Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,042)

Search Parameters:
Keywords = volumetric properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2476 KB  
Article
Antioxidant Capacity, Volatile Profile, and Physical Properties Changes of Kohlrabi Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process
by Magdalena Kręcisz, Marta Klemens, Joanna Kolniak-Ostek, Bogdan Stępień, Maciej Combrzyński and Aleks Latański
Molecules 2025, 30(17), 3563; https://doi.org/10.3390/molecules30173563 (registering DOI) - 30 Aug 2025
Abstract
The aim of the study was to use vacuum impregnation (VI) with onion and beetroot juices as a pre-treatment before drying to develop innovative dried kohlrabi products. Two modern drying techniques were used: freeze-drying (FD) and vacuum drying (VD). The physicochemical properties were [...] Read more.
The aim of the study was to use vacuum impregnation (VI) with onion and beetroot juices as a pre-treatment before drying to develop innovative dried kohlrabi products. Two modern drying techniques were used: freeze-drying (FD) and vacuum drying (VD). The physicochemical properties were determined, including color, water activity, dry matter, density, volumetric gel index, texture, antioxidant capacity, total phenolic content (TPC), and volatile organic compounds (VOCs). It was shown that vacuum impregnation reduced the color lightness and springiness of kohlrabi. In addition, vegetables after VI showed an increase in dry matter, water activity, bulk density, volume gel index, color attributes a* and b*, color difference, hardness, and chewiness. Furthermore, the pre-treatment allowed for the introduction of additional VOCs characteristic of onions (1-Heptene, 2-methyl-(19.81%), Pentyl formate (19.81%), and 4-(Methylthio)butyl isothiocyanate (18.22%) in kohlrabi with onion juice: dimethyl trisulfide, methyl prop(en)yl disulfide, and 3,5-diethyl-1,2,4-trithiolane) and beetroot (dimethyl trisulfide), myrcene. The vacuum impregnation process significantly increased antioxidant capacity and total polyphenol content compared to raw samples. The results of dry weight, water activity, density, TPC, antioxidant capacity and texture in the case of freeze-dried products confirm that FD is a more advantageous method. In addition, freeze-drying allowed for significant preservation of volatile compounds and the color of kohlrabi. The results indicate the potential of VI as a method for modifying the properties of kohlrabi and producing functional and innovative dried products. Full article
Show Figures

