication between several floors allows a secure wireless
connection at a distance of up to 12 m. The paper shows that a wireless sensor network can
be built with passive and discrete components such as Schottky diodes, BJT transistor, and
OA with indoor ranges of more than 30 m, with a PER of less than 10%. The limitation of
the range in the rooms is mainly due to the furniture and interference with other radios
such as transponder locks. The results show that LF amplifiers improve the sensitivity
of the WuRx with low power requirement. However, when developing the hardware, it
should be mentioned the trade-off between sensitivity, power consumption, and data rate.
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Abbreviations
The following abbreviations are used in this manuscript:

AGC automatic gain control
ASK amplitude shift keying
BJT bipolar junction transistor
CMOS complementary metal-oxide semiconductor
COTS commercial of the shelf
FSK frequency shift keying
GBWP gain bandwidth product
IoT Internet of Things
ITU International Telecommunication Union
LED light-emitting diode
LF low frequency
LNA low noise amplifier
MCU main microcontroller unit
OA operational amplifier
OOK on-off-keying
PCB printed circuit board
PER package error rate
RF radio frequency
RSSI received signal strength indicator
SAW surface acoustic wave
SoA State of the Art
TIA transimpedance amplifier
TSS tangential signal sensitivity
VGA variable gain amplifier
WSN wireless sensor network
WuPt wake-up packet
WuRx wake-up receiver
WuTx wake-up transmitter
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