Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,110)

Search Parameters:
Keywords = virtual reality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1140 KiB  
Review
Future Designs of Clinical Trials in Nephrology: Integrating Methodological Innovation and Computational Power
by Camillo Tancredi Strizzi and Francesco Pesce
Sensors 2025, 25(16), 4909; https://doi.org/10.3390/s25164909 - 8 Aug 2025
Abstract
Clinical trials in nephrology have historically been hindered by significant challenges, including slow disease progression, patient heterogeneity, and recruitment difficulties. While recent therapeutic breakthroughs have transformed care, they have also created a ‘paradox of success’ by lowering baseline event rates, further complicating traditional [...] Read more.
Clinical trials in nephrology have historically been hindered by significant challenges, including slow disease progression, patient heterogeneity, and recruitment difficulties. While recent therapeutic breakthroughs have transformed care, they have also created a ‘paradox of success’ by lowering baseline event rates, further complicating traditional trial designs. We hypothesize that integrating innovative trial methodologies with advanced computational tools is essential for overcoming these hurdles and accelerating therapeutic development in kidney disease. This narrative review synthesizes the literature on persistent challenges in nephrology trials and explores methodological innovations. It investigates the transformative impact of computational tools, specifically Artificial Intelligence (AI), techniques like Augmented Reality (AR) and Conditional Tabular Generative Adversarial Networks (CTGANs), in silico clinical trials (ISCTs) and Digital Health Technologies across the research lifecycle. Key methodological innovations include adaptive designs, pragmatic trials, real-world evidence, and validated surrogate endpoints. AI offers transformative potential in optimizing trial design, accelerating patient stratification, and enabling complex data analysis, while AR can improve procedural accuracy, and CTGANs can augment scarce datasets. ISCTs provide complementary capabilities for simulating drug effects and optimizing designs using virtual patient cohorts. The future of clinical research in nephrology lies in the synergistic convergence of methodological and computational innovation. This integrated approach offers a pathway for conducting more efficient, precise, and patient-centric trials, provided that critical barriers related to data quality, model validation, regulatory acceptance, and ethical implementation are addressed. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 1145 KiB  
Communication
Fighting STEM Stereotypes in Adolescence: The Role of Spatial Skills, Identity, and Digital Interventions
by Victoria D. Chamizo
Virtual Worlds 2025, 4(3), 36; https://doi.org/10.3390/virtualworlds4030036 - 8 Aug 2025
Abstract
Traditionally, formal education has favored boys, while girls, in the past, were relegated to the domestic sphere. This has been the case for centuries, without considering the possible specific cognitive needs of girls, which have been ignored. In Western countries, this has generated [...] Read more.
Traditionally, formal education has favored boys, while girls, in the past, were relegated to the domestic sphere. This has been the case for centuries, without considering the possible specific cognitive needs of girls, which have been ignored. In Western countries, this has generated significant educational problems, especially in the learning of more technical subjects, with which girls not only do not identify but also often exclude themselves with the excuse that “it is not for them” (i.e., they tend to display a strong stereotype, a false belief, regarding these disciplines). The consequences have not been long in coming. Currently, in many Western countries, the low percentage of women in technical careers (such as Physics, Engineering, and Computer Science) is alarming. Is it possible to change stereotypes? This article addresses this complex issue, placing particular emphasis on the learning of spatial abilities, so important in all STEM careers (i.e., science, technology, engineering, and mathematics). This study concludes with examples of other stereotypes (mainly cultural) that have been eliminated or significantly reduced thanks to virtual reality (VR) and the help of artificial intelligence (AI). Could the same be achieved in the spatial domain? Full article
Show Figures