Figure 1

67 pages, 3109 KB  
Review
Assessment of Phase Change Materials Incorporation into Construction Commodities for Sustainable and Energy-Efficient Building Applications
by Ihsan Ur Rahman, Oronzio Manca, Bernardo Buonomo, Meriem Bounib, Shafi Ur Rehman, Hala Salhab, Antonio Caggiano and Sergio Nardini
Buildings 2025, 15(17), 3109; https://doi.org/10.3390/buildings15173109 - 29 Aug 2025
Abstract
The significant energy consumption and contribution to greenhouse gas emissions by the construction sector need careful attention to explore innovative sustainable solutions for improving the energy efficiency and thermal comfort of building envelopes. The integration of phase-change materials (PCMs) into building commodities is [...] Read more.
The significant energy consumption and contribution to greenhouse gas emissions by the construction sector need careful attention to explore innovative sustainable solutions for improving the energy efficiency and thermal comfort of building envelopes. The integration of phase-change materials (PCMs) into building commodities is a favorable technology for minimizing energy consumption and enhancing thermal performance. This review paper covers the impact of PCM incorporation into construction materials, such as walls, roofs, and glazing units. Additionally, it examines different embedding techniques like direct incorporation, immersion, macro and micro-encapsulation, and form and shape-stable PCM. Factors affecting the thermal performance of PCM-integrated buildings, including melting temperature, thickness, position, volumetric change, vapor pressure, density, optical properties, latent heat, thermal conductivity, chemical stability, and climate conditions, are elaborated. Furthermore, the latest experimental and numerical simulations, as well as modeling techniques, evident from case studies, are investigated. Ultimately, the advantages of PCM integration, including energy savings, peak load reduction, improvement in interior comfort, and reduced heating, ventilation, and air-conditioning dependence, are explained alongside the limitations. Finally, the recent progress and future potential of PCM-integrated construction materials are discussed, focusing on innovations in this field, addressing the status of policies in line with the United Nations Sustainable Development Goals, and outlining research potential for the future. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
30 pages, 2680 KB  
Article
What Does Modular Mean? A Systematic Review on Definitions, Ambiguities, and Terminological Gaps in Construction
by Bruno J. O. Pasello, Ricardo M. S. F. Almeida and Jorge D. M. Moura
Buildings 2025, 15(17), 3017; https://doi.org/10.3390/buildings15173017 - 25 Aug 2025
Viewed by 457
Abstract
Despite the growing adoption of modular construction (MC) to enhance productivity, sustainability and industrialization in the building sector, critical terminological inconsistencies and conceptual ambiguities persist across academic, professional and regulatory domains. This study conducts a systematic literature review to investigate how the key [...] Read more.
Despite the growing adoption of modular construction (MC) to enhance productivity, sustainability and industrialization in the building sector, critical terminological inconsistencies and conceptual ambiguities persist across academic, professional and regulatory domains. This study conducts a systematic literature review to investigate how the key terms modular, module, modularity, modularization and modular coordination are defined and applied in the recent literature. Following the PRISMA protocol, 85 peer-reviewed articles were selected from an initial pool of 4832 Scopus records. Bibliometric and thematic analyses reveal a lack of conceptual consistency in the application of key terms, most notably the frequent misuse of module to describe non-volumetric components. Beyond identifying these ambiguities, this study maps the most recurrent definitional patterns to outline potential pathways toward conceptual consensus. It clarifies the boundaries between modular (a system attribute), modularization (a design strategy), modularity (a system property), module (a prefabricated, spatially autonomous, functionally complete, and volumetric unit) and modular coordination (a dimensional grid system). Based on these insights, it proposes a conceptual hierarchy, and a set of propositions integrated into a structured glossary that contribute to terminological clarity, foster standardization, and improve communication in the Architecture, Engineering, and Construction (AEC) sector. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

19 pages, 1105 KB  
Article
From Cell to Pack: Empirical Analysis of the Correlations Between Cell Properties and Battery Pack Characteristics of Electric Vehicles
by Jan Koloch, Mats Heienbrok, Maksymilian Kasperek and Markus Lienkamp
World Electr. Veh. J. 2025, 16(9), 484; https://doi.org/10.3390/wevj16090484 - 25 Aug 2025
Viewed by 362
Abstract
Lithium-ion batteries are pivotal components in battery electric vehicles, significantly influencing vehicle design and performance. This study investigates the interactions between cell properties and battery pack characteristics through statistical correlation analysis of datasets derived from industry-leading benchmarking platforms. Findings indicate that energy densities [...] Read more.
Lithium-ion batteries are pivotal components in battery electric vehicles, significantly influencing vehicle design and performance. This study investigates the interactions between cell properties and battery pack characteristics through statistical correlation analysis of datasets derived from industry-leading benchmarking platforms. Findings indicate that energy densities are comparable across cell formats at the pack level. While NMC and NCA chemistries outperform LFP in energy density at both cell and pack levels, LFP’s favorable cell-to-pack factors mitigate these differences. Analysis of cell properties suggests that increases in cell-level volumetric and gravimetric energy density result in proportionally smaller gains at the pack level due to the growing proportion of required passive components. The impact of cell chemistry and format on the z-dimension of a battery pack is analyzed in order to identify dependencies and influences between nominal cell properties and the geometry of the battery pack. The analysis suggests no significant influence of the used cell chemistry on the vertical dimension of a battery pack. The consideration of cell formats shows a dependency between the battery pack z-dimension and cell geometry, with prismatic cells reaching the highest pack heights and cylindrical cells being observed in packs of smaller vertical dimensions. The study also investigates the emerging sodium-ion battery technology and assesses pack-level energy densities derived from cell-level properties. The insights of this study contribute to the understanding of cell-to-pack relationships, guiding R&D toward improved energy storage solutions for electric vehicles. Full article
Show Figures

