Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = voltage-current trajectory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1262 KB  
Article
HVDC Receiving-End Power Grid Multi-Resource Coordinated Transient Voltage Emergency Control Technology Based on Transient Voltage Similarity
by Xu Ling, Jianghui Xi, Qiuting Guo, Xiaodong Yu and Xiongguang Zhao
Electronics 2025, 14(20), 4090; https://doi.org/10.3390/electronics14204090 - 17 Oct 2025
Abstract
This study addresses the issues related to the inaccurate assessment of transient voltage stability margins and the limited participation of resources involved in regulation during high-voltage direct current (HVDC) receiving-end grid faults under high-penetration new energy integration. This paper proposes a method for [...] Read more.
This study addresses the issues related to the inaccurate assessment of transient voltage stability margins and the limited participation of resources involved in regulation during high-voltage direct current (HVDC) receiving-end grid faults under high-penetration new energy integration. This paper proposes a method for transient voltage emergency control at the HVDC receiving-end grid, utilizing a multi-resource approach based on transient voltage similarity partitioning with a multiple-two-element notation criterion. First, the transient voltage stability margin and the new energy transient off-grid margin index, based on the multiple-two-element notation criterion, are introduced. Second, a grid partitioning scheme is employed, which clusters nodes based on the similarity of their transient voltage features, and the impact of multiple resources on the transient voltage stability of the HVDC receiving-end system is analyzed using trajectory sensitivity. On this basis, a multi-resource optimization model for transient voltage emergencies is established with the aim of minimizing the control cost, considering the transient voltage stability, off-grid new energy, and other safety evaluation constraints, in order to coordinate multiple resources participating in transient voltage control until the stability requirements are met. Finally, the validity of the proposed control scheme is verified using the improved frequency stability benchmark test system (Chinese Society for Electrical Engineering—Frequency Stability, CSEE-FS). The research results demonstrate that the scheme proposed in this study can be utilized to accurately assess the transient voltage stability and off-grid potential of renewable energy units following failure at the HVDC receiving-end system. Additionally, it can reasonably partition the grid based on transient operating conditions while fully exploiting the potential of multiple resources within the faulted partition to control transient voltage emergencies in the grid. Full article
20 pages, 8941 KB  
Article
Transient Stability Enhancement of a PMSG-Based System by Saturated Current Angle Control
by Huan Li, Tongpeng Mu, Yufei Zhang, Duhai Wu, Yujun Li and Zhengchun Du
Appl. Sci. 2025, 15(20), 10861; https://doi.org/10.3390/app152010861 - 10 Oct 2025
Viewed by 195
Abstract
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both [...] Read more.
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both factors pose a risk of turbine overspeed and instability. To overcome these vulnerabilities, a dual-mechanism control strategy is proposed, featuring an adaptive saturated current angle control that, unlike conventional fixed-angle methods, which risk creating Current Limiting Control (CLC) equilibrium points, dynamically aligns the current vector with the grid voltage to guarantee a stable post-fault trajectory. The effectiveness of the proposed strategy is validated through time-domain simulations in MATLAB/Simulink. The results show that the proposed control not only prevents overspeed trip failures seen in conventional methods but also reduces post-fault recovery time by over 60% and significantly improves system damping, ensuring robust fault ride-through and enhancing overall system stability. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

15 pages, 3325 KB  
Article
Impact of SiN Passivation on Dynamic-RON Degradation of 100 V p-GaN Gate AlGaN/GaN HEMTs
by Marcello Cioni, Giacomo Cappellini, Giovanni Giorgino, Alessandro Chini, Antonino Parisi, Cristina Miccoli, Maria Eloisa Castagna, Aurore Constant and Ferdinando Iucolano
Electron. Mater. 2025, 6(4), 14; https://doi.org/10.3390/electronicmat6040014 - 7 Oct 2025
Viewed by 318
Abstract
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two [...] Read more.
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two different experimental setups are employed to investigate the RON-drift showing up during conventional switch mode operation by driving the DUTs under both (i) resistive load and (ii) soft-switching trajectory. This allows to discern the impact of hot carriers and off-state drain voltage stress on the RON parameter drift. Measurements performed with both switching loci shows similar dynamic-RON response, indicating that hot carriers are not involved in the degradation of tested devices. Nevertheless, a significant difference was observed between Sample A and Sample B, with the former showing an additional RON-degradation mechanism, not present on the latter. This additional drift is totally ascribed to the SiN passivation layer and is confirmed by the different leakage current measured across the two SiN types. The mechanism is explained by the injection of negative charges from the Source Field-Plate towards the AlGaN surface that are captured by surface/dielectric states and partially depletes the 2DEG underneath. Full article
Show Figures

