Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,114)

Search Parameters:
Keywords = voltage fluctuations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 (registering DOI) - 3 Aug 2025
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

24 pages, 1008 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 (registering DOI) - 1 Aug 2025
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
22 pages, 6031 KiB  
Article
Enhancement of Power Quality in Photovoltaic Systems for Weak Grid Connections
by Pankaj Kumar Sharma, Pushpendra Singh, Sharat Chandra Choube and Lakhan Singh Titare
Energies 2025, 18(15), 4066; https://doi.org/10.3390/en18154066 (registering DOI) - 31 Jul 2025
Viewed by 184
Abstract
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, [...] Read more.
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, including sags, swells, and fluctuations in solar irradiance. A dynamic DC-link voltage regulation mechanism is employed to minimize converter power losses and enhance the performance of the Voltage Source Converter (VSC) under weak grid scenarios. The control scheme maintains continuous maximum power point tracking (MPPT) and unity power factor (UPF) operation, thereby improving overall grid power quality. The proposed method is validated through comprehensive simulations and real-time hardware implementation using the OPAL-RT OP4510 platform. The results demonstrate compliance with IEEE Standard 519, confirming the effectiveness and robustness of the proposed strategy. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 3838 KiB  
Article
Model-Free Cooperative Control for Volt-Var Optimization in Power Distribution Systems
by Gaurav Yadav, Yuan Liao and Aaron M. Cramer
Energies 2025, 18(15), 4061; https://doi.org/10.3390/en18154061 (registering DOI) - 31 Jul 2025
Viewed by 176
Abstract
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the [...] Read more.
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the ability of inverters to supply or consume reactive power to mitigate fast voltage fluctuations. These methods usually require a detailed power network model including topology and impedance data. However, network models may be difficult to obtain. Thus, it is desirable to develop a model-free method that obviates the need for the network model. This paper proposes a novel model-free cooperative control method to perform voltage regulation and reduce inverter aging in power distribution systems. This method assumes the existence of time-series voltage and load data, from which the relationship between voltage and nodal power injection is derived using a feedforward artificial neural network (ANN). The node voltage sensitivity versus reactive power injection can then be calculated, based on which a cooperative control approach is proposed for mitigating voltage fluctuation. The results obtained for a modified IEEE 13-bus system using the proposed method have shown its effectiveness in mitigating fast voltage variation due to PV intermittency. Moreover, a comparative analysis between model-free and model-based methods is provided to demonstrate the feasibility of the proposed method. Full article
Show Figures

Figure 1

16 pages, 3664 KiB  
Article
Wave Prediction Error Compensation and PTO Optimization Control Method for Improving the WEC Power Quality
by Tianlong Lan, Jiarui Wang, Luliang He, Peng Qian, Dahai Zhang and Bo Feng
Energies 2025, 18(15), 4043; https://doi.org/10.3390/en18154043 - 29 Jul 2025
Viewed by 157
Abstract
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system [...] Read more.
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system are also important research topics in WEC applications. In order to solve the above-mentioned problems, this paper presents a model predictive control (MPC) method composed of a prediction error compensation controller and a PTO optimization controller. This work aims to address the limitations of existing wave prediction methods and improve the efficiency and stability of hydraulic PTO systems in WECs. By controlling the charging and discharging of the accumulator, the power quality is enhanced by reducing grid frequency fluctuations and voltage flicker through prediction error compensation. In addition, an efficient and stable hydraulic PTO system can be obtained by keeping the operation pressure of the hydraulic motor at the optimal range. Thus, smoother power output minimizes grid-balancing penalties and storage wear, and stable hydraulic pressure extends PTO component lifespan. Finally, comparative numerical simulation studies are provided to show the efficacy of the proposed method. The results validate that the dual-controller MPC framework reduces power deviations by 74.3% and increases average power generation by 31% compared to the traditional method. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

19 pages, 3963 KiB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 - 29 Jul 2025
Viewed by 319
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
Show Figures

