Antioxidant Capacity, Volatile Profile, and Physical Properties Changes of Kohlrabi Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process
Abstract
1. Introduction
2. Results and Discussion
2.1. Analysis of the Volatile Compound Profile in Kohlrabi Samples with the Addition of Beetroot and Onion Juice
2.2. Dry Matter (DM) for Fresh Kohlrabi and After the Vacuum Impregnation Process
2.3. Dry Matter (DM) for Kohlrabi After the Drying Process
2.4. Water Activity (AW) of Fresh Kohlrabi, Dried Kohlrabi and Before and After Vacuum Impregnation
2.5. Bulk Density (ρ) of Fresh Kohlrabi, Dried Kohlrabi and Before and After Vacuum Impregnation
2.6. Volumetric Gel Index (VGI) of Dried Kohlrabi and Before and After Vacuum Impregnation
2.7. Color of Dried Kohlrabi and Before and After Vacuum Impregnation
2.8. Texture Profile Analysis (TPA) of Dried Kohlrabi and Before and After Vacuum Impregnation
2.9. Total Phenolic Content (TPC) and Antioxidant Capacity of Dried Kohlrabi and Before and After Vacuum Impregnation
2.10. PCA
3. Materials and Methods
3.1. Preparation of Sample
3.2. Pretreatment Before Drying Process
3.3. Drying
3.3.1. Freeze Drying (FD)
3.3.2. Vacuum Drying (VD)
3.4. VOC Extraction and Analysis
3.4.1. Methods
3.4.2. Identification
3.5. Total Phenolic Content (TPC) and Antioxidant Capacity
3.6. Water Activity (AW)
3.7. Dry Matter (DM)
3.8. Color
3.9. Density (ρ)
3.10. The Volumetric Gelation Index (VGI)
3.11. Texture Profile Analysis (TPA)
3.12. Statistical Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathasivam, R.; Park, S.U.; Kim, J.K.; Park, Y.J.; Kim, M.C.; Nguyen, B.V.; Lee, S.Y. Metabolic Profiling of Primary and Secondary Metabolites in Kohlrabi (Brassica oleracea var. gongylodes) Sprouts Exposed to Different Light-Emitting Diodes. Plants 2023, 12, 1296. [Google Scholar] [CrossRef] [PubMed]
- Golob, A.; Novak, T.; Maršić, N.K.; Šircelj, H.; Stibilj, V.; Jerše, A.; Kroflič, A.; Germ, M. Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes) and increases their contents in tubers. Plant Physiol. Biochem. 2020, 150, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Smychkovich, A.; Hashemi, M. Yield and Nutrient Concentrations of Kohlrabi Bulbs and Leaves as Affected by Spring Transplanting Dates. Agronomy 2022, 12, 770. [Google Scholar] [CrossRef]
- Muthuvairavan, G.; Kumar, S. Experimental Study on Drying Kohlrabi Using a Solar Dryer Under Natural and Forced Convection: Comparing Drying Kinetics, Psychometric Conditions, and Heat Transfer Coefficients. SSRN 2023, 44. [Google Scholar] [CrossRef]
- Rizwan, D.; Masoodi, F.A. Proximate, mineral, phytochemical and antioxidant analysis of Kohlrabi (Brassica oleracea var gongylodes). Vegetos 2025. [Google Scholar] [CrossRef]
- Gościnna, K.; Czapski, J.; Mikołajczyk-Bator, K.; Kidoń, M. Content of betalain pigments, nitrates and antioxidant capacity of beetroot juices depending on the variety and root size (PL). Res. Educ. Equip. 2012, 17, 85–90. [Google Scholar]
- Tek, I.B.; Aktas, S.D.; Karaoğlan, A. Effect of Kohlrabi Peel Powder as a Dietary Fibre Enrichment on Technological, Nutritional, and Sensory Properties of White Bread. Turk. J. Agric.-Food Sci. Technol. 2025, 13, 707–713. [Google Scholar] [CrossRef]
- Beecher, C.W. Cancer preventive properties of varieties of Brassica oleracea: A review. Am. J. Clin. Nutr. 1994, 59, 1166S–1170S. [Google Scholar] [CrossRef]