Figure 1

30 pages, 41226 KB  
Article
Design and In-Flight Performance of the Power Converter Module and the Pressurised Enclosure for a Scientific Payload Onboard a Stratospheric Balloon
by José Luis Gasent-Blesa, Esteban Sanchis-Kilders, Agustín Ferreres, David Gilabert, Julián Blanco Rodríguez and Juan B. Ejea
Aerospace 2025, 12(9), 822; https://doi.org/10.3390/aerospace12090822 - 12 Sep 2025
Viewed by 459
Abstract
This paper addresses the technical requirements and challenges encountered in the design and development of a customised power electronics board for a stratospheric balloon payload. This board includes power conversion and distribution to critical components (e.g., FPGAs and a ±4 kV power supply), [...] Read more.
This paper addresses the technical requirements and challenges encountered in the design and development of a customised power electronics board for a stratospheric balloon payload. This board includes power conversion and distribution to critical components (e.g., FPGAs and a ±4 kV power supply), as well as the pressurised enclosure designed to house these components along with other essential electronics. These systems were part of two scientific instruments onboard SUNRISE III, a high-altitude solar observatory launched in July 2024 from ESRANGE (Kiruna, Sweden), with a floating trajectory over the Arctic Circle. The SUNRISE III mission, based on a stratospheric balloon, was carried out by an international consortium of research institutions from Germany, Spain, Japan, and the United States, and in collaboration with NASA’s CSBF and the Swedish Space Corporation. Furthermore, this work presents telemetry data from the pressure sensing system of the electronic unit, as well as voltage and current measurements from the power electronics board outputs. These data were recorded during the floating phase of the mission, up to the balloon’s arrival in northern Canada after a successful week of scientific operations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

21 pages, 9175 KB  
Article
Optimizing Welding Sequence and Improving Welding Process for Marine Thick-Walled Circular Pipes
by Tao Ma, Mingguan Fan, Haipeng Miao, Wei Shang and Mingxin Yuan
Materials 2025, 18(17), 4128; https://doi.org/10.3390/ma18174128 - 2 Sep 2025
Viewed by 819
Abstract
To reduce welding deformation during the automated welding of thick-walled pipes in shipbuilding and thereby improve welding quality, a segmented multi-layer multi-pass welding sequence optimization and process improvement strategy is proposed. Firstly, based on a welding model for thick-walled pipes, a multi-layer multi-pass [...] Read more.
To reduce welding deformation during the automated welding of thick-walled pipes in shipbuilding and thereby improve welding quality, a segmented multi-layer multi-pass welding sequence optimization and process improvement strategy is proposed. Firstly, based on a welding model for thick-walled pipes, a multi-layer multi-pass welding trajectory equation is established. A double-ellipsoidal moving heat source is adopted to design a circular multi-layer multi-pass double-ellipsoidal heat source model. Secondly, three circular pipe workpieces with different wall thicknesses are selected, and four segmented welding sequences are simulated using welding finite element analysis (FEA). Finally, based on the optimal segmented welding sequence, the welding process is improved, and optimal welding process parameters are determined based on deformation and residual stress analysis. The results of the segmented multi-layer multi-pass welding sequence optimization show that the skip-symmetric welding method yields the best results for thick-walled circular pipes. Compared to other welding sequences, it reduces welding deformation by an average of 6.50% and welding stress by an average of 5.37%. In addition, process improvement tests under the optimal welding sequence indicate that the best welding quality is achieved under the following conditions: for 10 mm thick pipes—200 A current, 24 V voltage, and 11.5 mm/s welding speed; for 15 mm thick pipes—215 A, 24.6 V, and 10 mm/s; and for 20 mm thick pipes—225 A, 25 V, and 11 mm/s. Full article
Show Figures

