Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid
Abstract
1. Introduction
- The proposed DIT-SMC does not require an active or passive damping loop and guarantees the stability of the system at the resonance frequency of , even under grid inductance variation.
- Despite large variations in grid impedance up to 500% of the nominal value, the proposed controller is able to maintain high-quality current injection into the grid.
- The DIT-SMC maintains close to zero steady-state error with the maximum power transfer to the grid.
2. Modeling of Grid-Connected Inverter System
3. Design of Nonlinear Controllers
3.1. Sliding Mode Control
3.1.1. Chattering Analysis
3.1.2. Stability Analysis
3.2. Integral Terminal Sliding Mode Control
3.3. Double Integral Terminal Sliding Mode Control
4. Simulation Results
4.1. Reference Tracking Performance Evaluation
4.2. Steady-State Performance Analysis
4.3. Performance Under External Disturbances
5. Hardware-in-Loop Experimental Validation
Evaluation Under Weaker Grid
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GCI | Grid-connected inverter |
SMC | Sliding mode control |
IT-SMC | Integral terminal sliding mode control |
DIT-SMC | Double integral terminal sliding mode control |
SSE | Steady-state-error |
THD | Total harmonic distortions |
SS | Sliding surface |
FFT | Fast Fourier Transform |
References
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodriguez, P. Control of power converters in AC microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Song, W.; Dong, Y.; He, G.; Zhou, Z. Fixed-time robust fractional-order sliding mode control strategy for grid-connected inverters based on weighted average current. Energies 2024, 17, 4577. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Q.; Qi, J.; Ajjarapu, V.; Bravo, R.; Chow, J.; Li, Z.; Moghe, R.; Nasr-Azadani, E.; Tamrakar, U.; et al. Review of challenges and research opportunities for voltage control in smart grids. IEEE Trans. Power Syst. 2019, 34, 2790–2801. [Google Scholar] [CrossRef]
- Agorreta, J.L.; Borrega, M.; López, J.; Marroyo, L. Modeling and control of N-Paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Trans. Power Electron. 2010, 6, 770–785. [Google Scholar]
- Rockhill, A.A.; Liserre, M.; Teodorescu, R.; Rodriguez, P. Grid-filter design for a multi-megawatt medium-voltage voltage-source inverter. IEEE Trans. Ind. Electron. 2010, 58, 1205–1217. [Google Scholar] [CrossRef]
- Tang, Y.; Loh, P.C.; Wang, P.; Choo, F.H.; Gao, F. Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters. IEEE Trans. Power Electron. 2011, 27, 1433–1443. [Google Scholar] [CrossRef]
- Azghandi, L.A.; Barakati, S.M.; Yazdani, A. Impedance-based stability analysis and design of a fractional-order active damper for grid-connected current-source inverters. IEEE Trans. Sustain. Energy 2021, 12, 599–611. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Q.; Xie, Z.; Zhang, X.; Chang, L. Digital current controller with a novel active damping design for IPMSM. IEEE Trans. Energy Convers. 2022, 37, 185–197. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Tu, Y.; Shen, K.; Liu, J. Active damping control for LCL filters with inverter-side current feedback only. IEEE Trans. Power Electron. 2022, 37, 10065–10069. [Google Scholar] [CrossRef]
- Kouchaki, A.; Nymand, M. Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers. IEEE Trans. Power Electron. 2018, 33, 3012–3022. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, Y.; Xie, Y.; Liang, Y.; Lin, A.; Wang, X. The dual-current control strategy of grid-connected inverter with LCL filter. IEEE Trans. Power Electron. 2018, 34, 5940–5952. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Guo, Z.; Wang, J.; Wang, Y.; Li, F.; Zhao, W. The control strategy for the grid-connected inverter through impedance reshaping in q-axis and its stability analysis under a weak grid. IEEE J. Emerg. Sel. Topics Power Electron. 2021, 9, 3229–3242. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Luo, A.; He, Z.; Wu, W.; Wei, X.; Zhu, Z.; Guo, J. Virtual impedance-based virtual synchronous generator control for grid-connected inverter under weak grid situations. IET Power Electron. 2018, 11, 2125–2132. [Google Scholar] [CrossRef]
- Gulur, S.; Iyer, V.M.; Bhattacharya, S. A dual-loop current control structure with improved disturbance rejection for grid-connected converters. IEEE Trans. Power Electron. 2019, 34, 10233–10244. [Google Scholar] [CrossRef]