- Biesiada, A. Effect of flat covers and plant density on yielding and quality of kohlrabi. J. Elem. 2008, 13, 167–173. [Google Scholar]
- Jung, H.A.; Karki, S.; Ehom, N.-Y.; Yoon, M.-H.; Kim, E.J.; Choi, J.S. Anti-diabetic and anti-inflammatory effects of green and red kohlrabi cultivars (Brassica oleracea var. gongylodes). Prev. Nutr. Food Sci. 2014, 19, 281. [Google Scholar] [CrossRef]
- Muthuvairavan, G.; Kumar, S. Experimental study on drying kinetics and thermal modeling of drying Kohlrabi under different solar drying methods. Therm. Sci. Eng. Prog. 2023, 44, 102074. [Google Scholar] [CrossRef]
- Sujinda, N.; Saengsuwan, T.; Chaichana, N. A study on drying characteristics, color, and vitamin C preservation of green banana slices using a vacuum heat pump system. Agric. Eng. 2024, 28, 176–184. [Google Scholar] [CrossRef]
- Malkina, V.; Kiurchev, S.; Hutsol, T.; Verkholantseva, V.; Kiurcheva, L.; Miroshnichenko, M.; Biliuk, M.; Pidlisnyj, V.; Gurgulu, H.; Kowalczyk, Z. Optimization of parameters of a vibroconveyor system for infrared drying of soy. Agric. Eng. 2022, 26, 157–166. [Google Scholar] [CrossRef]
- Antunes, P.; Dias, S.; Gonçalves, D.; Orvalho, T.; Evangelista, M.B.; Pino-Hernández, E.; Alves, M. Impact of Different Dehydration Methods on Drying Efficiency, Nutritional and Physico-Chemical Quality of Strawberries Slices (Fragaria ananassa). Processes 2025, 13, 2065. [Google Scholar] [CrossRef]
- Santos, A.A.d.L.; Leal, G.F.; Marques, M.R.; Reis, L.C.C.; Junqueira, J.R.d.J.; Macedo, L.L.; Corrêa, J.L.G. Emerging Drying Technologies and Their Impact on Bioactive Compounds: A Systematic and Bibliometric Review. Appl. Sci. 2025, 15, 6653. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Yin, M.; Fu, Z.; Yu, X.; Wang, X.; Lu, Y. The Effect of Drying Methods on the Pore Structure of Balsa Wood Aerogels. Polymers 2025, 17, 1686. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Bera, M.; Mukhopadhyay, P.; Bhattacharya, P. Prediction of optimal conditions of infrared assisted freeze-drying of aloe vera (Aloe barbadensis) using response surface methodology. Sep. Purif. Technol. 2011, 80, 375–384. [Google Scholar] [CrossRef]
- Mansour, N.E.; Villagran, E.; Rodriguez, J.; Akrami, M.; Flores-Velazquez, J.; Metwally, K.A.; Alhumedi, M.; Ahmed, A.F.; Elshawadfy Elwakeel, A. Effect of Drying Conditions on Kinetics, Modeling, and Thermodynamic Behavior of Marjoram Leaves in an IoT-Controlled Vacuum Dryer. Sustainability 2025, 17, 5980. [Google Scholar] [CrossRef]
- Diamante, L.M.; Bai, X.; Busch, J. Fruit Leathers: Method of Preparation and Effect of Different Conditions on Qualities. Int. J. Food Sci. 2014, 2014, 139890. [Google Scholar] [CrossRef]
- da Silva Simão, R.; de Moraes, J.O.; Carciofi, B.A.M.; Laurindo, J.B. Recent Advances in the Production of Fruit Leathers. Food Eng. Rev. 2020, 12, 68–82. [Google Scholar] [CrossRef]
- Tangjaidee, P.; Braspaiboon, S.; Singhadechachai, N.; Phongthai, S.; Therdtatha, P.; Rachtanapun, P.; Sommano, S.R.; Seesuriyachan, P. Enhanced Bioactive Coffee Cherry: Infusion of Submerged-Fermented Green Coffee Beans via Vacuum Impregnation. Foods 2025, 14, 1165. [Google Scholar] [CrossRef]
- Mitrus, M.; Tydman, K.; Milanowski, M.; Soja, J.; Lewko, P.; Kupryaniuk, K.; Wójtowicz, A. Influence of the forming die design on processing and physical properties of gluten-free crisps. Agric. Eng. 2024, 28, 87–96. [Google Scholar] [CrossRef]
