Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (264)

Search Parameters:
Keywords = volcanic activity process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14630 KiB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 259
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

21 pages, 7866 KiB  
Article
Asteroid and Meteorite Impacts as a Cause of Large Sedimentary Basins: A Case Study of the Transylvanian Depression
by Dumitru Ioane, Irina Stanciu and Mihaela Scradeanu
Geosciences 2025, 15(7), 267; https://doi.org/10.3390/geosciences15070267 - 9 Jul 2025
Viewed by 675
Abstract
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events [...] Read more.
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events due to active plate tectonics, sedimentation, and volcanism, with these geological processes destroying and burying their impact geomorphological signatures. To enlarge the Earth’s impacts database, new concepts and research methods are necessary, as well as the reinterpretation of old geological and geophysical models. Geomorphological, Geological, and Geophysical (3G) signatures in concealed impacted areas are discussed in this paper; the first offers the target characteristics, while the others give means for detecting their unseen remnants. The 3G signatures have been applied to the Transylvanian Depression, a fascinating geological structure, with difficulties in explaining the direct overlapping of regionally developed thick tuff and thick salt layers, and undecided interpretation of the regional magnetic anomaly. Large and deep sedimentary basins, such as the Precaspian, Alexandria and Transylvanian depressions, are interpreted to have started as impacted areas during the Permian or the Lower Neogene. Geophysical and geological existing information have been reinterpreted, offering a new way in understanding deeply located geological structures. Full article
Show Figures

Figure 1

25 pages, 6368 KiB  
Article
Development of a Thermal Infrared Network for Volcanic and Environmental Monitoring: Hardware Design and Data Analysis Software Code
by Fabio Sansivero, Giuseppe Vilardo and Ciro Buonocunto
Sensors 2025, 25(13), 4141; https://doi.org/10.3390/s25134141 - 2 Jul 2025
Viewed by 292
Abstract
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work [...] Read more.
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work presents the comprehensive development of a thermal infrared monitoring network, detailing everything from the hardware schematics of the remote monitoring station (RMS) to the code for the final data processing software. The procedures implemented in the RMS for managing TIR sensor operations, acquiring environmental data, and transmitting data remotely are thoroughly discussed, along with the technical solutions adopted. The processing of TIR imagery is carried out using ASIRA (Automated System of InfraRed Analysis), a free software package, now developed for GNU Octave. ASIRA performs quality filtering and co-registration, and applies various seasonal correction methodologies to extract time series of deseasoned surface temperatures, estimate heat fluxes, and track variations in thermally anomalous areas. Processed outputs include binary, Excel, and CSV formats, with interactive HTML plots for visualization. The system’s effectiveness has been validated in active volcanic areas of southern Italy, demonstrating high reliability in detecting anomalous thermal behavior and distinguishing endogenous geophysical processes. The aim of this work is to enable readers to easily replicate and deploy this open-source, low-cost system for the continuous, automated thermal monitoring of active volcanic and geothermal areas and environmental pollution, thereby supporting hazard assessment and scientific research. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Thermography and Sensing Technologies)
Show Figures

