Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Presentation
2.2. Water Sampling and Physico-Chemical Analysis
2.3. Data Processing and Statistical Analysis
2.3.1. Spatio-Temporal Variation in Heavy Metals
2.3.2. Assessment of Carcinogenic and Non-Carcinogenic Health Risks Associated with Heavy Metals
Identification and Characterization of the Hazard
Exposure Assessment
Assessment of the Dose-Response Relationship
Characterization of the Health Risks Associated with Heavy Metals
- Non-carcinogenic risk
- Hazard quotient
- Hazard index
- 2.
- Estimation of carcinogenic risk
- Incremental Lifetime Cancer Risk
- 3.
- Cumulative carcinogenic risk
3. Results and Discussion
3.1. Spatial Distribution of Heavy Metals
3.2. Seasonal Distribution of Heavy Metals
3.3. Non-Carcinogenic Health Risks Associated with Metals
3.4. Carcinogenic Health Risks Associated with Heavy Metals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adeniyi, A.; Okedeyi, O.; Sowemimo, M.; Kafeelah, Y.; Oluwole, O.; Odili, G.; Ejiogu, B.; Ajibade, I.; Fabiyi, B.; Adeniji, O. Quantification of Metal Contaminants and Risk Assessment in Some Urban Watersheds. J. Water Res. Protect. 2020, 12, 951–963. [Google Scholar] [CrossRef]
- Rajan, M.; Karunanidhi, D.; Jaya, J.; Preethi, B.; Subramani, T.; Aravinthasamy, P. A comprehensive review on human health hazards due to groundwater contamination: A global perspective. Phys. Chem. Earth Parts A/B/C 2024, 135, 103637. [Google Scholar] [CrossRef]
- Cui, W.; Mei, Y.; Liu, S.; Zhang, X. Health risk assessment of heavy metal pollution and its sources in agricultural soils near Hongfeng Lake in the mining area of Guizhou Province, China. Front Public Health 2023, 10, 1276925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Zhu, X.; Dai, Y.; Xu, M.; Wang, D.; Han, Y.; Liang, W.; Shi, Y.; Song, F.; Yao, L. Health Risk of Heavy Metals in Drinking Water Sources of Water-Carrying Lakes Affected by Retreating Polder: A Case Study of Luoma Lake. Water 2024, 16, 2699. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2010; World Health Organization: Geneva, Switzerland, 2010; 177p. [Google Scholar]
- Dutta, D.; Arya, S.; Kumar, S. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere 2021, 285, 131245. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Gupta, P. Assessment of Heavy Metal Pollution in Groundwater in the Hindon River Basin Using Pollution Index. E3S Web Conf. 2024, 596, 1005. [Google Scholar] [CrossRef]
- Ahirvar, B.P.; Das, P.; Srivastava, V.; Kumar, M. Perspectives of heavy metal pollution indices for soil sediment and water pollution evaluation: An insight. Total Environ. Res. Themes 2023, 6, 100039. [Google Scholar] [CrossRef]
- Sahoo, M.M.; Swain, J.B. Modified heavy metal Pollution index (m-HPI) for surface water Quality in river basins, India. Environ. Sci. Pollut. Res. 2020, 27, 15350–15364. [Google Scholar] [CrossRef]
- Taghavi, M.; Shadboorestan, A.; Kalankesh, L.R.; Mohammadi-Bardbori, A.; Ghaffari, H.R.; Safa, O.; Farshidfar, G.; Omidi, M. Health risk assessment of heavy metal toxicity in the aquatic environment of the Persian Gulf. Mar. Pollut. Bull. 2024, 202, 116360. [Google Scholar] [CrossRef]
- Briseño-Bugarín, J.; Araujo-Padilla, X.; Escot-Espinoza, V.M.; Cardoso-Ortiz, J.; Flores de la Torre, J.A.; López-Luna, A. Lead (Pb) Pollution in Soil: A Systematic Review and Meta-Analysis of Contamination Grade and Health Risk in Mexico. Environments 2024, 11, 43. [Google Scholar] [CrossRef]