Figure 1

28 pages, 18616 KB  
Article
Friction Stir Spot Welding of AA6082-T6 Alloy Sheets with Keyhole Refilling Using Similar Consumable Rod Material: Mechanical Performance and Microstructure Analysis
by Mohamed M. Z. Ahmed, Bandar Alzahrani, Ashraf Bakkar, Mohamed M. El-Sayed Seleman, Ali Alamry and Ali Abd El-Aty
Crystals 2025, 15(9), 751; https://doi.org/10.3390/cryst15090751 - 24 Aug 2025
Viewed by 294
Abstract
Achieving keyhole-free joints is critical in Friction Stir Spot Welding (FSSW). This study presents a new approach to eliminate this volumetric defect in AA6082-T6 FSSW sheet joints using a continuous multi-layer Friction Stir Deposition (CMFSD) technique, employing a newly designed AA6082-T6 consumable tool. [...] Read more.
Achieving keyhole-free joints is critical in Friction Stir Spot Welding (FSSW). This study presents a new approach to eliminate this volumetric defect in AA6082-T6 FSSW sheet joints using a continuous multi-layer Friction Stir Deposition (CMFSD) technique, employing a newly designed AA6082-T6 consumable tool. FSSW was performed at various rotational speeds (350, 550, 750 and 950 rpm) with a 5 s dwell time. Comprehensive macro- and micro-scale evaluations, along with mechanical properties (hardness and tensile-shear load) of the produced joints, were conducted. Additionally, microstructures were examined using Optical Microscopy (OM), while fracture surfaces were analyzed via Scanning Electron Microscopy (SEM). Optimal FSSW conditions were identified at 550 rpm, yielding a stir zone (SZ) hardness of 94.6 ± 1.4 HV and a maximum tensile-shear load of 4.73 ± 0.27 kN. The keyhole was successfully refilled using AA6082-T6 rod material via CMFSD, resulting in a defect-free joint of the same base alloy. Electron Backscattered Diffraction (EBSD) technique was also used to examine the microstructural features. A comparative analysis revealed significant enhancements: the refilled FSSW joints exhibited a 46.5% increase in maximum tensile-shear load and a 66.66% improvement in elongation to failure compared to the highest-FSSW joint performance with the keyhole defect. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

22 pages, 3484 KB  
Article
Study on Mechanical Properties of Coarse-Fine Polypropylene Fiber Blended Concrete
by Pengcheng Li, Mingyao Huang, Yingying Shang, Yanwen Kuang, Gang Xiong and Xinyi Tang
Buildings 2025, 15(16), 2971; https://doi.org/10.3390/buildings15162971 - 21 Aug 2025
Viewed by 357
Abstract
Polypropylene fiber, as a micro-scale reinforcement material, has been widely recognized for its ability to effectively inhibit crack propagation during the service life of concrete, thereby enhancing both its crack resistance and durability. This study presents an experimental investigation of the mechanical properties [...] Read more.
Polypropylene fiber, as a micro-scale reinforcement material, has been widely recognized for its ability to effectively inhibit crack propagation during the service life of concrete, thereby enhancing both its crack resistance and durability. This study presents an experimental investigation of the mechanical properties of polypropylene fiber-reinforced concrete specimens. The primary objective of this study was to assess the influence of varying fiber lengths and volumetric fiber contents on the load-bearing behavior of concrete. Seven sets of concrete specimens with different polypropylene fiber parameters (dosage and length) were prepared and subjected to a series of tests, including compressive strength, splitting tensile strength, flexural strength, and axial compressive stress–strain behavior. Specifically, coarse polypropylene fibers with two lengths (30 mm and 50 mm) and three dosages (0.5%, 1%, and 1.5%) were investigated. Experimental results facilitated the identification of the optimal fiber dosage and length at which the mechanical properties of the concrete specimens were maximized. Subsequently, a constitutive model for polypropylene fiber-reinforced concrete was established. The analysis elucidated the relationships between the parameters within the constitutive model, axial compressive strength of the concrete, and characteristic fiber parameters. The derived formulations provide a theoretical foundation for subsequent finite element analyses of polypropylene-fiber-reinforced concrete. Full article
Show Figures