Figure 1

11 pages, 4015 KB  
Article
Dynamic Generation of Airy Beam Utilizing the Full-Space Programmable Metasurface
by Rui Feng, Yaokai Yu, Liangliang Wu, Jiayun Wang, Zhi Li and Qiulin Tan
Appl. Sci. 2025, 15(16), 9177; https://doi.org/10.3390/app15169177 - 20 Aug 2025
Viewed by 687
Abstract
Airy beams exhibit enormous application potential in the field of optics and microwave owing to their unique self-bending, self-accelerating, and non-diffracting characteristics. In this paper, the Airy beams are dynamically generated and manipulated in both reflection and transmission spaces utilizing a full space [...] Read more.
Airy beams exhibit enormous application potential in the field of optics and microwave owing to their unique self-bending, self-accelerating, and non-diffracting characteristics. In this paper, the Airy beams are dynamically generated and manipulated in both reflection and transmission spaces utilizing a full space programmable metasurface, which can achieve an approximately 360° phase coverage in the reflection space and a nearly 180° phase coverage in the transmission space in the operating frequency band from 6 GHz to 7 GHz. The direct current (DC) bias voltage is applied to the varactor diodes integrated on the metasurface by precise control of the external feeding system, allowing dynamic generation and regulation of Airy beams. Numerical simulations and experimental measurements are performed at 6.5 GHz. The Airy beams with parameters a = 56 and 61 are generated in the transmission space, while the Airy beams with parameters a = 71 and 81 are achieved in the reflection space. The parabolic propagation trajectory of the main beams and acceleration in the transverse planes can be observed. The good agreement between the simulated and measured results demonstrates that the metasurface can dynamically generate and manipulate the Airy beams in full space. The suggested Airy beam manipulation system has a wide range of applications, including optical particle manipulation, imaging, and difficult terrain exploration. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 6919 KB  
Article
Symmetric Optimization Strategy Based on Triple-Phase Shift for Dual-Active Bridge Converters with Low RMS Current and Full ZVS over Ultra-Wide Voltage and Load Ranges
by Longfei Cui, Yiming Zhang, Xuhong Wang and Dong Zhang
Electronics 2025, 14(15), 3031; https://doi.org/10.3390/electronics14153031 - 30 Jul 2025
Viewed by 661
Abstract
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency [...] Read more.
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency across ultra-wide output voltage and load ranges. To exploit the inherent structural symmetry of the DAB topology, a symmetric optimization strategy based on triple-phase shift (SOS-TPS) is proposed. The method specifically targets the forward buck operating mode, where an optimization framework is established to minimize the root mean square (RMS) current of the inductor, thereby addressing both switching and conduction losses. The formulation explicitly incorporates zero-voltage switching (ZVS) constraints and operating mode conditions. By employing the Karush–Kuhn–Tucker (KKT) conditions in conjunction with the Lagrange multiplier method (LMM), the refined control trajectories corresponding to various power levels are analytically derived, enabling efficient modulation across the entire operating range. In the medium-power region, full-switch ZVS is inherently satisfied. In the low-power operation, full-switch ZVS is achieved by introducing a modulation factor λ, and a selection principle for λ is established. For high-power operation, the strategy transitions to a conventional single-phase shift (SPS) modulation. Furthermore, by exploiting the inherent symmetry of the DAB topology, the proposed method reveals the symmetric property of modulation control. The modulation strategy for the forward boost mode can be efficiently derived through a duty cycle and voltage gain mapping, eliminating the need for re-derivation. To validate the effectiveness of the proposed SOS-TPS strategy, a 2.3 kW experimental prototype was developed. The measured results demonstrate that the method ensures ZVS for all switches under the full load range, supports ultra-wide voltage conversion capability, substantially suppresses RMS current, and achieves a maximum efficiency of 97.3%. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