Figure 1

19 pages, 1953 KiB  
Article
Virtual Reality-Based Postural Balance Training in Autistic Children: A Pilot Randomized Controlled Trial
by Anna Falivene, Gaia Scaccabarozzi, Silvia Busti Ceccarelli, Massimo Molteni, Katrijn Klingels, Evi Verbecque, Fabio Alexander Storm, Emilia Biffi and Alessandro Crippa
J. Clin. Med. 2025, 14(16), 5616; https://doi.org/10.3390/jcm14165616 - 8 Aug 2025
Abstract
Background/Objectives: Beyond the core characteristics of the condition, autistic individuals often significantly struggle with postural balance. This pilot study aimed to investigate the effects of an immersive virtual reality-based training administered with Gait Real-time Analysis Interactive Lab (GRAIL) on postural balance of [...] Read more.
Background/Objectives: Beyond the core characteristics of the condition, autistic individuals often significantly struggle with postural balance. This pilot study aimed to investigate the effects of an immersive virtual reality-based training administered with Gait Real-time Analysis Interactive Lab (GRAIL) on postural balance of autistic children. Methods: A total of 20 autistic participants aged 6 to 13 were enrolled in a 5-week randomized, parallel-group, open-label, controlled trial, and received either balance training with the GRAIL system or no training. The trial was registered at ClinicalTrials.gov (identifier: NCT04276571). The primary outcome measures were the change in center of pressure (CoP) metrics during GRAIL balance assessments and the change in motor skills as assessed with Movement Assessment Battery for Children-2. Secondary outcome measures included parent-report Developmental Coordination Disorder Questionnaire, center of mass metrics, and gait parameters evaluated with GRAIL. ANCOVA tests were performed for all outcomes, with time (T0 and T1) as within-subjects factor, the group (training and control groups) as between-subjects factor, and considering age as covariate. Results: Slight but significant time by group interactions were found in some CoP metrics (i.e., sway path length, velocity in the antero-posterior direction, and the jerk). Conclusions: These findings preliminarily suggest that a virtual reality-based training may induce slight modifications in postural balance strategies, which can be enhanced with longer or more intensive training. Full article
Show Figures

Figure 1

26 pages, 5829 KiB  
Article
Virtual Reality in Supporting the Creation of Sustainable Tourism: A Case Study of Gen Z Technology Acceptance
by Marek Miłosz, Kamil Żyła, Stanisław Piotr Skulimowski, Anna Liliana Dakowicz, Tomasz Szymczyk and Marcin Badurowicz
Sustainability 2025, 17(16), 7173; https://doi.org/10.3390/su17167173 - 8 Aug 2025
Abstract
Tourism’s rapid growth has significant and negative effects on the environment, society, and economy. Sustainable tourism practices are essential in order to mitigate these effects. Virtual reality (VR) technologies offer the possibility of implementing sustainable tourism policies by providing immersive experiences that replace [...] Read more.
Tourism’s rapid growth has significant and negative effects on the environment, society, and economy. Sustainable tourism practices are essential in order to mitigate these effects. Virtual reality (VR) technologies offer the possibility of implementing sustainable tourism policies by providing immersive experiences that replace real ones. Moreover, VR can be a useful tool for the protection and promotion of cultural and natural heritage. The article discusses the potential directions for sustainable tourism using VR. This technology can reduce the burden on popular tourist sites without losing their value to visitors. Additionally, it can promote less popular destinations in the wider public awareness. A case study of the implementation of a virtual tour at the Pahlavon Mahmud Mausoleum in Khiva (Uzbekistan) is presented. The research method was designed to evaluate the acceptability of VR technology among a convenience sampling of n = 57 Gen Z consumers (university students 20–24 years of age), who completed interviews following their participation in a voluntary virtual walking tour. The research results suggest that VR can be an acceptable and useful tool for implementing sustainable tourism policies in the near future. Another conclusion is that virtual sightseeing should not fully replace onsite tourism. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

18 pages, 4529 KiB  
Article
LGSIK-Poser: Skeleton-Aware Full-Body Motion Reconstruction from Sparse Inputs
by Linhai Li, Jiayi Lin and Wenhui Zhang
AI 2025, 6(8), 180; https://doi.org/10.3390/ai6080180 - 7 Aug 2025
Abstract
Accurate full-body motion reconstruction from sparse sensors is crucial for VR/AR applications but remains challenging due to the under-constrained nature of limited observations and the computational constraints of mobile platforms. This paper presents LGSIK-Poser, a unified and lightweight framework that supports real-time motion [...] Read more.
Accurate full-body motion reconstruction from sparse sensors is crucial for VR/AR applications but remains challenging due to the under-constrained nature of limited observations and the computational constraints of mobile platforms. This paper presents LGSIK-Poser, a unified and lightweight framework that supports real-time motion reconstruction from heterogeneous sensor configurations, including head-mounted displays, handheld controllers, and up to three optional inertial measurement units, without requiring reconfiguration across scenarios. The model integrates temporally grouped LSTM modeling, anatomically structured graph-based reasoning, and region-specific inverse kinematics refinement to enhance end-effector accuracy and structural consistency. Personalized body shape is estimated using user-specific anthropometric priors within the SMPL model, a widely adopted parametric representation of human shape and pose. Experiments on the AMASS benchmark demonstrate that LGSIK-Poser achieves state-of-the-art accuracy with up to 48% improvement in hand localization, while reducing model size by 60% and latency by 22% compared to HMD-Poser. The system runs at 63.65 FPS with only 3.74 M parameters, highlighting its suitability for real-time immersive applications. Full article
Show Figures