Figure 1

12 pages, 2413 KiB  
Article
The Effects of Calcination Process Parameters on RHA Reactivity and Mortar Mechanical Properties
by Jianrui Ji, Lihui Li, Lei Quan, Bo Tian, Panpan Zhang and Sili Li
Materials 2025, 18(13), 3129; https://doi.org/10.3390/ma18133129 - 2 Jul 2025
Viewed by 262
Abstract
The insufficient optimization of calcination process parameters severely restricts the enhancement of rice husk ash (RHA) volcanic ash activity. In this study, an intelligent muffle furnace was used for multi-parameter coupled regulation, combined with microscopic characterization techniques, to elucidate the effects of temperature, [...] Read more.
The insufficient optimization of calcination process parameters severely restricts the enhancement of rice husk ash (RHA) volcanic ash activity. In this study, an intelligent muffle furnace was used for multi-parameter coupled regulation, combined with microscopic characterization techniques, to elucidate the effects of temperature, cooling mode, heating rate, and holding time on the reactivity of RHA. The results showed that the effect of calcination temperature on the volcanic ash activity of RHA was dominant. RHA calcined at 600–700 °C showed a honeycomb porous structure, displayed broad amorphous SiO2 diffraction peaks and up to 95% content of SiO2, and exhibited the best volcanic ash activity. The increased crystallinity of RHA calcined at 800 °C led to a decrease in its activity. The subcooling treatment with distilled water effectively rebuilt the lamellar structure, reduced the crystallinity, and enhanced the reactivity. The samples incorporated with 600 °C calcined RHA showed higher compressive strength at 3 days compared to 800 °C calcined RHA. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 2574 KiB  
Article
Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire
by Mahamadou Kamagate, Traore Lanciné, Kouadio Aya Nelly Berthe, Gone Droh Lanciné, Karim Kriaa, Amine Aymen Assadi, Jie Zhang and Hichem Tahraoui
Water 2025, 17(13), 1891; https://doi.org/10.3390/w17131891 - 25 Jun 2025
Viewed by 428
Abstract
Heavy metals are a major cause for concern in relation to water systems, due to their high toxicity at elevated levels. The metals can originate from both natural processes, including geological weathering and volcanic activity, as well as anthropogenic activi-ties such as industrial [...] Read more.
Heavy metals are a major cause for concern in relation to water systems, due to their high toxicity at elevated levels. The metals can originate from both natural processes, including geological weathering and volcanic activity, as well as anthropogenic activi-ties such as industrial discharges, agricultural runoff, mining, and urbanization, which significantly contribute to water pollution and environmental degradation. The as-sessment of these risks is crucial for protecting public health, especially in populations reliant on contaminated water sources. Exposure to such contaminants can result in severe health consequences, including neurological impairments, organ deterioration, and an elevated risk of cancer. To conduct this assessment study, six surface water sampling sites were selected (i.e., S1 (Gobia), S2 (Kouamefla), S3 (Benkro), S4 (Dou-kouya), S5 (Doka), and S6 (Zengue)) due to their proximity to mining activities. We used the hazard quotient (HQ) and hazard index (HI) methods to estimate the levels of non-carcinogenic health risk associated with heavy metals. Then, the assessment of carcinogenic health risk was carried out using the Incremental Lifetime Cancer Risk (ILCR) methods. First, the highest ILCR total values were observed in the Doya locality (i.e., 0.4237 for the children and 0.5650 for the adults) and during the great dry season (i.e., 0.4333 for the children and 0.5743 for the adults). These findings highlight that populations in this locale experience heightened exposure during the period of the Great Rainy Season. The results indicated that the population exposed to Cd and Hg may experience health concerns irrespective of season and locality. For As and Pb, risks are present in both seasons (i.e., Short Dry Season (SDS) and Short Rainy Season (SRS)). On the other hand, the HIs are well above 1, indicating that the population may be exposed to non-carcinogenic diseases associated with the metals, regardless of the season or locality. To further explore the results, the assessment by ILCR was em-ployed, which demonstrated that for all the designated localities, the ILCRs of As and Cd are well above 10−4 for the entire population, indicating that the population con-suming this water may develop major carcinogenic risks. In addition, the highest ILCR values were obtained for Cd, regardless of the age group. It should be noted that sea-sonal variation had no significant effect on the trend in ILCRs determined for the en-tire population. Full article
(This article belongs to the Special Issue Soil-Groundwater Pollution Investigations)
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 303
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