- Toi Bissang, B.; Aragón-Barroso, A.J.; Baba, G.; González-López, J.; Osorio, F. Integrated Assessment of Heavy Metal Pollution and Human Health Risks in Waters from a Former Iron Mining Site: A Case Study of the Canton of Bangeli, Togo. Water 2024, 16, 471. [Google Scholar] [CrossRef]
- Veskovi’c, J.; Onjia, A. Environmental Implications of the Soil-to-Groundwater Migration of Heavy Metals in Mining Area Hotspots. Metals 2024, 14, 719. [Google Scholar] [CrossRef]
- Foulkes, W.; Knoppers, B.; Turnbull, C. Population genetic testing for cancer susceptibility: Founder mutations to genomes. Nat. Rev. Clin. Oncol. 2016, 13, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.-C.; Assadi, A.A.; Amrane, A.; Mouni, L. Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water. Water 2022, 14, 3324. [Google Scholar] [CrossRef]
- Tagnon, B.O.; Assoma, V.T.; Mangoua Oi Mangoua, J.; Douagui, A.G.; Kouamé, F.K.; Savané, I. Contribution of SAR/RADARSAT-1 and ASAR/ENVISAT images to geological structural mapping and assessment of lineaments density in Divo-Oume area (Côte d’Ivoire). Egypt. J. Remote Sens. Space Sci. 2020, 23, 231–241. [Google Scholar] [CrossRef]
- Tahraoui, H.; Toumi, S.; Boudoukhani, M.; Touzout, N.; Sid, A.N.E.H.; Amrane, A.; Belhadj, A.-E.; Hadjadj, M.; Laichi, Y.; Aboumustapha, M.; et al. Evaluating the Effectiveness of Coagulation–Flocculation Treatment Using Aluminum Sulfate on a Polluted Surface Water Source: A Year-Long Study. Water 2024, 16, 400. [Google Scholar] [CrossRef]
- Delor, C.; Diaby, I.; Simeon, Y.; Yao, B.; Djama, A.; Okou, A.; Konaté, S.; Taslet, J.-P.; Vidal, M.; Traoré, I.; et al. Carte Géologique de la Côte d’Ivoire à 1/200 000; Feuille Grand-Lahou, Mémoire de la Direction des Mines et de la Géologie; Direction des Mines et de la Géologie de Côte d’Ivoire: Abidjan, Côte d’Ivoire, 1995; n°5. [Google Scholar]
- Gao, X.; Han, G.; Zhang, S.; Zeng, J. Sources, Water Quality, and Potential Risk Assessment of Heavy Metal Contamination in Typical Megacity River: Insights from Monte Carlo Simulation. Water 2025, 17, 224. [Google Scholar] [CrossRef]
- González-Díaz, R.L.; de Anda, J.; Shear, H.; Padilla-Tovar, L.E.; Lugo-Melchor, O.Y.; Olvera-Vargas, L.A. Assessment of Heavy Metals in Surface Waters of the Santiago–Guadalajara River Basin, Mexico. Hydrology 2025, 12, 37. [Google Scholar] [CrossRef]
- Krasnopyorova, M.; Gorlachev, I.; Kharkin, P.; Severinenko, M.; Zheltov, D. Study of the Trace Element Composition of Drinking Water in Almaty City and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2025, 22, 560. [Google Scholar] [CrossRef]
- Ariyan, A.N.; Quraishi, S.B.; Alam, M.N.E.; Khan, M.S.R.; Faria, F.F.; Kabir, A. Comprehensive analysis and human health risk assessment of tap water quality in Dhaka City, Bangladesh: Integrating source identification, index-based evaluation, and heavy metal assessment. J. Hazard. Mater. 2025, 485, 136837. [Google Scholar] [CrossRef]
- Roy, T.K.; Nag, S.K.; Antu, U.B. A Comprehensive Assessment of Health Risks Associated with Heavy Metal Through Ingestion of Two Predominant Fish Species in a Developing Country. Biol. Trace Elem. Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- N’goran, K.P.A.; Kinimo, K.C.; Fato, T.P.; Ouattara, A.A.; Kouassi, N.L.B.; Diabate, D.; Yao, K.M.; Trokourey, A. Seasonal Distribution, Bioavailability and Ecological Risk Assessment of Heavy Metals in Sediments from Gold Mining in the Northern Part of Côte d’Ivoire, West Africa. Int. J. Environ. Clim. 2025, 15, 188–204. [Google Scholar] [CrossRef]