Figure 1

21 pages, 961 KiB  
Systematic Review
A Systematic Review of Virtual Reality Applications for Adaptive Behavior Training in Individuals with Intellectual Disabilities
by Pei Zhou and Zehui Zhan
Educ. Sci. 2025, 15(8), 1014; https://doi.org/10.3390/educsci15081014 - 7 Aug 2025
Abstract
(1) Deficits in adaptive behavior significantly hinder individuals with intellectual disabilities from performing essential daily tasks and participating in community life. Although virtual reality shows promise for supporting adaptive behavior in this population, systematic reviews on this topic remain scarce. (2) Methods: Twenty-five [...] Read more.
(1) Deficits in adaptive behavior significantly hinder individuals with intellectual disabilities from performing essential daily tasks and participating in community life. Although virtual reality shows promise for supporting adaptive behavior in this population, systematic reviews on this topic remain scarce. (2) Methods: Twenty-five experimental studies from the databases Web of Science, PubMed, Scopus, and ERIC, published between 2005 and 2024, were analyzed in the context of a systematic review. (3) Results: The studies revealed a significant surge in research on VR interventions for adaptive behavior in individuals with intellectual disabilities, particularly after 2021. The most frequently applied domain was practical skills, while social and conceptual skills received relatively less attention. Most studies employed high-immersion head-mounted displays as the primary technology type and adopted controller-based unimodal interaction as the dominant interaction mode. Pedagogical strategies such as ABA, structured teaching, and contextual learning are favored in interventions. (4) Conclusions: VR interventions have been increasingly applied to support adaptive behavior development in this population. However, further exploration is needed to tailor VR designs to better accommodate the individual differences and specific needs. This review synthesizes current evidence, identifies key trends and limitations, and offers guidance for future research. Full article
Show Figures

Figure 1

31 pages, 3398 KiB  
Article
The Role of Virtual and Augmented Reality in Industrial Design: A Case Study of Usability Assessment
by Amanda Martín-Mariscal, Carmen Torres-Leal, Teresa Aguilar-Planet and Estela Peralta
Appl. Sci. 2025, 15(15), 8725; https://doi.org/10.3390/app15158725 - 7 Aug 2025
Abstract
The integration of virtual and augmented reality is transforming processes in the field of product design. This study evaluates the usability of immersive digital tools applied to industrial design through a combined market research and empirical case study, using the software ‘Gravity Sketch’ [...] Read more.
The integration of virtual and augmented reality is transforming processes in the field of product design. This study evaluates the usability of immersive digital tools applied to industrial design through a combined market research and empirical case study, using the software ‘Gravity Sketch’ and the immersive headset ‘Meta Quest 3’. An embedded single case study was conducted based on the international standard ISO 9241-11, considering the dimensions of effectiveness, efficiency, and satisfaction, analysed through nine indicators: tasks completed, time to complete tasks, dimensional accuracy, interoperability, interactivity, fatigue, human error, learning curve, and perceived creativity. The results show a progressive improvement in user–system interaction across the seven Design Units, as users become more familiar with immersive technologies. Effectiveness improves as users gain experience, though it remains sensitive to design complexity. Efficiency shows favourable values even in early stages, reflecting operational fluency despite learning demands. Satisfaction records the greatest improvement, driven by smoother interaction and greater creative freedom. These findings highlight the potential of immersive tools to support design processes while also underlining the need for future research on sustained usability, interface ergonomics, and collaborative workflows in extended reality environments. Full article
(This article belongs to the Special Issue Recent Advances and Application of Virtual Reality)
Show Figures