- Nowicka, P.; Marcińczak, M.; Szydłowska, M.; Wojdyło, A. Functional Fruit Snacks Enriched with Natural Sources of Fructooligosaccharides: Composition, Bioactive Compounds, Biological Activity, and Consumer Acceptance. Molecules 2025, 30, 2507. [Google Scholar] [CrossRef]
- Kręcisz, M.; Stępień, B.; Klemens, M.; Latański, A. Physical Properties and Volatile Profile Changes of Cauliflower Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process. Molecules 2025, 30, 2147. [Google Scholar] [CrossRef] [PubMed]
- Kręcisz, M.; Stępień, B.; Łyczko, J.; Kamiński, P. The Influence of the Vacuum Impregnation, Beetroot Juice, and Various Drying Methods on Selected Properties of Courgette and Broccoli Snacks. Foods 2023, 12, 4294. [Google Scholar] [CrossRef] [PubMed]
- Kręcisz, M.; Kolniak-Ostek, J.; Stępień, B.; Łyczko, J.; Pasławska, M.; Musiałowska, J. Influence of Drying Methods and Vacuum Impregnation on Selected Quality Factors of Dried Sweet Potato. Agriculture 2021, 11, 858. [Google Scholar] [CrossRef]
- Hofmeister, L.C.; Souza, J.A.R.; Laurindo, J.B.Z. Use of Dyed Solutions to Visualize Different Aspects of Vacuum Impregnation of Minas Cheese. LWT Food Sci. Technol. 2005, 38, 379–386. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Zhao, L.; Chen, L.; He, Y.; Yang, H. Vacuum Impregnation of Fish Gelatin Combined with Grape Seed Extract Inhibits Protein Oxidation and Degradation of Chilled Tilapia Fillets. Food Chem. 2019, 294, 316–325. [Google Scholar] [CrossRef]
- Demir, H.; Çelik, S.; Sezer, Y.Ç. Effect of Ultrasonication and Vacuum Impregnation Pretreatments on the Quality of Beef Marinated in Onion Juice a Natural Meat Tenderizer. Food Sci. Technol. Int. Cienc. Tecnol. Los Aliment. Int. 2022, 28, 340–352. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 12529, Pentyl Formate. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Pentyl-formate (accessed on 26 August 2025).
- Lukić, I.; Išić, N.; Ban, D.; Salopek Sondi, B.; Goreta Ban, S. Comprehensive Volatilome Signature of Various Brassicaceae Species. Plants 2023, 12, 177. [Google Scholar] [CrossRef]
- Aguiar, J.; Gonçalves, J.L.; Alves, V.L.; Câmara, J.S. Relationship between Volatile Composition and Bioactive Potential of Vegetables and Fruits of Regular Consumption—An Integrative Approach. Molecules 2021, 26, 3653. [Google Scholar] [CrossRef] [PubMed]
- Kręcisz, M.; Stępień, B.; Pasławska, M.; Popłoński, J.; Dulak, K. Physicochemical and Quality Properties of Dried Courgette Slices: Impact of Vacuum Impregnation and Drying Methods. Molecules 2021, 26, 4597. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, G.; Chu, Z.; Qin, L. Effect of Oven Drying, Microwave Drying, and Silica Gel Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Dry. Technol. 2011, 30, 248–255. [Google Scholar] [CrossRef]
- Kręcisz, M.; Kolniak-Ostek, J.; Łyczko, J.; Stępień, B. Evaluation of bioactive compounds, volatile compounds, drying process kinetics and selected physical properties of vacuum impregnation celery dried by different methods. Food Chem. 2023, 413, 135490. [Google Scholar] [CrossRef]
- Xue, Y.L.; Han, H.T.; Liu, C.J.; Gao, Q.; Li, J.H.; Zhang, J.H.; Li, D.-J.; Liu, C.-Q. Multivariate analyses of the volatile components in fresh and dried turnip (Brassica rapa L.) chips via HS-SPME–GC–MS. J Food Sci Technol. 2020, 57, 3390–3399. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Onyeaka, H.; Olaniran, A.F.; Isaac-Bamgboye, F.J.; Nwaiwu, O.; Ukwuru, M.; Adeyanju, A.A.; Nwonuma, C.O.; Alejolowo, O.O.; Inyinbor, A.A.; et al. Changes in flavor profile of vegetable seasonings by innovative drying technologies: A review. J. Food Sci. 2024, 89, 6818–6838. [Google Scholar] [CrossRef]