- Ahoussi, K.E.; Yapo, A.P. Étude de la minéralisation des eaux de surface en éléments traces métalliques (ETM) des zones d’orpaillage de la sous-préfecture de Kokumbo. Centre-Ouest de la Côte d’Ivoire. Afr. Sci. 2021, 19, 36–50. [Google Scholar]
- Konan, K.S.; Kouamé, K.B.; Konan, F.K.; Boussou, K.C.; Kouakou, K.L. Pollution des eaux à usages domestiques par les éléments traces métalliques des activités anthropiques: Cas du sous bassin versant du fleuve Sassandra en amont du barrage de Buyo. Côte d’Ivoire. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 85–92. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Diseases Registry). Toxicological Profile for Lead; ATSDR: Atlanta, GA, USA, 2007; 582p. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf (accessed on 20 April 2025).
- Fallahzadeh, R.A.; Ghaneian, M.T.; Miri, M.; Dashti, M.M. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environ. Sci. Pollut. Res. 2017, 24, 24790–24802. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 2011, 7, 208–244. [Google Scholar] [CrossRef]
- da Silva, A.; Drechsel, P.; Keraita, B.; Lautze, J.; Stander, E. Global Experiences in Water Reuse: Summary and Recommendations for the USEPA 2012 Water Reuse Guidelines. In Proceedings of the Water Environment Federation, Los Angeles, CA, USA, 15–19 October 2011. [Google Scholar]
- Mansouri, Z.; Dinar, H.; Belkendil, A.; Bakelli, O.; Drias, T.; Assadi, A.A.; Khezami, L.; Mouni, L. Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches. Water 2025, 17, 1698. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; Available online: http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf (accessed on 22 June 2025).
- United States Environmental Protection Agency (US EPA). Exposure Factors Handbook 2011 Edition (Final Report). US EPA. 2011. Available online: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed on 22 June 2025).
- World Health Organization (WHO). World Health Statistics 2017: Monitoring Health for the SDGs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Regional Screening Levels (RSLs)—User’s Guide. 2023. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide#intro (accessed on 22 June 2025).
- Castro–González, N.P.; Calderón–Sánchez, F.; Pérez–Sato, M.; Soní–Guillermo, E.; Reyes–Cervantes, E. Health risk due to chronic heavy metal consumption via cow’s milk produced in Puebla, Mexico, in irrigated wastewater areas. Food Addit. Contam. Part B 2019, 12, 38–44. [Google Scholar] [CrossRef]
- Giri, S.; Mahato, M.K.; Singh, P.K.; Singh, A.K. Non-carcinogenic health risk assessment for fluoride and nitrate in the groundwater of the mica belt of Jharkhand, India. Hum. Ecol. Risk Assess. Int. J. Res. 2021, 27, 1939–1953. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A), Interim Final; EPA 540/1-89/002; US EPA: Washington, DC, USA, 1989. [Google Scholar]
- Barone, G.; Storelli, A.; Garofalo, R.; Mallamaci, R.; Storelli, M.M. Residual Levels of Mercury, Cadmium, Lead and Arsenic in Some Commercially Key Species from Italian Coasts (Adriatic Sea): Focus on Human Health. Toxics 2022, 10, 223. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites Office of Solid Waste and Emergency Response; United States Environmental Protection Agency: Washington, DC, USA, 2002. Available online: https://rais.ornl.gov/documents/SSG_nonrad_supplemental.pdf (accessed on 22 June 2025).