Figure 1

16 pages, 9656 KB  
Article
Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar
by Bibraj Raj, Swaroop Sahoo, N. Puviarasan and V. Chandrasekar
Atmosphere 2025, 16(8), 989; https://doi.org/10.3390/atmos16080989 - 20 Aug 2025
Viewed by 309
Abstract
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data [...] Read more.
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data of S-band radar from 2013 to 2018 located in Kolkata to investigate the diurnal variation in the characteristics of the storms over Gangetic West Bengal. The cell initiation, echo top heights, maximum reflectivity, and core convective area are determined by using a flexible feature tracking algorithm (PyFLEXTRKR). The variation of the parameters in diurnal scale is examined from 211,503 individual cell tracks. The distribution of the severe weather phenomena based on radar based thresholds in spatial and temporal scale is also determined. The results show that new cell initiation peaks in the late evening and early morning, displaying bimodal variability. Most of these cells have a short lifespan of 0 to 3 h, with fewer than 5 percent of storms lasting beyond 3 h. The occurrence of hail is much greater in the afternoon due to intense surface heating than at other times. In contrast, the occurrence of lightning is higher in the late evening hours when the cell initiation reaches its peak. The convective rains are generally accompanied by lightning, exhibiting a similar diurnal temporal variability but are more widespread. The findings will assist operational weather forecasters in identifying locations that need targeted observation at certain times of the day to enhance the accuracy of severe weather nowcasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 2477 KB  
Article
Structural, Mechanical, Electronic, and Optical Properties of Hydrogen-Storage Magnesium-Based Mg2XH9 (X = Cs, Rb)
by Wenhui Li, Qun Wei, Jing Luo, Xiaofei Jia, Meiguang Zhang and Xuanmin Zhu
Materials 2025, 18(16), 3829; https://doi.org/10.3390/ma18163829 - 15 Aug 2025
Viewed by 315
Abstract
Metal hydrides are emerging hydrogen-storage materials that have attracted much attention for their stability and practicality. The novel magnesium-based metal hydride Mg2CsH9 was investigated using the CALYPSO software (version 7.0). First-principles predictive methods were then employed to investigate the structural, [...] Read more.
Metal hydrides are emerging hydrogen-storage materials that have attracted much attention for their stability and practicality. The novel magnesium-based metal hydride Mg2CsH9 was investigated using the CALYPSO software (version 7.0). First-principles predictive methods were then employed to investigate the structural, mechanical, electronic, optical, and hydrogen-storage properties of Mg2CsH9 and its alkali metal substitution structure Mg2RbH9. The negative formation energy, compliance with the Born stability criterion, and absence of imaginary modes in the phonon spectrum collectively confirm the thermodynamic, mechanical, and dynamic stability of Mg2XH9 (X = Cs, Rb), fulfilling the basic criteria for practical hydrogen-storage applications. Mg2RbH9 is particularly outstanding in terms of its hydrogen-storage capacity, with a gravimetric capacity of 6.34 wt% and a volumetric capacity as high as 92.70 g H2/L, surpassing many conventional materials. The pronounced anisotropic characteristics of both compounds further enhance their practicality and adaptability to complex working conditions. An analysis of Poisson’s ratio revealed that the chemical bonding in both compounds is predominantly ionic. The details of the band structures and density of states indicate that Mg2CsH9 and Mg2RbH9 are semiconductors. Their optical properties confirm them as being high-refractive-index materials. Full article
(This article belongs to the Special Issue Hydrides for Energy Storage: Materials, Technologies and Applications)
Show Figures