- Łyczko, J.; Masztalerz, K.; Lipan, L.; Iwiński, H.; Lech, K.; Carbonell-Barrachina, Á.A.; Szumny, A. Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile. Foods 2021, 10, 403. [Google Scholar] [CrossRef]
- Rungapamestry, V.; Duncan, A.J.; Fuller, Z.; Ratcliffe, B. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc. Nutr. Soc. 2007, 66, 69–81. [Google Scholar] [CrossRef]
- Kręcisz, M.; Klemens, M.; Latański, A.; Stępień, B. The Use of Beetroot Juice as an Impregnating Solution to Change Volatile Compounds, Physical Properties and Influence the Kinetics of the Celery Drying Process. Molecules 2024, 29, 4050. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Lenart, A.; Kawka, P. Effect of Freeze-Drying Temperature and Drying Methods on Selected Properties of Dried Pumpkin (PL). Acta Agrophysica 2013, 20, 39–51. [Google Scholar]
- Shams, R.; Singh, J.; Dash, K.K.; Dar, A.H. Comparative study of freeze drying and cabinet drying of button mushroom. Appl. Food Res. 2022, 2, 100084. [Google Scholar] [CrossRef]
- Kręcisz, M.; Kolniak-Ostek, J.; Stępień, B.; Combrzyński, M. Bio-Compounds, Antioxidant Activity, and Phenolic Content of Broccoli After Impregnation with Beetroot Juice. Molecules 2025, 30, 2143. [Google Scholar] [CrossRef] [PubMed]
- Reza Askari, G.; Emmam-Dojmeh, Z.; Mohammad Ali Mousavi, S. Effect of drying method on microstructural changes of apple slices. Drying 2004, 22–25, 1435–1441. [Google Scholar]
- Wang, S.M.; Tu, D.J.; Song, K.B. Physicochemical Characteristics of Kohlrabi Slices Dehydrated by the Addition of Maltodextrin. J. Food Sci. Nutr. 2011, 16, 189–193. [Google Scholar] [CrossRef]
- Sroy, S.; Miller, F.A.; Fundo, J.F.; Silva, C.L.M.; Brandão, T.R.S. Freeze-Drying Processes Applied to Melon Peel: Assessment of Physicochemical Attributes and Intrinsic Microflora Survival during Storage. Foods 2022, 11, 1499. [Google Scholar] [CrossRef]
- Baik, W.; Lee, D.; Lee, Y. Effects of Gryllus bimaculatus Powder on Physicochemical Properties and Consumer Acceptability of 3D-Printed Gluten-Free Chocolate Cookies Using Survival Analysis. Foods 2025, 14, 2291. [Google Scholar] [CrossRef]
- Pan, W.; Li, W.; Zhou, C.; Zhang, M.; Su, W.; Tan, R.; Yao, L. Effect of Ultrasonic Treatment on the Quality of Pumpkin Juice Fermented by Yeast. Foods 2025, 14, 2284. [Google Scholar] [CrossRef]
- Xu, H.; Lei, M.; Li, J.; Zou, S.; Yin, W.; Jiang, W.; Xianyu, D.; Li, D.; Zhao, C.; Yu, L. Effects of different drying methods on the physicochemical and functional properties of Pyracantha fortuneana (Maxim.) Li fruit. LWT 2023, 187, 115383. [Google Scholar] [CrossRef]
- Youssef, K.M.; Mokhtar, S.M. Effect of drying methods on the antioxidant capacity, color and phytochemicals of Portulaca oleracea L. leaves. J. Nutr. Food Sci. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- OrphAnides, A.; GOulAs, V.; Gekas, V. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci. 2013, 31, 509–513. [Google Scholar] [CrossRef]
- Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4.1 ed.; Adams, R.P., Ed.; Baylor University: Waco, TX, USA, 2017. [Google Scholar]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of Sea Buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Lv, W.; Zhao, D. Effect of ultrasound pretreatment on the drying kinetics and characteristics of pregelatinized kidney beans based on microwave-assisted drying. Food Chem. 2022, 397, 133806. [Google Scholar] [CrossRef]
- Apaliya, M.T.; Kwaw, E.; Osae, R.; Alolga, R.N.; Aidoo, P.; Mensah, L.A.; Sackey, A.S.; Wilson, C.L. Effect of different drying methods on the rehydration kinetics, physiochemical and functional properties of unripe plantain (Musa parasidiaca) flour. Food Chem. Adv. 2024, 4, 100610. [Google Scholar] [CrossRef]
- Figiel, A.; Tajner-Czopek, A. The effect of Candy moisture on texture. J. Food Serv. 2006, 7, 189–195. [Google Scholar] [CrossRef]
Compounds | RT | LRI exp 1 | LRI lit 2 | Match 3 | K_FD % | K_FD SD 4 | K_VD % | K_VD SD | K % | K SD | KO_FD % | KO_FD SD | KO% | KO SD | KO_VD % | KO_VD SD | KB_FD % | KB_FD SD | KB_VD % | KB_VD SD | KB % | KB SD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2-Methyl-1-heptene | 2.924 | 784 | 784 | 85 | 8.84 ab | 0.29 | 12.23 ab | 0.56 | 19.81 a | 0.20 | nd 5 | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
2 | Pentyl formate | 4.042 | 815 | 823 | 90 | 6.10 b | 0.04 | 14.68 a | 0.59 | 0.21 c | 0.01 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
3 | 2-Ethylcyclobutanol | 4.626 | 828 | 831 | 85 | 1.14 b | 0.13 | 6.19 a | 0.75 | 0.17 a | 0.01 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
4 | 3-Methylthio-propionaldehyde | 7.176 | 904 | 909 | 93 | 2.89 a | 0.48 | 0.57 b | 0.12 | 0.02 b | 0.01 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
5 | (1Z)-1-Propenyl methyl disulfide | 8.125 | 927 | 928 | 90 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.39 | 0.30 | 0.40 | 0.11 | 0.20 | 0.04 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
6 | α-Pinene | 8.305 | 932 | 933 | 93 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.23 | 0.06 | 0.24 | 0.13 | 0.62 | 0.12 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
7 | (E)-1-Propenyl methyl disulfide | 8.417 | 935 | 928 | 94 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.69 | 0.29 | 1.18 | 0.40 | 0.45 | 0.03 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
8 | Camphene | 8.887 | 948 | 953 | 97 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.34 | 0.09 | 0.07 | 0.07 | 0.96 | 0.03 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
9 | Benzaldehyde | 7.291 | 958 | 960 | 96 | 2.92 a | 0.55 | 2.52 a | 0.29 | 0.65 a | 0.01 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
10 | Dimethyl trisulfide | 9.251 | 965 | 972 | 95 | 0.87 b | 0.62 | 6.58 b | 0.84 | 0.34 b | 0.07 | 17.17 b | 1.28 | 71.21 a | 1.98 | 16.00 b | 1.01 | 53.59 a | 1.10 | 10.14 b | 0.27 | 61.07 a | 0.88 |
11 | 1-Octen-3-ol | 9.516 | 969 | 977 | 93 | 38.30 b | 1.79 | 19.37 bc | 0.95 | 60.03 a | 0.37 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
12 | 6-Methyl-hept-5-en-2-one | 10.095 | 981 | 986 | 90 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 1.00 b | 0.12 | 0.14 b | 0.16 | 3.83 a | 0.01 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
13 | Myrcene | 10.329 | 988 | 991 | 95 | 0.76 bc | 0.44 | 3.66 bc | 0.01 | 0.05 c | 0.01 | 13.40 bc | 1.04 | 0.12 c | 0.05 | 36.46 a | 0.07 | 2.48 bc | 0.16 | 21.71 ab | 1.72 | 0.89 bc | 0.07 |
14 | unknown | 10.329 | 993 | 35.08 a | 1.42 | 31.05 ab | 0.48 | 1.13 b | 0.26 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.05 | ||