- United States Environmental Protection Agency (US EPA). Guidelines for Carcinogen Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2016. Available online: https://www3.epa.gov/airtoxics/cancer_guidelines_final_3-25-05.pdf (accessed on 19 April 2025).
- Lu, X.; Wu, X.; Wang, Y.; Chen, H.; Gao, P.; Fu, Y. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol. Environ. Saf. 2014, 106, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, H.; Zhang, X.; Wang, L.; Xu, L.; Wang, X.; Yu, Y.; Zhang, Y.; Cao, G. Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China. J. Environ. Sci. 2014, 26, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Jesuraja, K.; Priyadarsi, D.; Roy, S.; Venkatramanan, R.K.; Shukla, S.; Manimaran, D.; Muthukumar, P. Human health risk assessment of heavy metal and pathogenic contamination in surface water of the Punnakayal estuary, South India. Chemosphere 2022, 298, 134027. [Google Scholar] [CrossRef]
- Lv, J.; Guo, C.; Luo, Y.; Liu, Y.; Deng, Y.; Sun, S.; Xu, J. Spatial distribution, receptor modelling and risk assessment of organophosphate esters in surface water from the largest freshwater lake in China. Ecotoxicol. Environ. Saf. 2022, 238, 113618. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: A review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Bioremediation options for heavy metal pollution. J. Health Pollut. 2019, 9, 191203. [Google Scholar] [CrossRef]
- Banunle, A.; Agbeshie, A.A.; Odumanye, M.Q.; Adjei, R.; Bosomtwi, A. Interactive effect of anthropogenic activities and seasonal changes on the biophysicochemical properties and heavy metal status of tropical surface water resources. Sci. Afr. 2025, 27, e02495. [Google Scholar] [CrossRef]
- Azad, A.R.; Karim, M.R.; Rakib, M.R.J.; Uddin, M.R. Assessment of heavy metal pollution and spatial distribution in waterfalls of Chattogram district, Bangladesh: Implications for drinking and irrigation purposes. Environ. Adv. 2025, 19, 100613. [Google Scholar] [CrossRef]
- Preonty, N.-E.; Hassan, N.; Reza, A.S.; Rasel, I.A.; Mahim, M.A.; Jannat, M.F.T. Pollution and health risk assessment of heavy metals in surface water of the industrial region in Gazipur, Bangladesh. Environ. Chem. Ecotoxicol. 2025, 7, 527–538. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; MMS, C.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef]
- Alidadi, H.; Sany, S.B.T.; Oftadeh, B.Z.G.; Mohamad, T.; Shamszade, H.; Fakhari, M. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in Northeast Iran. Environ. Health Prev. Med. 2019, 24, 59. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.S.; Rahman, M.S.; Dina, S.; Nasher, M.R.; Choudhury, T.R.; Begum, B.A.; Samad, A. Potential toxic elements in surface water of Mokosh Beel, Gazipur, Bangladesh: Ecological and human health risk assessment for recreational users. Heliyon 2025, 11, e42421. [Google Scholar] [CrossRef] [PubMed]