Figure 1

13 pages, 1329 KiB  
Article
The Complex Interaction Between the Sense of Presence, Movement Features, and Performance in a Virtual Reality Spatial Task: A Preliminary Study
by Tommaso Palombi, Andrea Chirico, Laura Mandolesi, Maurizio Mancini, Noemi Passarello, Erica Volta, Fabio Alivernini and Fabio Lucidi
Electronics 2025, 14(15), 3143; https://doi.org/10.3390/electronics14153143 - 7 Aug 2025
Abstract
The present study explores the innovative application of virtual reality (VR) in conducting the Radial Arm Maze (RAM) task, a performance-based test traditionally utilized for assessing spatial memory. This study aimed to develop a gamified version of the RAM implemented in immersive VR [...] Read more.
The present study explores the innovative application of virtual reality (VR) in conducting the Radial Arm Maze (RAM) task, a performance-based test traditionally utilized for assessing spatial memory. This study aimed to develop a gamified version of the RAM implemented in immersive VR and investigate the interaction between the sense of presence, movement features, and performance within the RAM. We developed software supporting a head-mounted display (HMD), addressing prior limitations in the scientific literature concerning user interaction, data collection accuracy, operational flexibility, and immersion level. This study involved a sample of healthy young adults who engaged with the immersive VR version of the RAM, examining the influence of VR experience variables (sense of presence, motion sickness, and usability) on RAM performance. Notably, it also introduced the collection and analysis of movement features within the VR environment to ascertain their impact on performance outcomes and their relationship with VR experience variables. The VR application developed is notable for its user-friendliness, adaptability, and integration capability with physiological monitoring devices, marking a significant advance in utilizing VR for cognitive assessments. Findings from our study underscore the importance of VR experience factors in RAM performance, highlighting how a heightened sense of presence can predict better performance, thereby emphasizing engagement and immersion as crucial for task success in VR settings. Additionally, this study revealed how movement parameters within the VR environment, specifically speed and directness, significantly influence RAM performance, offering new insights into optimizing VR experiences for enhanced task performance. Full article
(This article belongs to the Special Issue Augmented Reality, Virtual Reality, and 3D Reconstruction)
Show Figures

Figure 1

16 pages, 655 KiB  
Review
Seeing Opportunity in Virtual Reality: A Rapid Review of the Use of VR as a Tool in Vision Care
by Kiana Masoudi, Madeline Wong, Danielle Tchao, Ani Orchanian-Cheff, Michael Reber and Lora Appel
Technologies 2025, 13(8), 342; https://doi.org/10.3390/technologies13080342 - 6 Aug 2025
Abstract
(1) Virtual reality (VR) technologies have shown significant potential for diagnosing and treating vision-related impairments. This rapid review evaluates and characterizes the existing literature on VR technologies for diagnosing and treating vision-based diseases. (2) Methods: A systematic search was conducted across Ovid MEDLINE, [...] Read more.
(1) Virtual reality (VR) technologies have shown significant potential for diagnosing and treating vision-related impairments. This rapid review evaluates and characterizes the existing literature on VR technologies for diagnosing and treating vision-based diseases. (2) Methods: A systematic search was conducted across Ovid MEDLINE, Ovid Embase, the Cochrane Database of Systematic Reviews (Ovid), and the Cochrane Central Register of Controlled Trials (Ovid). Abstracts were screened using Rayyan QCRI, followed by full-text screening and data extraction. Eligible studies were published in peer-reviewed journals, written in English, focused on human participants, used immersive and portable VR devices as the primary intervention, and reported on the clinical effectiveness of VR for therapeutic, diagnostic, or screening purposes for vision or auditory–visual impairments. Various study characteristics, including design and participant details, were extracted, and the MMAT assessment tool was used to evaluate study quality. (3) Results: Seventy-six studies met the inclusion criteria. Among these, sixty-four (84.2%) were non-randomized studies exploring VR’s effectiveness, while twenty-two (15.8%) were randomized-controlled trials. Of the included studies, 38.2% focused on diagnosing, 21.0% on screening, and 38.2% on treating vision impairments. Glaucoma and amblyopia were the most commonly studied visual impairments. (4) Conclusions: The use of standalone, remotely controlled VR headsets for screening and diagnosing visual diseases represents a promising advancement in ophthalmology. With ongoing technological developments, VR has the potential to revolutionize eye care by improving accessibility, efficiency, and personalization. Continued research and innovation in VR applications for vision care are expected to further enhance patient outcomes. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