15 pages, 11156 KB  
Article
Inter-Turn Fault Diagnosis of Induction Motors Based on Current Vector Pattern Analysis in Stationary Coordinate Frame
by Inyeol Yun, Hyunwoo Kim, Ju Lee and Sung-Gu Lee
Appl. Sci. 2025, 15(15), 8414; https://doi.org/10.3390/app15158414 - 29 Jul 2025
Viewed by 612
Abstract
In this study, a current vector pattern is analyzed for inter-turn fault (ITF) diagnosis of induction machines (IMs), and an ITF diagnosis algorithm is proposed. When an ITF occurs in IMs, a negative-sequence current is generated due to fault resistance, even though a [...] Read more.
In this study, a current vector pattern is analyzed for inter-turn fault (ITF) diagnosis of induction machines (IMs), and an ITF diagnosis algorithm is proposed. When an ITF occurs in IMs, a negative-sequence current is generated due to fault resistance, even though a positive-sequence voltage is applied to IMs. Based on the mathematical model of IMs with an ITF, the current vector patterns in the stationary coordinate frame are analyzed. The superposition of positive- and negative-sequence components results in an elliptical current vector trajectory, and its orientation varies depending on the fault conditions. The co-simulation using finite element analysis and circuit simulation is implemented to analyze the current vector pattern of IMs with an ITF. The ITF diagnosis is proposed based on the current vector pattern. A 12 kW, four-pole, three-phase IM and terminal box, which was used to implement an ITF, is manufactured, and an experiment setup is established to verify the ITF algorithm. The effectiveness of the proposed ITF algorithm is validated through experimental verification of the manufactured IM and terminal box. Full article
Show Figures

Figure 1

19 pages, 13239 KB  
Article
Regression-Based Modeling for Energy Demand Prediction in a Prototype Retail Manipulator
by Piotr Kroczek, Krzysztof Lis and Piotr Przystałka
Energies 2025, 18(14), 3858; https://doi.org/10.3390/en18143858 - 20 Jul 2025
Viewed by 429
Abstract
The present study proposes two regression-based models for predicting the energy consumption of a four-axis prototype retail manipulator. These models are developed using experimental current and voltage measurements. The Total Energy Model (TEM) is a method of estimating energy per trajectory that utilizes [...] Read more.
The present study proposes two regression-based models for predicting the energy consumption of a four-axis prototype retail manipulator. These models are developed using experimental current and voltage measurements. The Total Energy Model (TEM) is a method of estimating energy per trajectory that utilizes global motion parameters. In contrast, the Power-to-Energy Model (PEM) is a technique that reconstructs energy from predicted instantaneous power. It has been demonstrated that both models demonstrate high levels of predictive accuracy, with mean absolute percentage error (MAPE) values ranging from 1 to 1.5%. These models are well-suited for implementation in hardware-constrained environments and for integration into digital twins. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 19012 KB  
Article
An Enhanced Integrated Optimization Strategy for Wide ZVS Operation and Reduced Current Stress Across the Full Load Range in DAB Converters
by Longfei Cui, Yiming Zhang, Xuhong Wang and Dong Zhang
Appl. Sci. 2025, 15(13), 7413; https://doi.org/10.3390/app15137413 - 1 Jul 2025
Cited by 2 | Viewed by 714
Abstract
The dual-active-bridge (DAB) converter has emerged as a promising topology for renewable energy applications and microgrid systems due to its high power density and bidirectional energy-transfer capability. Enhancing the overall efficiency and reliability of DAB converters requires the simultaneous realization of zero-voltage switching [...] Read more.
The dual-active-bridge (DAB) converter has emerged as a promising topology for renewable energy applications and microgrid systems due to its high power density and bidirectional energy-transfer capability. Enhancing the overall efficiency and reliability of DAB converters requires the simultaneous realization of zero-voltage switching (ZVS) across all switches and the minimization of current stress over wide load and voltage ranges—two objectives that are often in conflict. Conventional modulation strategies with limited degrees of freedom fail to meet these dual goals effectively. To address this challenge, this paper introduces an enhanced integrated optimization strategy based on triple phase shift (EIOS-TPS). This approach formulates the power transmission requirement as an equality constraint and incorporates ZVS and mode boundary conditions as inequalities, resulting in a comprehensive optimization framework. Optimal phase-shift parameters are obtained using the Karush–Kuhn–Tucker (KKT) conditions. To mitigate zero-current switching (ZCS) under a light load and achieve full-range ZVS with reduced current stress, a modulation factor λ is introduced, enabling a globally optimized control trajectory. An experimental 1176 W prototype is developed to validate the proposed method, which achieves full-range ZVS while maintaining low current stress. In the low-power region, it improves efficiency by up to 2.2% in buck mode and 2.0% in boost mode compared with traditional control strategies, reaching a peak efficiency of 96.5%. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