Heavy Metals | Toxicities | References |
---|---|---|
Arsenic | Arsenic Skin manifestations, visceral cancers, vascular diseases in 5–10 years. | [26,27] |
Cadmium | Kidney damage, kidney disorders, carcinogenic to humans in 30 years. | [26,27] |
Mercury | Rheumatoid arthritis and diseases of the kidneys, circulatory, and nervous systems in 69 days to 27 years. | [26,27] |
Lead | Damage to the brain of the fetus, diseases of the kidneys, circulatory system, and nervous system, prostate cancer, and reduced fertility in men in 20 years. | [26,27] |
Heavy Metals | Quantity of Water Ingested per Day (Q) (L/Day) [31] | Body Weight (BW) (kg) [32] | Guide Value (mg L−1) [33] | RfD (mg kg−1Day−1) [31,34] | ||
---|---|---|---|---|---|---|
Children | Adults | Children | Adults | |||
As | 1.5 | 2 | 28 | 70 | 0.01 | 3 × 10−4 |
Cd | 1.5 | 2 | 28 | 70 | 0.003 | 1 × 10−4 |
Hg | 1.5 | 2 | 28 | 70 | 0.006 | 3 × 10−4 |
Pb | 1.5 | 2 | 28 | 70 | 0.01 | 3.6 × 10−3 |
Localities | Heavy Metals | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Hg | Pb | Children | Adults | |||||||||||||
Children | Adults | Children | Adults | Children | Adults | Children | Adults | |||||||||||
DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | HI | HI | |
GOBIA | 0.0027 | 8.98 | 0.0036 | 11.98 | 0.0088 | 87.96 | 0.0117 | 117.29 | 0.0040 | 13.34 | 0.0053 | 17.79 | 0.0010 | 0.28 | 0.0013 | 0.37 | 110.56 | 147.43 |
KOUAMEFLA | 0.0002 | 0.78 | 0.0003 | 1.04 | 0.0103 | 102.59 | 0.0137 | 136.79 | 0.0012 | 4.05 | 0.0016 | 5.40 | 0.0012 | 0.32 | 0.0016 | 0.43 | 107.74 | 143.66 |
BENKO | 0.0003 | 0.89 | 0.0004 | 1.18 | 0.0004 | 4.29 | 0.0006 | 5.71 | 0.0003 | 0.88 | 0.0004 | 1.17 | 0.0011 | 0.32 | 0.0015 | 0.42 | 6.38 | 8.48 |
DOUKOUYA | 0.0021 | 7.10 | 0.0028 | 9.47 | 0.0256 | 256.29 | 0.0342 | 341.71 | 0.0196 | 65.42 | 0.0262 | 87.22 | 0.0092 | 2.55 | 0.0123 | 3.40 | 331.36 | 441.8 |
DOKA | 0.0025 | 8.29 | 0.0033 | 11.05 | 0.0282 | 281.63 | 0.0376 | 375.50 | 0.0172 | 57.48 | 0.0230 | 76.64 | 0.0020 | 0.55 | 0.0026 | 0.73 | 347.95 | 463.92 |
ZENGUE | 0.0001 | 0.35 | 0.0001 | 0.47 | 0.0270 | 270.01 | 0.0360 | 360.02 | 0.0170 | 56.71 | 0.0227 | 75.62 | 0.0031 | 0.86 | 0.0041 | 1.15 | 327.93 | 437.26 |
SEASONS | Heavy Metals | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Hg | Pb | Children | Adults | |||||||||||||
Children | Adults | Children | Adults | Children | Adults | Children | Adults | |||||||||||
DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | DED (mg/kg/day) | HQ | HI | HI | |
GDS | 0.0022 | 7.23 | 0.0029 | 9.64 | 0.0287 | 286.65 | 0.0382 | 382.20 | 0.0021 | 6.93 | 0.0028 | 9.23 | 0.0052 | 1.43 | 0.0069 | 1.91 | 302.24 | 402.98 |