23 pages, 3890 KiB  
Article
Evaluating Nursing and Midwifery Students’ Self-Assessment of Clinical Skills Following a Flipped Classroom Intervention with Innovative Digital Technologies in Bulgaria
by Galya Georgieva-Tsaneva, Ivanichka Serbezova and Milka Serbezova-Velikova
Nurs. Rep. 2025, 15(8), 285; https://doi.org/10.3390/nursrep15080285 - 6 Aug 2025
Abstract
Background/Objectives: The transformation of nursing and midwifery education through digital technologies has gained momentum worldwide, with algorithm-based video instruction and virtual reality (VR) emerging as promising tools for improving clinical learning. This quasi-experimental study explores the impact of an enhanced flipped classroom [...] Read more.
Background/Objectives: The transformation of nursing and midwifery education through digital technologies has gained momentum worldwide, with algorithm-based video instruction and virtual reality (VR) emerging as promising tools for improving clinical learning. This quasi-experimental study explores the impact of an enhanced flipped classroom model on Bulgarian nursing and midwifery students’ self-perceived competence. Methods: A total of 228 participants were divided into a control group receiving traditional instruction (lectures and simulations with manikins) and an experimental group engaged in a digitally enhanced preparatory phase. The latter included pre-class video algorithms, VR, and clinical problem-solving tasks for learning and improving nursing skills. A 25-item self-report questionnaire was administered before and after the intervention to measure perceived competence in injection techniques, hygiene care, midwifery skills, and digital readiness. Results: Statistical analysis using Welch’s t-test revealed significant improvements in the experimental group in all domains (p < 0.001). Qualitative data from focus group interviews further confirmed increased student engagement, motivation, and receptiveness to digital learning tools. Conclusions: The findings highlight the pedagogical value of integrating structured video learning, VR components, and case-based learning within flipped classrooms. The study advocates for the wider adoption of blended learning models to foster clinical confidence and digital competence in healthcare education. The results of the study may be useful for curriculum developers aiming to improve clinical readiness through technology-enhanced learning. Full article
Show Figures

Figure 1

27 pages, 1483 KiB  
Systematic Review
Effectiveness of Virtual Reality-Based Training Versus Conventional Exercise Programs on Fall-Related Functional Outcomes in Older Adults with Various Health Conditions: A Systematic Review
by Krzysztof Kasicki, Ewa Klimek Piskorz, Łukasz Rydzik, Tadeusz Ambroży, Piotr Ceranowicz, Maria Belcarz Ciuraj, Paweł Król and Wiesław Błach
J. Clin. Med. 2025, 14(15), 5550; https://doi.org/10.3390/jcm14155550 - 6 Aug 2025
Abstract
Background/Objectives: The aim of this systematic review was to compare the effectiveness of virtual reality (VR)-based training with conventional exercise programs in improving functional outcomes related to fall risk among older adults with various health conditions. Methods: The review was conducted in accordance [...] Read more.
Background/Objectives: The aim of this systematic review was to compare the effectiveness of virtual reality (VR)-based training with conventional exercise programs in improving functional outcomes related to fall risk among older adults with various health conditions. Methods: The review was conducted in accordance with the PRISMA 2020 guidelines and registered in PROSPERO (registration number CRD42022345678). The databases Scopus, PubMed, Web of Science, and EBSCO were searched up to 31 March 2025. Randomized controlled trials (RCTs) were included if they involved participants aged ≥60 years, a VR intervention lasting ≥6 weeks, and a control group performing traditional exercises or receiving usual care. Methodological quality was assessed using the PEDro scale, and a narrative synthesis was performed across four outcome domains: balance, mobility, cognitive function, and fall risk. Results: Seven RCTs were included in the analysis (totaling 664 participants). VR training was found to be at least as effective as conventional exercise in improving balance (e.g., Berg Balance Scale) and mobility (e.g., Timed Up and Go), with some studies showing superior effects of VR. One RCT demonstrated that combining VR with balance exercises (MIX) yielded the greatest improvements in muscle strength and physical performance. Additionally, two studies reported cognitive benefits (e.g., MoCA) and a 42% reduction in fall incidence within six months following VR intervention. The methodological quality of the included studies was moderate to high (PEDro score 5–9/10). Conclusions: VR-based training represents a safe and engaging supplement to geriatric rehabilitation, effectively improving balance, mobility, and, in selected cases, cognitive function, while also reducing fall risk. Full article
(This article belongs to the Section Geriatric Medicine)
Show Figures