31 pages, 63914 KiB  
Article
Geological Evolution and Volcanostratigraphy of the Wangfu Fault Depression: Insights from Structural and Volcano-Sedimentary Analysis in the Songliao Basin
by Bilal Ahmed, Huafeng Tang, Weihua Qu, Youfeng Gao, Jia Hu, Zhiwen Tian and Shahzad Bakht
Minerals 2025, 15(6), 620; https://doi.org/10.3390/min15060620 - 9 Jun 2025
Viewed by 292
Abstract
The Wangfu Fault Depression (WFD) is located in the southeastern uplift zone of the Songliao Basin and is an important geological site for studying tectonic evolution and volcanic stratigraphy. This study explores the complexity of the structure of the depression and the volcanic [...] Read more.
The Wangfu Fault Depression (WFD) is located in the southeastern uplift zone of the Songliao Basin and is an important geological site for studying tectonic evolution and volcanic stratigraphy. This study explores the complexity of the structure of the depression and the volcanic stratigraphy. The sedimentary sequence is divided into rift period and post-rift deposition, and the volcanic rocks are mainly concentrated in the Huoshiling Formation. Rhyolite deposits mark the bottom of the Yingcheng Formation. The volcanostratigraphic sequences are described by a detailed analysis of the seismic profiles, cutting samples, core data, geochemical, and well logging data, revealing the interaction between tectonic dynamics and volcanic activity. The volcanic facies are divided into vent breccia, pyroclastic, lava flow, and volcaniclastic sedimentary types, highlighting the diversity of depositional environments. In addition, the study identified key volcanic stratigraphic boundaries, such as eruptive and tectonic unconformities, which illustrate the alternation of intermittent volcanic activity with periods of inactivity and erosion. The study highlights the important role of faults in controlling the distribution and tectonic characteristics of volcanic rocks, and clearly distinguishes the western sag, middle slope, and eastern uplift zones. The chronostratigraphic framework supported by published U-Pb zircon dating elucidates the time course of volcanic and sedimentary processes, with volcanic activity peaking in the Early Cretaceous. Overall, the Wangfu Fault Depression is a dynamic geological entity formed by complex tectonic-volcanic interactions, providing valuable insights into the larger context of basin evolution and stratigraphic complexity. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 25776 KiB  
Article
V-STAR: A Cloud-Based Tool for Satellite Detection and Mapping of Volcanic Thermal Anomalies
by Simona Cariello, Arianna Beatrice Malaguti, Claudia Corradino and Ciro Del Negro
GeoHazards 2025, 6(2), 24; https://doi.org/10.3390/geohazards6020024 - 27 May 2025
Viewed by 1358
Abstract
In recent years, numerous satellite-based systems have been developed to monitor and study volcanic activity from space. This progress reflects the growing demand for accurate and timely monitoring to reduce volcanic risk. Observing volcanoes from a satellite perspective provides key advantages, enabling continuous [...] Read more.
In recent years, numerous satellite-based systems have been developed to monitor and study volcanic activity from space. This progress reflects the growing demand for accurate and timely monitoring to reduce volcanic risk. Observing volcanoes from a satellite perspective provides key advantages, enabling continuous data acquisition and near-real-time assessment of volcanic activity. Multispectral sensors operating across various regions of the electromagnetic spectrum can detect thermal anomalies associated with lava flows, pyroclastic flows, ash plumes, and volcanic gases. Traditional hotspot detection techniques based on fixed thresholds often miss subtle anomalies on a global scale. In contrast, advanced machine learning algorithms offer a data-driven alternative. We designed and implemented the V-STAR application (Volcanic Satellite Thermal Anomalies Recognition) on Google Earth Engine (GEE) to leverage cloud computing for processing large geospatial datasets in real time. It employs supervised machine learning, specifically Random Forests, to adapt to evolving volcanic conditions. This enhances the accuracy and responsiveness of volcanic monitoring, offering valuable insights into potential eruptive behavior. Here, we present V-STAR as a robust and accessible tool that integrates satellite data and advanced analytics. Through its intuitive interface, V-STAR provides a comprehensive visualization of key volcanic features. The resulting analyses reveal hidden patterns in thermal data, contributing to improved disaster risk reduction strategies associated with volcanic hazards. Full article
Show Figures