15 | p-Mentha-1(7),8-diene | 10.917 | 1003 | 1004 | 97 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.70 | 0.36 | 0.04 | 0.01 | 1.99 | 0.02 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
16 | unknown | 11.023 | 1006 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 6.42 a | 0.30 | 1.86 a | 0.13 | 2.04 a | 0.04 | 1.81 a | 0.19 | 0.38 a | 0.03 | 0.36 a | 0.05 | ||
17 | p-Cymene | 11.75 | 1022 | 1035 | 92 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.45 | 0.24 | 0.05 | 0.03 | 1.28 | 0.02 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
18 | 2-Ethylhexanol | 11.893 | 1026 | 1030 | 93 | 8.44 a | 0.83 | 3.01 a | 0.71 | 2.89 a | 0.28 | 3.66 a | 0.21 | 0.49 a | 0.08 | 2.01 a | 0.04 | 1.39 a | 0.34 | 1.20 a | 0.06 | 1.83 a | 0.19 |
19 | unknown | 11.912 | 1031 | 1.44 | 0.20 | 2.01 | 0.21 | 0.24 | 0.05 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | ||
20 | unknown | 14.073 | 1076 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 20.61 b | 1.43 | 63.25 a | 1.50 | 5.57 bc | 0.21 | ||
21 | n-Nonanal | 15.196 | 1102 | 1107 | 85 | 0.30 | 0.04 | 0.45 | 0.45 | 0.10 | 0.02 | 0.33 | 0.21 | 0.10 | 0.01 | 0.45 | 0.07 | 0.55 | 0.15 | 0.90 | 0.01 | 0.52 | 0.06 |
22 | 2-Mercaptoethyl ether | 15.199 | 1122 | 85 | 0.97 b | 0.24 | 1.16 b | 0.11 | 0.06 b | 0.03 | 3.42 b | 0.62 | 2.18 b | 0.11 | 1.88 b | 0.12 | 3.34 b | 0.13 | 1.95 b | 0.20 | 14.11 a | 0.10 | |
23 | Menthone | 16.874 | 1153 | 1148 | 92 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 43.88 a | 0.71 | 6.59 b | 0.41 | 23.09 ab | 1.04 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
24 | (1E)-1-Propenyl methyl trisulfide | 17.66 | 1159 | 1179 | 90 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.19 | 0.13 | 0.20 | 0.01 | 0.14 | 0.05 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
25 | (1Z)-1-Propenyl methyl trisulfide | 17.896 | 1161 | 1179 | 87 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.28 | 0.19 | 0.26 | 0.09 | 0.15 | 0.06 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
26 | (1,1-Dimethylethyl)(1-methylpropyl) disulfide | 19.033 | 1185 | 1169 | 85 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 3.23 a | 0.18 | 0.15 b | 0.01 | 0.09 b | 0.01 |
27 | Methyl tetrasulfide | 20.157 | 1210 | 1214 | 93 | 1.38 c | 0.22 | 0.34 c | 0.06 | 16.16 a | 0.09 | 4.56 bc | 0.46 | 11.85 ab | 0.30 | 1.98 c | 0.13 | 1.78 c | 0.21 | 0.07 c | 0.01 | 6.13 bc | 0.17 |
28 | 3,5-Diethyl-1,2,4-trithiolane | 25.818 | 1339 | 1344 | 85 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.48 | 0.09 | 0.18 | 0.04 | 0.23 | 0.08 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
29 | 2,5-Dimethylhexane-2,5-dihydroperoxide | 26.43 | 1354 | 1367 | 85 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 9.20 a | 1.00 | 0.11 b | 0.05 | 0.04 b | 0.02 |
30 | unknown | 26.626 | 1359 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 1.09 b | 0.32 | 1.52 b | 0.35 | 0.40 b | 0.04 | 1.24 b | 0.13 | 0.07 b | 0.05 | 8.99 a | 1.01 | ||
31 | n-Tetradecane | 28.264 | 1400 | 1400 | 92 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.53 | 0.24 | 0.37 | 0.02 | 0.18 | 0.03 |
32 | Erucin | 28.968 | 1417 | 1432 | 85 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 1.06 b | 0.25 | 1.41 ab | 0.05 | 5.16 a | 1.05 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
33 | 4-(Methylthio)butyl isothiocyanate | 28.996 | 1418 | 1433 | 90 | 0.72 b | 0.23 | 5.92 | 0.16 | 18.22 a | 0.25 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.49 b | 0.10 | 0.16 b | 0.13 | 0.31 b | 0.05 |