GRS | 0.0002 | 7.02 | 0.0028 | 9.37 | 0.0167 | 167.13 | 0.0223 | 222.83 | 0.0107 | 35.57 | 0.0142 | 47.42 | 0.0030 | 0.85 | 0.0041 | 1.13 | 210.57 | 280.75 |
SDS | 0.0003 | 0.96 | 0.0004 | 1.28 | 0.0167 | 167.13 | 0.0223 | 222.83 | 0.0262 | 87.26 | 0.0349 | 116.35 | 0.0026 | 0.72 | 0.0035 | 0.96 | 256.07 | 341.42 |
SRS | 0.0021 | 2.38 | 0.0010 | 3.18 | 0.0048 | 47.61 | 0.0063 | 63.48 | 0.0006 | 2.16 | 0.0009 | 2.88 | 0.0009 | 0.25 | 0.0012 | 0.34 | 52.4 | 69.88 |
Localities | Heavy Metals | |||||||
---|---|---|---|---|---|---|---|---|
ILCRAs | ILCRCd | ILCRPb | ILCRTOTAL | |||||
Children | Adults | Children | Adults | Children | Adults | Children | Adults | |
Gobia | 0.0040 | 0.0054 | 0.13 | 0.18 | 8.5 × 10−6 | 11.1 × 10−6 | 0.134 | 0.1854 |
Kouamefla | 0.0004 | 0.0005 | 0.15 | 0.21 | 10.2 × 10−6 | 13.6 × 10−6 | 0.1504 | 0.2105 |
Benko | 0.0004 | 0.0005 | 0.01 | 0.01 | 9.4 × 10−6 | 12.8 × 10−6 | 0.0104 | 0.0105 |
Doukouya | 0.0032 | 0.0043 | 0.38 | 0.51 | 7.8 × 10−5 | 10.5 × 10−5 | 0.3832 | 0.5143 |
Doka | 0.0037 | 0.0050 | 0.42 | 0.56 | 17 × 10−6 | 22.1 × 10−6 | 0.4237 | 0.5650 |
Zengue | 0.0002 | 0.0002 | 0.41 | 0.54 | 2.6 × 10−5 | 3.5 × 10−5 | 0.4102 | 0.5402 |
Seasons | Heavy Metals | |||||||
---|---|---|---|---|---|---|---|---|
ILCRAs | ILCRCd | ILCRPb | ILCRTOTAL | |||||
Children | Adults | Children | Adults | Children | Adults | Children | Adults | |
GDS | 0.0033 | 0.0043 | 0.43 | 0.57 | 4.39 × 10−5 | 5.85 × 10−5 | 0.4333 | 0.5743 |
GRS | 0.0032 | 0.0042 | 0.25 | 0.33 | 2.58 × 10−5 | 3.45 × 10−5 | 0.2532 | 0.3342 |
SDS | 0.0004 | 0.0006 | 0.25 | 0.33 | 2.20 × 10−5 | 2.94 × 10−5 | 0.2504 | 0.3306 |
SRS | 0.0011 | 0.0014 | 0.07 | 0.10 | 7.77 × 10−6 | 1.03 × 10−5 | 0.0711 | 0.1014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamagate, M.; Lanciné, T.; Berthe, K.A.N.; Droh Lanciné, G.; Kriaa, K.; Assadi, A.A.; Zhang, J.; Tahraoui, H. Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire. Water 2025, 17, 1891. https://doi.org/10.3390/w17131891
Kamagate M, Lanciné T, Berthe KAN, Droh Lanciné G, Kriaa K, Assadi AA, Zhang J, Tahraoui H. Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire. Water. 2025; 17(13):1891. https://doi.org/10.3390/w17131891
Chicago/Turabian StyleKamagate, Mahamadou, Traore Lanciné, Kouadio Aya Nelly Berthe, Gone Droh Lanciné, Karim Kriaa, Amine Aymen Assadi, Jie Zhang, and Hichem Tahraoui. 2025. "Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire" Water 17, no. 13: 1891. https://doi.org/10.3390/w17131891
APA StyleKamagate, M., Lanciné, T., Berthe, K. A. N., Droh Lanciné, G., Kriaa, K., Assadi, A. A., Zhang, J., & Tahraoui, H. (2025). Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire. Water, 17(13), 1891. https://doi.org/10.3390/w17131891