Figure 1

23 pages, 11231 KiB  
Article
Geotourism in Monogenetic Volcanoes: The Case of Tapias-Guacaica Monogenetic Volcanic Field in Colombia
by Alejandro Arias-Díaz, Erika Ibargüen-Angulo, Hugo Murcia, Susana Osorio-Ocampo, Gina Bolaños-Cabrera, Luis Alvaro Botero-Gómez and Ana Riascos-Hurtado
Heritage 2025, 8(6), 185; https://doi.org/10.3390/heritage8060185 - 24 May 2025
Viewed by 1187
Abstract
Geosciences today play a vital societal role beyond their traditional extractive functions, offering innovative approaches to disseminate knowledge that supports local problem solving and climate resilience. UNESCO Global Geoparks have emerged as strategic platforms for promoting sustainable geoscientific values such as geodiversity, geoeducation, [...] Read more.
Geosciences today play a vital societal role beyond their traditional extractive functions, offering innovative approaches to disseminate knowledge that supports local problem solving and climate resilience. UNESCO Global Geoparks have emerged as strategic platforms for promoting sustainable geoscientific values such as geodiversity, geoeducation, geoconservation, and geoethics. Within the Volcán del Ruiz Geopark Project (VRGP), an effusive andesitic monogenetic volcanic field contains both volcanological and industrial geoheritage. Using Brilha’s evaluation framework, this study assessed eight volcanic features and one industrial site, identifying La Capilla volcano and the Cementos Caldas ruins as having the highest scientific, educational, and touristic value. A structured georoute was proposed, integrating interpretive strategies to enhance public engagement with geodiversity, spatial awareness, and volcanic processes. The success of such initiatives depends on active community participation and interinstitutional collaboration to ensure the appropriation and operationalization of geoscientific knowledge. The VRGP stands out as a promising territorial strategy for anchoring geoeducation and geotourism within broader sustainability and community empowerment goals. Full article
(This article belongs to the Section Geoheritage and Geo-Conservation)
Show Figures

Figure 1

31 pages, 4555 KiB  
Article
The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
by Farida Issatayeva, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin and Oleksii Karpenko
Geosciences 2025, 15(6), 190; https://doi.org/10.3390/geosciences15060190 - 22 May 2025
Viewed by 590
Abstract
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of [...] Read more.
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of the impact on the lithosphere of mantle plumes rising along TCMFCFs, intense block deformations and tectonic movements are generated; rift systems, and volcanic–plutonic belts spatially combined with them, are formed; and intrusive bodies are introduced. These processes cause epithermal ore formation as a consequence of the impact of mantle plumes rising along TCMFCF to the lithosphere. At hydrocarbon fields, they play extremely important roles in conductive and convective heat, as well as in mass transfer to the area of hydrocarbon generation, determining the relationship between the processes of lithogenesis and tectogenesis, and activating the generation of hydrocarbons from oil and gas source rock. Detection of TCMFCFs was carried out using MMSS (the method of microseismic sounding) and MTSM (the magnetotelluric sounding method), in combination with other geological and geophysical data. Practical examples are provided for mineral deposits where subvertical transcrustal columns of increased permeability, traced to considerable depths, have been found; the nature of these unique structures is related to faults of pre-Paleozoic emplacement, which determined the fragmentation of the sub-crystalline structure of the Earth and later, while developing, inherited the conditions of volumetric fluid dynamics, where the residual forms of functioning of fluid-conducting thermohydrocolumns are granitoid batholiths and other magmatic bodies. Experimental modeling of deep processes allowed us to identify the quantum character of crystal structure interactions of minerals with “inert” gases under elevated thermobaric conditions. The roles of helium, nitrogen, and hydrogen in changing the physical properties of rocks, in accordance with their intrastructural diffusion, has been clarified; as a result of low-energy impact, stress fields are formed in the solid rock skeleton, the structures and textures of rocks are rearranged, and general porosity develops. As the pressure increases, energetic interactions intensify, leading to deformations, phase transitions, and the formation of chemical bonds under the conditions of an unstable geological environment, instability which grows with increasing gas saturation, pressure, and temperature. The processes of heat and mass transfer through TCMFCFs to the Earth’s surface occur in stages, accompanied by a release of energy that can manifest as explosions on the surface, in coal and ore mines, and during earthquakes and volcanic eruptions. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