34 | Phenethyl isothiocyanate | 29.831 | 1439 | 1454 | 90 | nd | 0.00 | nd | 0.00 | nd | 0.00 | 0.61 | 0.36 | 0.17 | 0.03 | 0.98 | 0.11 | nd | 0.00 | nd | 0.00 | nd | 0.00 |
Method | L* | a* | b* | ∆E |
---|---|---|---|---|
K | 79.98 ± 0.94 d | −0.91 ± 0.35 a | 7.94 ± 0.82 a | - |
K_FD | 92.50 ± 1.52 e | −0.48 ± 0.16 a | 11.36 ± 0.52 b | 12.98 |
K_VD | 74.27 ± 4.13 c | 0.47 ± 0.86 a | 22.96 ± 2.52 d | 16.13 |
KO | 73.41 ± 3.72 c | −1.52 ± 0.31 a | 9.00 ± 0.71 a | 6.69 |
KO_FD | 91.23 ± 3.69 e | −1.01 ± 0.14 a | 11.90 ± 1.01 b | 11.93 |
KO_VD | 66.04 ± 5.81 b | 9.65 ± 1.92 b | 31.68 ± 2.50 f | 29.49 |
KB | 64.42 ± 4.59 b | 14.36 ± 3.75 c | 11.27 ± 1.86 b | 22.06 |
KB_FD | 75.72 ± 3.08 c | 13.90 ± 3.47 c | 17.51 ± 2.28 c | 18.13 |
KB_VD | 51.43 ± 4.30 a | 13.32 ± 1.50 c | 25.22 ± 3.33 e | 36.28 |
(mg/g DM) | TPC | ABTS | FRAP | DPPH |
---|---|---|---|---|
K | 563.83 ± 1.23 c | 1786.38 ± 6.16 bc | 1625.71 ± 11.75 e | 339.51 ± 4.58 e |
K_FD | 550.13 ± 2.58 c | 1752.78 ± 5.78 b | 1401.02 ± 12.12 c | 153.27 ± 6.28 a |
K_VD | 421.48 ± 0.96 a | 1636.02 ± 11.08 a | 1309.80 ± 7.99 a | 143.35 ± 4.29 a |
KO | 603.62 ± 3.13 d | 2148.57 ± 7.82 f | 1958.02 ± 10.53 i | 508.46 ± 3.55 h |
KO_FD | 958.59 ± 5.28 f | 1895.03 ± 10.56 d | 1841.85 ± 16.11 h | 459.25 ± 3.69 g |
KO_VD | 477.22 ± 3.47 b | 1796.02 ± 4.78 c | 1463.00 ± 10.85 d | 300.90 ± 5.22 d |
KB | 588.12 ± 6.12 d | 2030.60 ± 14.51 e | 1782.90 ± 13.54 g | 373.35 ± 5.08 f |
KB_FD | 679.89 ± 3.88 e | 1803.21 ± 16.68 c | 1744.189 ± 12.78 f | 200.74 ± 4.39 c |
KB_VD | 461.48 ± 2.85 b | 1755.04 ± 14.09 b | 1359.80 ± 14.52 b | 171.28 ± 3.07 b |
Code | Material | Type of Drying |
---|---|---|
K | Kohlrabi | - |
K_FD | Kohlrabi | freeze-drying |
K_VD | Kohlrabi | vacuum drying |
KO | Kohlrabi with onion juice | - |
KO_FD | Kohlrabi with onion juice | freeze-drying |
KO_VD | Kohlrabi with onion juice | vacuum drying |
KB | Kohlrabi with beetroot juice | - |
KB_FD | Kohlrabi with beetroot juice | freeze-drying |
KB_VD | Kohlrabi with beetroot juice | vacuum drying |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kręcisz, M.; Klemens, M.; Kolniak-Ostek, J.; Stępień, B.; Combrzyński, M.; Latański, A. Antioxidant Capacity, Volatile Profile, and Physical Properties Changes of Kohlrabi Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process. Molecules 2025, 30, 3563. https://doi.org/10.3390/molecules30173563
Kręcisz M, Klemens M, Kolniak-Ostek J, Stępień B, Combrzyński M, Latański A. Antioxidant Capacity, Volatile Profile, and Physical Properties Changes of Kohlrabi Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process. Molecules. 2025; 30(17):3563. https://doi.org/10.3390/molecules30173563
Chicago/Turabian StyleKręcisz, Magdalena, Marta Klemens, Joanna Kolniak-Ostek, Bogdan Stępień, Maciej Combrzyński, and Aleks Latański. 2025. "Antioxidant Capacity, Volatile Profile, and Physical Properties Changes of Kohlrabi Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process" Molecules 30, no. 17: 3563. https://doi.org/10.3390/molecules30173563
APA StyleKręcisz, M., Klemens, M., Kolniak-Ostek, J., Stępień, B., Combrzyński, M., & Latański, A. (2025). Antioxidant Capacity, Volatile Profile, and Physical Properties Changes of Kohlrabi Treated with Onion and Beetroot Juices Using Vacuum Impregnation Process. Molecules, 30(17), 3563. https://doi.org/10.3390/molecules30173563