Figure 1

29 pages, 7038 KiB  
Article
Developing a Practice-Based Guide to Terrestrial Laser Scanning (TLS) for Heritage Documentation
by Junshan Liu, Danielle Willkens and Russell Gentry
Heritage 2025, 8(8), 313; https://doi.org/10.3390/heritage8080313 - 6 Aug 2025
Viewed by 17
Abstract
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, [...] Read more.
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, the study emerges against a backdrop of technological progression and the evolving needs of heritage conservation. Through a comprehensive literature review, critical case studies of heritage sites in the U.S., expert interviews, and the development of a TLS for Heritage Documentation Best Practice Guide (the guide), the paper addresses the existing gaps in streamlined practices in the domain of TLS’s applications in heritage documentation. While recognizing and building upon foundational efforts such as international guidelines developed over the past decades, this study contributes a practice-oriented perspective grounded in field experience and case-based analysis. The developed guide seeks to equip practitioners with structured methods and practical tools to optimize the use of TLS, ultimately enhancing the quality and accessibility of heritage documentation. It also sets a foundation for integrating TLS datasets with other technologies, such as Building Information Modeling (BIM), virtual reality (VR), and augmented reality (AR) for heritage preservation, tourism, education, and interpretation, ultimately enhancing access to and engagement with cultural heritage sites. The paper also critically situates this guidance within the evolving theoretical discourse on digital heritage practices, highlighting its alignment with and divergence from existing methodologies. Full article
Show Figures

Figure 1

15 pages, 1726 KiB  
Systematic Review
Application of Augmented Reality in Reverse Total Shoulder Arthroplasty: A Systematic Review
by Jan Orlewski, Bettina Hochreiter, Karl Wieser and Philipp Kriechling
J. Clin. Med. 2025, 14(15), 5533; https://doi.org/10.3390/jcm14155533 - 6 Aug 2025
Viewed by 47
Abstract
Background: Reverse total shoulder arthroplasty (RTSA) is increasingly used for managing cuff tear arthropathy, osteoarthritis, complex fractures, and revision procedures. As the demand for surgical precision and reproducibility grows, immersive technologies such as virtual reality (VR), augmented reality (AR), and metaverse-based platforms are [...] Read more.
Background: Reverse total shoulder arthroplasty (RTSA) is increasingly used for managing cuff tear arthropathy, osteoarthritis, complex fractures, and revision procedures. As the demand for surgical precision and reproducibility grows, immersive technologies such as virtual reality (VR), augmented reality (AR), and metaverse-based platforms are being explored for surgical training, intraoperative guidance, and rehabilitation. While early data suggest potential benefits, a focused synthesis specific to RTSA is lacking. Methods: This systematic review was conducted in accordance with PRISMA 2020 guidelines. A comprehensive search of PubMed, Scopus, and Cochrane Library databases was performed through 30 May 2025. Eligible studies included those evaluating immersive technologies in the context of RTSA for skill acquisition or intraoperative guidance. Only peer-reviewed articles published in English were included. Data were synthesized narratively due to heterogeneity in study design and outcome metrics. Results: Out of 628 records screened, 21 studies met the inclusion criteria. Five studies evaluated immersive VR for surgical training: four randomized controlled trials and one retrospective case series. VR training improved procedural efficiency and showed non-inferiority to cadaveric training. Sixteen studies investigated intraoperative navigation or AR guidance. Clinical and cadaveric studies consistently reported improved accuracy in glenoid baseplate positioning with reduced angular and linear deviations in postoperative controls as compared to preoperative planning. Conclusions: Immersive technologies show promise in enhancing training, intraoperative accuracy, and procedural consistency in RTSA. VR and AR platforms may support standardized surgical education and precision-based practice, but their broad clinical impact remains limited by small sample sizes, heterogeneous methodologies, and limited long-term outcomes. Further multicenter trials with standardized endpoints and cost-effectiveness analyses are warranted. Postoperative rehabilitation using immersive technologies in RTSA remains underexplored and presents an opportunity for future research. Full article
Show Figures