- Akhavan, A.; Vasquez, J.C.; Guerrero, J.M. A robust method for controlling grid-connected inverters in weak grids. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 1333–1337. [Google Scholar] [CrossRef]
- Tang, C.; Zhou, K.; Shu, Y.; He, Q.; Chen, Q. Analysis and design of multiple resonant current control for grid-connected converters. IEEE J. Emerg. Sel. Topics Power Electron. 2021, 10, 2539–2546. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Zhou, S. A control strategy of LCL-type grid-connected inverters for improving the stability and harmonic suppression capability. Machines 2022, 10, 1027. [Google Scholar] [CrossRef]
- Maganti, S.; Padhy, N.P. A feedback-based flexible compensation strategy for a weak-grid-tied current-controlled converter under unbalanced and harmonic conditions. IEEE Trans. Ind. Appl. 2022, 58, 7739–7753. [Google Scholar] [CrossRef]
- Komurcugil, H.; Biricik, S.; Bayhan, S.; Zhang, Z. Sliding mode control: Overview of its applications in power converters. IEEE Ind. Electron. Mag. 2020, 15, 40–49. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Vazquez, S.; Mazumder, S.K. Sliding mode control in power converters and drives: A review. IEEE/CAA J. Autom. Sinica 2021, 9, 392–406. [Google Scholar] [CrossRef]
- Hou, T.; Jiang, Y.; Cai, Z. Study on the resonance characteristics and active damping suppression strategies of multi-inverter grid-connected systems under weak grid conditions. Energies 2024, 17, 5889. [Google Scholar] [CrossRef]
- Zheng, Y.; Deng, H.; Liu, X.; Guan, Y. Sliding mode observer-based phase-locking strategy for current source inverter in weak grids. Energies 2024, 17, 4891. [Google Scholar] [CrossRef]
- Sufyan, A.; Jamil, M.; Ghafoor, S.; Awais, Q.; Ahmad, H.A.; Khan, A.A.; Abouobaida, H. A robust nonlinear sliding mode controller for a three-phase grid-connected inverter with an LCL filter. Energies 2022, 15, 9428. [Google Scholar] [CrossRef]
- Li, H.; Wu, W.; Huang, M.; Chung, H.S.H.; Liserre, M.; Blaabjerg, F. Design of PWM-SMC controller using linearized model for grid-connected inverter with LCL filter. IEEE Trans. Power Electron. 2021, 35, 12773–12786. [Google Scholar] [CrossRef]
- Dong, H.; Yang, X.; Gao, H.; Yu, X. Practical terminal sliding-mode control and its applications in servo systems. IEEE Trans. Ind. Electron. 2022, 70, 752–761. [Google Scholar] [CrossRef]
- Yu, X.; Feng, Y.; Man, Z. Terminal sliding mode control—An overview. IEEE Open J. Ind. Electron. Soc. 2020, 2, 36–52. [Google Scholar] [CrossRef]
- Gao, W.; Hung, J.C. Variable structure control of nonlinear systems: A new approach. IEEE Trans. Ind. Electron. 1993, 40, 45–55. [Google Scholar] [CrossRef]
- Sanders, S.R.; Verghese, G.C. Lyapunov-based control for switched power converters. IEEE Trans. Power Electron. 1992, 7, 17–24. [Google Scholar] [CrossRef]
- Komurcugil, H.; Kukrer, O. Lyapunov-based control for three-phase pwm ac/dc voltage-source converters. IEEE Trans. Power Electron. 1998, 13, 801–813. [Google Scholar] [CrossRef]
- Pan, D.; Ruan, X.; Bao, C.; Li, W.; Wang, X. Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Trans. Ind. Electron. 2014, 62, 1537–1547. [Google Scholar] [CrossRef]
Symbol | Value |
---|---|
DC-link voltage | 350 V |
Grid Voltage | 220–240 V |
Grid frequency | 50 Hz |
Filter capacitance C | 6 μF |
Filter inductance | |
Inductor resistance | 0.2 Ω |
Switching frequency | |
Sampling frequency |
Description | Symbol | Value |
---|---|---|
SS coefficients | 1, 1.8, 1.6, 3200, 8700 | |
Terminal law parameters | 0.8, 1.6 | |
Reaching law coefficients |
Comparison Category | SMC | MRSMC | Proposed |
---|---|---|---|
THD% | 2.3% | 1.5% | 0.79% |
Steady-state-error | 1 ms | 0.1 ms | ≈0 |
Sampling frequency | 12 kHz | 20 kHz | 12 kHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noman, A.M.; Sufyan, A.; Jamil, M.; Almutairi, S.Z. Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid. Electronics 2025, 14, 2894. https://doi.org/10.3390/electronics14142894
Noman AM, Sufyan A, Jamil M, Almutairi SZ. Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid. Electronics. 2025; 14(14):2894. https://doi.org/10.3390/electronics14142894
Chicago/Turabian StyleNoman, Abdullah M., Abu Sufyan, Mohsin Jamil, and Sulaiman Z. Almutairi. 2025. "Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid" Electronics 14, no. 14: 2894. https://doi.org/10.3390/electronics14142894
APA StyleNoman, A. M., Sufyan, A., Jamil, M., & Almutairi, S. Z. (2025). Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid. Electronics, 14(14), 2894. https://doi.org/10.3390/electronics14142894