20 pages, 43321 KiB  
Article
Volcano–Sedimentary Processes on an Ancient Oceanic Seafloor: Insights from the Gimigliano Metaophiolite Succession (Calabria, Southern Italy)
by Federica Barilaro, Andrea Di Capua, Giuseppe Cianflone, Giovanni Turano, Gianluca Robertelli, Fabrizio Brutto, Giuseppe Ciccone, Alessandro Foti, Vincenzo Festa and Rocco Dominici
Minerals 2025, 15(6), 552; https://doi.org/10.3390/min15060552 - 22 May 2025
Viewed by 1007
Abstract
This study investigates the volcano–sedimentary processes that occurred in an oceanic branch of the Western Tethys, now part of the Gimigliano–Monte-Reventino metaophiolite Unit, exposed at the southeastern termination of the Sila Piccola Massif, within the northern sector of the Calabria–Peloritani terrane (Calabria, southern [...] Read more.
This study investigates the volcano–sedimentary processes that occurred in an oceanic branch of the Western Tethys, now part of the Gimigliano–Monte-Reventino metaophiolite Unit, exposed at the southeastern termination of the Sila Piccola Massif, within the northern sector of the Calabria–Peloritani terrane (Calabria, southern Italy). Fieldwork, petrography, and mineralogical analyses on the Gimigliano metaophiolite succession have identified five distinct volcano–sedimentary lithofacies. These lithofacies are characterized by mineral assemblages of epidote, chlorite, quartz, and albite, with minor amounts of muscovite and calcite, resulting from high-pressure–low-temperature (HP-LT) metamorphism followed by low-grade greenschist metamorphism of mid-oceanic ridge basalt (MORB)-type volcanic products. Based on their stratigraphic and textural features, these lithofacies have been interpreted as metabasaltic flow layers emplaced during effusive volcanic eruptions and metahyaloclastic and metavolcaniclastic deposits formed by explosion-driven processes. This lithofacies assemblage suggests that the Gimigliano area likely represented an oceanic sector with high rates of magmatic outflows, where interactions between magma and water facilitated explosive activity and the dispersion of primary volcaniclastic deposits, mainly from the water column, in addition to the emplacement of basaltic lava flow. In contrast, other metaophiolite complexes in the Calabria region, characterized by the presence of pillow basalts, were areas with low effusive rates. The coexistence of these differences, along with the extensive presence of metaultramafites, portrays the Calabrian branch of the Tethys as a slow-spreading oceanic ridge where variations in surficial volcanic processes were controlled by differences in the effusion rates across its structure. This study is a valuable example of how a volcano–sedimentary approach to reconstructing the emplacement mechanisms of metaophiolite successions can provide geodynamic insights into ancient oceanic ridges. Full article
(This article belongs to the Special Issue Volcaniclastic Sedimentation in Deep-Water Basins)
Show Figures