Figure 1

21 pages, 2568 KiB  
Article
Research on the Data-Driven Identification of Control Parameters for Voltage Ride-Through in Energy Storage Systems
by Liming Bo, Jiangtao Wang, Xu Zhang, Yimeng Su, Xueting Cheng, Zhixuan Zhang, Shenbing Ma, Jiyu Wang and Xiaoyu Fang
Appl. Sci. 2025, 15(15), 8249; https://doi.org/10.3390/app15158249 - 24 Jul 2025
Viewed by 207
Abstract
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter [...] Read more.
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter identification has become a crucial approach for analyzing ESS dynamic behaviors during high-voltage ride-through (HVRT) and low-voltage ride-through (LVRT) and for optimizing control strategies. In this study, we present a multidimensional feature-integrated parameter identification framework for ESSs, combining a multi-scenario voltage disturbance testing environment built on a real-time laboratory platform with field-measured data and enhanced optimization algorithms. Focusing on the control characteristics of energy storage converters, a non-intrusive identification method for grid-connected control parameters is proposed based on dynamic trajectory feature extraction and a hybrid optimization algorithm that integrates an improved particle swarm optimization (PSO) algorithm with gradient-based coordination. The results demonstrate that the proposed approach effectively captures the dynamic coupling mechanisms of ESSs under dual-mode operation (charging and discharging) and voltage fluctuations. By relying on measured data for parameter inversion, the method circumvents the limitations posed by commercial confidentiality, providing a novel technical pathway to enhance the fault ride-through (FRT) performance of energy storage systems (ESSs). In addition, the developed simulation verification framework serves as a valuable tool for security analysis in power systems with high renewable energy penetration. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

23 pages, 16399 KiB  
Article
Design and Implementation of a Full SiC-Based Phase-Shifted Full-Bridge DC-DC Converter with Nanocrystalline-Cored Magnetics for Railway Battery Charging Applications
by Fatih Enes Gocen, Salih Baris Ozturk, Mehmet Hakan Aksit, Gurkan Dugan, Benay Cakmak and Caner Demir
Energies 2025, 18(15), 3945; https://doi.org/10.3390/en18153945 - 24 Jul 2025
Viewed by 232
Abstract
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary [...] Read more.
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary side, resulting in significant efficiency improvements due to the superior switching characteristics and high-temperature tolerance inherent in SiC devices. A nanocrystalline-cored center-tapped transformer is optimized to minimize voltage stress on the rectifier diodes. Additionally, the use of a nanocrystalline core provides high saturation flux density, low core loss, and excellent permeability, particularly at high frequencies, which significantly enhances system efficiency. The converter also compensates for temperature fluctuations during operation, enabling a wide and adjustable output voltage range according to the temperature differences. A prototype of the 10-kW, 50-kHz PSFB converter, operating with an input voltage range of 700–750 V and output voltage of 77–138 V, was developed and tested both through simulations and experimentally. The converter achieved a maximum efficiency of 97% and demonstrated a high power density of 2.23 kW/L, thereby validating the effectiveness of the proposed design for railway battery charging applications. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 385
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

18 pages, 6362 KiB  
Article
Active Neutral-Point Voltage Balancing Strategy for Single-Phase Three-Level Converters in On-Board V2G Chargers
by Qiubo Chen, Zefu Tan, Boyu Xiang, Le Qin, Zhengyang Zhou and Shukun Gao
World Electr. Veh. J. 2025, 16(7), 406; https://doi.org/10.3390/wevj16070406 - 21 Jul 2025
Viewed by 167
Abstract
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage [...] Read more.
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage Balancing (ANPVB) in a single-phase three-level converter used in on-board V2G chargers. Traditional converters rely on passive balancing using redundant vectors, which cannot ensure neutral-point (NP) voltage stability under sudden load changes or frequent power fluctuations. To solve this issue, an auxiliary leg is introduced into the converter topology to actively regulate the NP voltage. The proposed method avoids complex algorithm design and weighting factor tuning, simplifying control implementation while improving voltage balancing and dynamic response. The results show that the proposed Model Predictive Current Control-based ANPVB (MPCC-ANPVB) and Model Predictive Direct Power Control-based ANPVB (MPDPC-ANPVB) strategies maintain the NP voltage within ±0.7 V, achieve accurate power tracking within 50 ms, and reduce the total harmonic distortion of current (THDi) to below 1.89%. The proposed strategies are tested in both V2G and G2V modes, confirming improved power quality, better voltage balance, and enhanced dynamic response. Full article
Show Figures