Figure 1

12 pages, 732 KiB  
Article
Gaming Against Frailty: Effects of Virtual Reality-Based Training on Postural Control, Mobility, and Fear of Falling Among Frail Older Adults
by Hammad S. Alhasan and Mansour Abdullah Alshehri
J. Clin. Med. 2025, 14(15), 5531; https://doi.org/10.3390/jcm14155531 - 6 Aug 2025
Viewed by 52
Abstract
Background/Objectives: Frailty is a prevalent geriatric syndrome associated with impaired postural control and elevated fall risk. Although conventional exercise is a core strategy for frailty management, adherence remains limited. Virtual reality (VR)-based interventions have emerged as potentially engaging alternatives, but their effects on [...] Read more.
Background/Objectives: Frailty is a prevalent geriatric syndrome associated with impaired postural control and elevated fall risk. Although conventional exercise is a core strategy for frailty management, adherence remains limited. Virtual reality (VR)-based interventions have emerged as potentially engaging alternatives, but their effects on objective postural control and task-specific confidence in frail populations remain understudied. This study aimed to evaluate the effectiveness of a supervised VR training program using the Nintendo Ring Fit Plus™ on postural control, functional mobility, and balance confidence among frail community-dwelling older adults. Methods: Fifty-one adults aged ≥65 years classified as frail or prefrail were enrolled in a four-week trial. Participants were assigned to either a VR intervention group (n = 28) or control group (n = 23). Participants were non-randomly assigned based on availability and preference. Outcome measures were collected at baseline and post-intervention. Primary outcomes included center of pressure (CoP) metrics—sway area, mean velocity, and sway path. Secondary outcomes were the Timed Up and Go (TUG), Berg Balance Scale (BBS), Activities-specific Balance Confidence (ABC), and Falls Efficacy Scale–International (FES-I). Results: After adjusting for baseline values, age, and BMI, the intervention group showed significantly greater improvements than the control group across all postural control outcomes. Notably, reductions in sway area, mean velocity, and sway path were observed under both eyes-open and eyes-closed conditions, with effect sizes ranging from moderate to very large (Cohen’s d = 0.57 to 1.61). For secondary outcomes, significant between-group differences were found in functional mobility (TUG), balance performance (BBS), and balance confidence (ABC), with moderate-to-large effect sizes (Cohen’s d = 0.53 to 0.73). However, no significant improvement was observed in fear of falling (FES-I), despite a small-to-moderate effect size. Conclusions: A supervised VR program significantly enhanced postural control, mobility, and task-specific balance confidence in frail older adults. These findings support the feasibility and efficacy of VR-based training as a scalable strategy for mitigating frailty-related mobility impairments. Full article
(This article belongs to the Special Issue Clinical Management of Frailty)
Show Figures

Figure 1

17 pages, 8252 KiB  
Article
Probing Augmented Intelligent Human–Robot Collaborative Assembly Methods Toward Industry 5.0
by Qingwei Nie, Yiping Shen, Ye Ma, Shuqi Zhang, Lujie Zong, Ze Zheng, Yunbo Zhangwa and Yu Chen
Electronics 2025, 14(15), 3125; https://doi.org/10.3390/electronics14153125 - 5 Aug 2025
Viewed by 120
Abstract
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge [...] Read more.
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge acquisition, and strong decision dependency in the assembly of complex aerospace products within confined spaces, an assembly task model and structured process information are constructed. Combined with a retrieval-augmented generation mechanism, the method realizes knowledge reasoning and optimization suggestion generation. An improved ORB-SLAM2 algorithm is applied to achieve virtual–real mapping and component tracking, further supporting the development of an enhanced visual interaction system. The proposed approach is validated through a typical aerospace electronic cabin assembly task, demonstrating significant improvements in assembly efficiency, quality, and human–robot interaction experience, thus providing effective support for intelligent HRC assembly. Full article
(This article belongs to the Special Issue Human–Robot Interaction and Communication Towards Industry 5.0)
Show Figures

Figure 1

Back to TopTop