Figure 1

15 pages, 5879 KiB  
Article
The Mineralization Mechanism of the Axi Gold Deposit in West Tianshan, NW China: Insights from Fluid Inclusion and Multi-Isotope Analyses
by Fang Xia, Chuan Chen and Weidong Sun
Minerals 2025, 15(5), 536; https://doi.org/10.3390/min15050536 - 18 May 2025
Viewed by 456
Abstract
The Axi gold deposit, which is located in the Tulasu Basin of the West Tianshan orogenic belt in Northwest China, features vein-type ore bodies hosted in radial structural fractures formed due to volcanic activity. The deposit experienced three distinct mineralization stages: Stage I, [...] Read more.
The Axi gold deposit, which is located in the Tulasu Basin of the West Tianshan orogenic belt in Northwest China, features vein-type ore bodies hosted in radial structural fractures formed due to volcanic activity. The deposit experienced three distinct mineralization stages: Stage I, characterized by the microcrystalline quartz–pyrite crust; Stage II, characterized by quartz–sulfide–native gold veins; and Stage III, characterized by quartz–carbonate veins. Fluid inclusion studies have identified four types of inclusions: pure vapor, vapor-rich, liquid-rich, and pure liquid. The number of vapor-rich inclusions decreases when moving from Stage I to Stage III, whereas the number of liquid-rich inclusions increases. The fluid temperature gradually decreases from 178–225 °C in Stage I to 151–193 °C in Stage II and further to 123–161 °C in Stage III, whereas the fluid salinity decreases slightly from 2.1%–5.1% wt.% NaCl eqv to 1.4%–4.6% wt.% NaCl eqv and finally to 0.5%–3.7% wt.% NaCl eqv. As suggested by the results of the oxygen, hydrogen, and carbon isotope analyses, the ore-forming fluids were primarily meteoric water. Sulfur isotopic compositions indicate a single deep mantle source. The lead isotopic compositions closely resemble those of Dahalajunshan Formation volcanic rocks, indicating that these rocks were the primary source of the ore-forming material. In addition, gold mineralization formed in a Devonian–Early Carboniferous volcanic arc environment. Element enrichment was mainly caused by the circulation of heated meteoric water through the volcanic strata, while fluid boiling and water–rock interactions were the main mechanisms driving element precipitation. The integrated model developed in this study underscores the intricate interplay between volcanic processes and meteoric fluids during the formation of the Axi gold deposit, offering a robust framework for an understanding of the formation processes and enhancing the predictive exploration models in analogous geological settings. Full article
Show Figures

Figure 1

22 pages, 17083 KiB  
Article
Volcanic Activity Classification Through Semi-Supervised Learning Applied to Satellite Radiance Time Series
by Francesco Spina, Giuseppe Bilotta, Annalisa Cappello, Marco Spina, Francesco Zuccarello and Gaetana Ganci
Remote Sens. 2025, 17(10), 1679; https://doi.org/10.3390/rs17101679 - 10 May 2025
Viewed by 567
Abstract
Satellite imagery provides a rich source of information that serves as a comprehensive and synoptic tool for the continuous monitoring of active volcanoes, including those in remote and inaccessible areas. The huge influx of such data requires the development of automated systems for [...] Read more.
Satellite imagery provides a rich source of information that serves as a comprehensive and synoptic tool for the continuous monitoring of active volcanoes, including those in remote and inaccessible areas. The huge influx of such data requires the development of automated systems for efficient processing and interpretation. Early warning systems, designed to process satellite imagery to identify signs of impending eruptions and monitor eruptive activity in near real-time, are essential for hazard assessment and risk mitigation. Here, we propose a machine learning approach for the automatic classification of pixels in SEVIRI images to detect and characterize the eruptive activity of a volcano. In particular, we exploit a semi-supervised GAN (SGAN) model that retrieves the presence of thermal anomalies, volcanic ash plumes, and meteorological clouds in each SEVIRI pixel, allowing time series plots to be obtained showing the evolution of volcanic activity. The SGAN model was trained and tested using the huge amount of data available on Mount Etna (Italy). Then, it was applied to other volcanoes, specifically, Stromboli (Italy), Tajogaite (Spain), and Nyiragongo (Democratic Republic of the Congo), to assess the model’s ability to generalize. The validation of the model was performed through a visual comparison between the classification results and the corresponding SEVIRI images. Moreover, we evaluate the model performance by calculating three different metrics, namely the precision (correctness of positive predictions), the recall (ability to find all the positive instances), and the F1-score (general model’s accuracy), finding an average accuracy of 0.9. Our approach can be extended to other geostationary satellite data and applied worldwide to characterize volcanic activity, allowing the monitoring of even remote volcanoes that are difficult to reach from the ground. Full article
(This article belongs to the Special Issue Satellite Monitoring of Volcanoes in Near-Real Time)
Show Figures