Figure 1

20 pages, 5656 KiB  
Article
A Quantitative Analysis Framework for Investigating the Impact of Variable Interactions on the Dynamic Characteristics of Complex Nonlinear Systems
by Yiming Tang, Chongru Liu and Chenbo Su
Electronics 2025, 14(14), 2902; https://doi.org/10.3390/electronics14142902 - 20 Jul 2025
Viewed by 193
Abstract
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a [...] Read more.
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a unified nonlinear modal analysis framework integrating second-order analytical solutions with novel nonlinear indices. Validated across diverse systems (DC microgrids and grid-connected PV), the framework yields significant findings: (1) second-order solutions outperform linearization in capturing critical oscillation/damping distortions under realistic disturbances, essential for fault analysis; (2) nonlinear effects induce modal dominance inversion and generate governing composite modes; (3) key interaction mechanisms are quantified, revealing distinct voltage regulation pathways in DC microgrids and multi-path dynamics driving DC voltage fluctuations. This approach provides a systematic foundation for dynamic characteristic assessment and directly informs control design for power electronics-dominated grids. Full article
Show Figures

Figure 1

19 pages, 12234 KiB  
Article
Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid
by Abdullah M. Noman, Abu Sufyan, Mohsin Jamil and Sulaiman Z. Almutairi
Electronics 2025, 14(14), 2894; https://doi.org/10.3390/electronics14142894 - 19 Jul 2025
Viewed by 176
Abstract
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly [...] Read more.
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly into the grid. The control performance of a GCI equipped with an LCL filter is greatly reduced when it is operating in a power grid with varying impedance and fluctuating grid voltages, which may result in poor current quality and possible instability in the system. A non-singular double integral terminal sliding mode (DIT-SMC) control is presented in this paper for a three-phase GCI with an LCL filter. The proposed method is presented in the α, β frame of reference without adopting an active or passive damping approach, reducing the computational burden. MATLAB/Simulink Version R2023b is leveraged to simulate the mathematical model of the proposed control system. The capability of the DIT-SMC method is validated through the OPAL-RT hardware-in-loop (HIL) platform. The effectiveness of the proposed method is first compared with SMC and integral terminal SMC, and then the DIT-SMC method is rigorously analyzed under resonance frequency events, grid impedance variation, and grid voltage distortions. It is demonstrated by the experimental results that the proposed control is highly effective in delivering a high-quality current into the grid, in spite of the simultaneous occurrence of power grid impedance variations in 6 mH and large voltage distortions. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

38 pages, 1945 KiB  
Review
Grid Impacts of Electric Vehicle Charging: A Review of Challenges and Mitigation Strategies
by Asiri Tayri and Xiandong Ma
Energies 2025, 18(14), 3807; https://doi.org/10.3390/en18143807 - 17 Jul 2025
Viewed by 753
Abstract
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV [...] Read more.
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV charging. Components such as transformers and distribution networks may experience overload, voltage imbalances, and congestion—particularly during peak periods. While upgrading grid infrastructure is a potential solution, it is often costly and complex to implement. The unpredictable nature of EV charging behavior further complicates grid operations, as charging demand fluctuates throughout the day. Therefore, efficient integration into the grid—both for charging and potential discharging—is essential. This paper reviews recent studies on the impacts of high EV penetration on distribution grids and explores various strategies to enhance grid performance during peak demand. It also examines promising optimization methods aimed at mitigating negative effects, such as load shifting and smart charging, and compares their effectiveness across different grid parameters. Additionally, the paper discusses key challenges related to impact analysis and proposes approaches to improve them in order to achieve better overall grid performance. Full article
Show Figures

Figure 1

19 pages, 5202 KiB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 398
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

23 pages, 3337 KiB  
Article
Optimization of Economic Space: Algorithms for Controlling Energy Storage in Low-Voltage Networks
by Marcin Rabe, Tomasz Norek, Agnieszka Łopatka, Jarosław Korpysa, Veselin Draskovic, Andrzej Gawlik and Katarzyna Widera
Energies 2025, 18(14), 3756; https://doi.org/10.3390/en18143756 - 16 Jul 2025
Viewed by 236
Abstract
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large [...] Read more.
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large quantities of energy offers a way to address this challenge. This article presents and describes dedicated algorithms for controlling the EES system to enable the provision of individual system services. Five services are planned for implementation: RES power stabilization; voltage regulation using active and reactive power; reactive power compensation; power stabilization of unstable loads; and power reduction on demand. The aim of this paper is to develop new, dedicated energy storage control algorithms for delivering these specific services. Additionally, the voltage regulation algorithm includes two operating modes: short-term regulation (voltage fluctuation stabilization) and long-term regulation (triggered by an operator signal). Full article
(This article belongs to the Special Issue Sustainable Energy & Society—2nd Edition)
Show Figures

Figure 1

Back to TopTop