Figure 1

17 pages, 2555 KB  
Article
Development and Characterization of Polymer Blends Based on Polyvinyl Alcohol for Application as Pharmaceutical Dosage Form
by Zarina A. Kenessova, Grigoriy A. Mun, Perizat I. Urkimbayeva, Assel K. Toktabayeva, Raikhan K. Rakhmetullayeva, Bayana B. Yermukhambetova, Zhazira Kenzhebai, Zhuldyzay T. Kurmanova, Mubarak Yermaganbetov and Adilet Zh. Alikulov
Polymers 2025, 17(16), 2203; https://doi.org/10.3390/polym17162203 - 12 Aug 2025
Viewed by 354
Abstract
Mixtures containing polyvinyl alcohol (PVA) and methylcellulose (MC) were obtained and used to synthesize hydrogels in various ratios of components. The swelling kinetics of the resulting hydrogels were studied, revealing that the equilibrium swelling degree in artificial saliva is nearly twice as high [...] Read more.
Mixtures containing polyvinyl alcohol (PVA) and methylcellulose (MC) were obtained and used to synthesize hydrogels in various ratios of components. The swelling kinetics of the resulting hydrogels were studied, revealing that the equilibrium swelling degree in artificial saliva is nearly twice as high as in water. It was found that increasing the volumetric content of PVA in the mixture leads to a higher swelling degree. The kinetics of active pharmaceutical ingredient (API) sorption and release from the hydrogels were also investigated. It was demonstrated that hydrogels with a higher PVA content exhibit greater sorption capacity; however, the release of the API from such samples occurs at a slower rate. For the first time, the mucoadhesive properties of PVA-MC-based hydrogels were studied. It was established that the PVA-MC hydrogel with a ratio of 6:4 vol.% remained on the surface of the porcine cheek mucosa for two days, the 5.5:4.5 vol.% sample detached after 24 h, and the 5:5 vol.% sample adhered for approximately 10 h. These findings confirm the mucoadhesive potential of the hydrogels and their suitability for buccal drug delivery forms. The synthesized PVA-MC hydrogels are promising for applications in medicine and pharmacology. Full article
Show Figures

Figure 1

22 pages, 15264 KB  
Article
Experimental Study on Grouting Seepage Characteristics in Rough Single Microfissure Under Triaxial Stress States
by Minghao Yang, Shuai Zhang, Mingbin Wang, Junling Qin, Wenhan Fan and Yue Wu
Materials 2025, 18(16), 3746; https://doi.org/10.3390/ma18163746 - 11 Aug 2025
Viewed by 295
Abstract
The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of [...] Read more.
The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of slurry properties and grouting simulations. Through systematic analysis of ultrafine cement grout performance across water–cement (W/C) ratios, this study establishes optimal injectable mix proportions. Through dedicated molds, sandstone-like microfissures with 0.2 mm apertures and controlled roughness (JRC = 0–2, 4–6, 10–12) were fabricated, and instrumented with fiber Bragg grating (FBG) sensors for real-time strain monitoring. Triaxial stress-permeation experiments under 6 and 7 MPa confining pressures quantify the coupled effects of fissure roughness, grouting pressure, and confining stress on volumetric flow rate and fissure deformation. Key findings include: (1) Slurry viscosity decreased monotonically with higher W/C ratios, while bleeding rate exhibited a proportional increase. At a W/C ratio = 1.6, the 2 h bleeding rate reached 7.8%, categorizing the slurry as unstable. (2) Experimental results demonstrate that increased surface roughness significantly enhances particle deposition–aggregation phenomena at grouting inlets, thereby reducing the success rate of grouting simulations. (3) The volumetric flow rate of ultrafine cement grout decreases with elevated roughness but increases proportionally with applied grouting pressure. (4) Under identical grouting pressure conditions, the relative variation in strain values among measurement points becomes more pronounced with increasing roughness of the specimen’s microfissures. This research resolves critical challenges in material selection, injectability, and seepage–deformation mechanisms for microfissure grouting, establishing that the W/C ratio governs grout performance while surface roughness dictates grouting efficacy. These findings provide theoretical guidance for water-blocking grouting engineering in microfissures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 4517 KB  
Article
High-Performance Al2O3/Epoxy Resin Composites for Insulating Pull Rods of Direct Current High-Speed Switches
by Youpeng Zhang, Jianying Zhong, Liucheng Hao, Yue Zhai, Duanpeng Yuan, Yaxiang Wang, Ye Zhao, Yuanyuan Zhang, Mengjie Sun and Xin Lin
Energies 2025, 18(16), 4256; https://doi.org/10.3390/en18164256 - 11 Aug 2025
Viewed by 412
Abstract
Benefiting from their good mechanical and electrical properties, epoxy resin materials are widely utilized in the field of high-voltage electrical insulation devices. However, with the increase in voltage levels of equipment, the epoxy resin materials used for insulating pull rods in high-voltage electrical [...] Read more.
Benefiting from their good mechanical and electrical properties, epoxy resin materials are widely utilized in the field of high-voltage electrical insulation devices. However, with the increase in voltage levels of equipment, the epoxy resin materials used for insulating pull rods in high-voltage electrical equipment are facing increasingly severe challenges. This study enhanced the mechanical and insulating properties of epoxy resin materials by molecular structure regulation, composite incorporation and formula optimization. The tensile strength, bending strength and impact strength of the epoxy resin materials with molecular structure regulation increased by 20.6%, 8.5% and 42.1%. The breakdown strength successfully increased from 27.6 kV/mm to 29.9 kV/mm. After combining with the modified Al2O3 nanofillers, the breakdown strength, surface resistivity and volumetric resistivity of the composite further improved to 35.8 kV/mm, 2.7 × 1016 Ω and 5.8 × 1017 Ω·cm. The insulating pull rod prepared by this method achieved a flashover voltage of 18.5 kV, meeting the requirements for both insulating and mechanical performance of a prototype of 200 kV high-voltage direct current floor tank-type high-speed mechanical switch. This study can provide important support for the optimization of epoxy resin material formulation design and the development of epoxy-resin-insulating pull rods. Full article
Show Figures