Graphical abstract

21 pages, 11711 KiB  
Review
Submarine Instability Processes on the Continental Slope Offshore of Campania (Southern Italy)
by Gemma Aiello
GeoHazards 2025, 6(2), 20; https://doi.org/10.3390/geohazards6020020 - 24 Apr 2025
Viewed by 979
Abstract
A revision of the submarine instability processes offshore the Campania region is presented herein based on the literature data and Multibeam bathymetric and seismic profiles previously acquired by the CNR ISMAR of Naples (Italy). Among others, the objectives and perspectives of this research [...] Read more.
A revision of the submarine instability processes offshore the Campania region is presented herein based on the literature data and Multibeam bathymetric and seismic profiles previously acquired by the CNR ISMAR of Naples (Italy). Among others, the objectives and perspectives of this research include the following: the chrono-stratigraphic framework of the submarine instability events and their correlation with the trigger geological processes, including the seismicity, the volcanism and the tectonic activity; density reversal has not been detected as a control factor; the implementation of technologies and database for the acquisition and the processing of morpho-bathymetric, seismo-stratigraphic and sedimentological data in the submarine slopes of Campania, characterized by submarine gravitational instabilities. Other main tasks include producing thematic geomorphological maps of the submarine slopes associated with instability phenomena. The principles of slope stability have been revised to be independent of the slope height. In submarine slopes mainly composed of sand, the stability depends on the slope inclination angle concerning the horizontal (β), equal or minor to the internal friction angle of loose sand (ϕ). Based on this research, it can be outlined that the submarine instability processes offshore of Campania mainly occur along the flanks of volcanic edifices, both emerged (Ischia) and submerged (Pentapalummo, Nisida, Miseno, Procida Channel), on steep, tectonically-controlled sedimentary slopes, (southern slope of Sorrento Peninsula, slope of the Policastro Gulf), and on ramps with a low gradient that surround wide continental shelves (Gulf of Salerno). Full article
Show Figures

Figure 1

22 pages, 17789 KiB  
Article
Mafic Enclaves Reveal Multi-Magma Storage and Feeding of Shangri-La Lavas at the Nevados de Chillán Volcanic Complex
by Camila Pineda, Gloria Arancibia, Valentina Mura, Diego Morata, Santiago Maza and John Browning
Minerals 2025, 15(4), 418; https://doi.org/10.3390/min15040418 - 17 Apr 2025
Cited by 1 | Viewed by 718
Abstract
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the [...] Read more.
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the SW and NE of the main alignment). Our study of the Shangri-La volcano, which is located between the two subcomplexes, in alignment with the satellite cones, and which produced dacitic lavas with basaltic andesitic enclaves, sheds light on the compositional and structural diversity of the volcanic complex. Detailed petrography along with mineral chemistry allows us to suggest partial hybridization between the enclaves and the host lavas and that mixing processes are related to the generation of the Shangri-La volcano and to other volcanic products generated in the complex. This is supported by mixing trends between the enclaves and the most differentiated units from Las Termas. We argue the presence of two main magma storage areas genetically related to crustal structures. A dacitic reservoir (~950 °C) is fed along NW-SE structures, whereas a deeper mafic reservoir (>1100 °C) utilizes predominantly NE-SW structures. We suggest that the intersection between these sets of structures facilitates magma ascent and controls the Nevados de Chillán plumbing system dynamics. Full article
Show Figures

Figure 1

Back to TopTop