33 pages, 1867 KB  
Article
AI-Enhanced Non-Intrusive Load Monitoring for Smart Home Energy Optimization and User-Centric Interaction
by Xiang Li, Yunhe Chen, Xinyu Jia, Fan Shen, Bowen Sun, Shuqing He and Jia Guo
Informatics 2025, 12(2), 55; https://doi.org/10.3390/informatics12020055 - 17 Jun 2025
Viewed by 1849
Abstract
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations [...] Read more.
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations in NILM accuracy and robustness necessitate innovative solutions. Additionally, outdated public datasets fail to capture the rapid evolution of modern appliances. To address these challenges, we constructed a high-sampling-rate voltage–current dataset, measuring 15 common household appliances across diverse scenarios in a controlled laboratory environment tailored to regional grid standards (220 V/50 Hz). We propose an AI-driven NILM method that integrates power-mapped, color-coded voltage–current (V–I) trajectories with frequency-domain features to significantly improve load recognition accuracy and robustness. By leveraging deep learning frameworks, this approach enriches temporal feature representation through chromatic mapping of instantaneous power and incorporates frequency-domain spectrograms to capture dynamic load behaviors. A novel channel-wise attention mechanism optimizes multi-dimensional feature fusion, dynamically prioritizing critical information while suppressing noise. Comparative experiments on the custom dataset demonstrate superior performance, particularly in distinguishing appliances with similar load profiles, underscoring the method’s potential for advancing smart home energy management, user-centric energy feedback, and social informatics applications in complex electrical environments. Full article
Show Figures

Figure 1

15 pages, 7987 KB  
Article
Analysis and Optimization of Vertical NPN BJT for Strong Magnetic Fields
by Xinfang Liao, Kexin Guo, Changqing Xu, Yi Liu, Fanxin Meng, Junyi Zhou, Rui Ding, Juxiang Li, Kai Huang and Yintang Yang
Micromachines 2025, 16(6), 671; https://doi.org/10.3390/mi16060671 - 31 May 2025
Viewed by 654
Abstract
This study systematically investigates the electrical characteristics of the vertical NPN bipolar junction transistor (VNPN BJT) in the strong magnetic field environment, focusing on analyzing the effects of magnetic field direction and intensity on key parameters such as terminal current and current gain [...] Read more.
This study systematically investigates the electrical characteristics of the vertical NPN bipolar junction transistor (VNPN BJT) in the strong magnetic field environment, focusing on analyzing the effects of magnetic field direction and intensity on key parameters such as terminal current and current gain (β). The simulation results show that the magnetic field induces changes in the carrier distribution, thereby affecting the current transport path. Through the in-depth analysis of electron motion trajectories, potential distribution, and Hall voltage, this paper reveals the physical mechanisms behind the device’s characteristic changes under the magnetic field and discovers that the inherent asymmetry of the BJT structure induces significant magnetic anisotropy effects. On this basis, a design for interference-resistant structures in strong magnetic field environments is proposed, effectively suppressing the adverse effects of magnetic-field-sensitive directions on BJT performance and significantly improving the device’s stability in complex magnetic field environments. Full article
Show Figures