Figure 1

13 pages, 1165 KB  
Article
Simulation of the Adsorption Bed Process of Activated Carbon with Zinc Chloride from Spent Coffee Grounds for the Removal of Parabens in Treatment Plants
by Wagner Vedovatti Martins, Adriele Rodrigues Dos Santos, Gideã Taques Tractz, Lucas Bonfim-Rocha, Ana Paula Peron and Osvaldo Valarini Junior
Processes 2025, 13(8), 2481; https://doi.org/10.3390/pr13082481 - 6 Aug 2025
Viewed by 292
Abstract
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human [...] Read more.
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human homeostasis and the endocrine system. This study conducted a transport and dimensional analysis through simulation of the adsorption process for these parabens, using zinc chloride-activated carbon derived from spent coffee grounds (ACZnCl2) as the adsorbent, implemented via Aspen Properties® and Aspen Adsorption®. Simulations were performed for two inlet concentrations (50 mg/L and 100 mg/L) and two adsorption column heights (3 m and 4 m), considering a volumetric flow rate representative of a medium-sized city with approximately 100,000 inhabitants. The results showed that both density and surface tension of the parabens varied linearly with increasing temperature, and viscosity exhibited a marked reduction above 30 °C. Among the tested conditions, the configuration with 50 mg∙L−1 inlet concentration and a 4 m column height demonstrated the highest adsorption capacity and better performance under adsorption–desorption equilibrium. These findings indicate that the implementation of adsorption beds on an industrial scale in water and wastewater treatment systems is both environmentally and socially viable. Full article
Show Figures