Figure 1

20 pages, 3216 KB  
Article
A Lightweight Load Identification Model Update Method Based on Channel Attention
by Yong Gao, Junwei Zhang, Mian Wang, Zhukui Tan and Minhang Liang
Energies 2025, 18(11), 2885; https://doi.org/10.3390/en18112885 - 30 May 2025
Viewed by 459
Abstract
With the development of smart grids and home energy management systems, accurate load identification has become an important part of improving energy efficiency and ensuring electrical safety. However, traditional load identification methods struggle with high computational overhead and long model update times, which [...] Read more.
With the development of smart grids and home energy management systems, accurate load identification has become an important part of improving energy efficiency and ensuring electrical safety. However, traditional load identification methods struggle with high computational overhead and long model update times, which hinder real-time performance. In this study, a load identification method based on the channel attention mechanism is proposed for the lightweight model update problem in the electrical load identification task. To overcome this challenge, we construct color V-I trajectory maps by extracting the voltage and current signals of electrical devices during steady-state operation, and combine the convolutional neural network and channel attention mechanism for feature extraction and classification. Experimental results show that the proposed method significantly improves the accuracy, precision, recall, and F1-score compared with traditional methods on the public dataset, and tests on real hardware platforms verify its efficiency and robustness. This suggests that the lightweight model update method based on the channel attention mechanism holds great promise for smart grid applications, particularly in real-time systems with limited computational resources. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

26 pages, 5050 KB  
Article
Research on Energy Regeneration Characteristics of Multi-Link Energy-Fed Suspension
by Xuefeng Zhang, Jianze Liu, Yang Li, Guangzheng Wang, Yu Zou and Jiang Liu
Energies 2025, 18(11), 2743; https://doi.org/10.3390/en18112743 - 25 May 2025
Viewed by 668
Abstract
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane [...] Read more.
Inspired by the single-blade hyperboloid, a new type of multi-bar shock absorber was designed, which can recover vibration energy. Its principle is to convert the droop reciprocating vibration of the vehicle in the spatial domain into the reciprocating rotational motion in the plane through the trajectory and force characteristics of the single-blade hyperboloid moving along the space. To improve the efficiency of energy regeneration, a mechanical motion filtering mechanism was designed. Through theoretical derivation, the energy regeneration formula of a new type of multi-rod shock absorber was obtained. After simulation analysis and experimental verification, under the input excitation of 1.82 Hz, the maximum instantaneous output voltage can reach 29 V, the maximum excitation current is 0.58 A, and the maximum power is 16.84 W. The efficient recovery and utilization of energy have been achieved, and the ride comfort of the vehicle has been improved. Full article
Show Figures

Figure 1

19 pages, 13137 KB  
Article
Initial/Last-State-Correlated SAR Control with Optimized Trajectory to Reduce Reverse Overshoot and Smooth Current Switching of Hybrid LDOs
by Yinyu Wang, Jinkun Ke, Run Min, Hangyu Xu, Zhaoliang Guan, Shuo Zhang, Chang Liu and Jingbo Feng
Electronics 2025, 14(10), 2051; https://doi.org/10.3390/electronics14102051 - 18 May 2025
Viewed by 440
Abstract
Conventional successive approximation recursive (SAR) control hybrid low-dropout regulators (LDOs) have problems such as significant reverse overshoot and discontinuous current switching. Based on trajectory optimization in the phase plane, this paper presented initial/last-state-correlated SAR control to address the aforementioned issues. Firstly, the operating [...] Read more.
Conventional successive approximation recursive (SAR) control hybrid low-dropout regulators (LDOs) have problems such as significant reverse overshoot and discontinuous current switching. Based on trajectory optimization in the phase plane, this paper presented initial/last-state-correlated SAR control to address the aforementioned issues. Firstly, the operating principles of the conventional SAR controller are elucidated, which is depicted by a finite state machine (FSM). Secondly, large reverse overshoot and discontinuous current switching of the SAR control hybrid LDO are analyzed through the phase plane trajectory. Then, the initial/last-state SAR control is proposed by FSM to optimize the trajectory, thereby reducing the reverse overshoot and smoothing current switching. Finally, a series of design challenges of the initial/last-state-correlated SAR control are discussed. Implemented at 1.11 mm × 0.567 mm in a 180 nm bipolar-CMOS-DMOS (BCD) process, under a 0.1 nF output capacitor, the 6-bit hybrid LDO in this paper achieved an output voltage overshoot of 76 mV and a transient time of 18.8 μs at a 152 mA load current change. The experimental result demonstrates the distinct dynamic response advantages of the initial/last-state SAR control. Full article
Show Figures

Figure 1

Back to TopTop