Graphical abstract

19 pages, 1681 KB  
Article
Decolorization of Corn Fiber Arabinoxylan Extract with (MN102) Resin: Adsorption Performance and Film-Forming Capacity
by Verónica Weng, Diana Gago, Carla Brazinha, Vítor D. Alves and Isabel M. Coelhoso
Polymers 2025, 17(15), 2128; https://doi.org/10.3390/polym17152128 - 1 Aug 2025
Viewed by 397
Abstract
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of [...] Read more.
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of colored compounds present in an arabinoxylan extract using resin MN102. The resin successfully adsorbed the colored compounds from the arabinoxylan extract. After four consecutive adsorption/desorption cycles, the efficiency of the resin was similar, only decreasing from 63.3% to 52.9%. Langmuir and Freundlich models were fitted to the results of adsorption isotherm experiments, with the Freundlich model demonstrating the best fit to the experimental results. A fixed-bed column loaded with the resin was used for the removal of the colored compounds from the arabinoxylan extract, and the effect of the volumetric flow rate was investigated. The Yan and log-Gompertz models showed the best fit to the experimental breakthrough curves. This study systematically evaluated the adsorption conditions, providing a comprehensive analysis of the performance of the resin in the removal of the colored compounds. Additionally, the ability of the extract to maintain its film-forming properties after decolorization was evaluated, and some of the film’s key characteristics were evaluated, namely its color, solubility in water and mechanical properties. Full article
Show Figures

Figure 1

21 pages, 97817 KB  
Article
Compression of 3D Optical Encryption Using Singular Value Decomposition
by Kyungtae Park, Min-Chul Lee and Myungjin Cho
Sensors 2025, 25(15), 4742; https://doi.org/10.3390/s25154742 - 1 Aug 2025
Viewed by 356
Abstract
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same [...] Read more.
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same size as the input data and consists of complex values, a compression technique is required to improve data efficiency. To address this issue, we introduce SVD as a compression method. SVD decomposes any matrix into simpler components, such as a unitary matrix, a rectangular diagonal matrix, and a complex unitary matrix. By leveraging this property, the encrypted data generated by DRPE can be effectively compressed. However, this compression may lead to some loss of information in the decrypted data. To mitigate this loss, we employ volumetric computational reconstruction based on integral imaging. As a result, the proposed method enhances the visual quality, compression ratio, and security of DRPE simultaneously. To validate the effectiveness of the proposed method, we conduct both computer simulations and optical experiments. The performance is evaluated quantitatively using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and peak sidelobe ratio (PSR) as evaluation metrics. Full article
Show Figures

Figure 1

13 pages, 19290 KB  
Article
Enhancement of Anti-Staling Properties of Rice Bread Through Fermentation Rice Flour with Three Lactic Acid Bacteria
by Zhiqi Wang, Zhaosen Yuan, Xinlai Dou, Wanshan Yang, Huining Zhang, Yue Zhang, Fenglian Chen and Yanling Hao
Foods 2025, 14(15), 2674; https://doi.org/10.3390/foods14152674 - 29 Jul 2025
Viewed by 459
Abstract
This study investigated the effects of Lactococcus lactis subsp. 1.2472 (L)-, Streptococcus thermophilus 1.2718 (S)-, and thermostable Lactobacillus rhamnosus HCUL 1.1901-1912 (T)-fermented rice flour with inoculum levels of 3–11% (w/w) on rice bread staling. Optimal staling resistance was achieved, [...] Read more.
This study investigated the effects of Lactococcus lactis subsp. 1.2472 (L)-, Streptococcus thermophilus 1.2718 (S)-, and thermostable Lactobacillus rhamnosus HCUL 1.1901-1912 (T)-fermented rice flour with inoculum levels of 3–11% (w/w) on rice bread staling. Optimal staling resistance was achieved, as follows: 9% L-fermented rice bread (LRB), 7% T-fermented rice bread (TRB), and 5% S-fermented rice bread (SRB). Lactic acid bacteria-fermented rice flour significantly enhanced hydration properties. LF-NMR analysis revealed that T21 (strongly bound water) and T22 (weakly bound water) relaxation times decreased, while T23 (free water) increased with prolonged storage. Fermented-rice-flour groups had significantly more strongly bound water than the control group on 7 d. The optimized formulations exhibited exceptional volumetric stability with specific volume change rates of 17.63% (LRB), 17.60% (TRB), and 19.58% (SRB), coupled with maximal porosities of 10.34%, 9.05%, and 9.41%, respectively. This study provides a theoretical foundation for improving rice bread’s anti-staling properties. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

Back to TopTop