Seeing Opportunity in Virtual Reality: A Rapid Review of the Use of VR as a Tool in Vision Care
Abstract
1. Introduction
1.1. Background
1.2. Screening in Vision Care
1.3. VR for Diagnosis
1.4. VR for Treatment
1.5. Objectives
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction (Coding and Categorizing Studies)
2.5. Quality Assessment
2.6. Analysis
3. Results
4. Discussion
4.1. Unique Contributions of This Review
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, M.K.I.; Saha, C.; Poon, S.H.L.; Yiu, R.S.W.; Shih, K.C.; Chan, Y.K. Virtual Reality and Augmented Reality—Emerging Screening and Diagnostic Techniques in Ophthalmology: A Systematic Review. Surv. Ophthalmol. 2022, 67, 1516–1530. [Google Scholar] [CrossRef] [PubMed]
- Selvan, K.; Mina, M.; Abdelmeguid, H.; Gulsha, M.; Vincent, A.; Sarhan, A. Virtual Reality Headsets for Perimetry Testing: A Systematic Review. Eye 2024, 38, 1041–1064. [Google Scholar] [CrossRef] [PubMed]
- Babel, A.T.; Soumakieh, M.M.; Chen, A.Y.; Wong, C.; R Da Costa, D.; Almeida, D.R. Virtual Reality Visual Field Testing in Glaucoma: Benefits and Drawbacks. Clin. Ophthalmol. 2025, 19, 933–937. [Google Scholar] [CrossRef]
- Basharat, A.; Mehrabi, S.; Muñoz, J.E.; Middleton, L.E.; Cao, S.; Boger, J.; Barnett-Cowan, M. Virtual Reality as a Tool to Explore Multisensory Processing before and after Engagement in Physical Activity. Front. Aging Neurosci. 2023, 15, 1207651. [Google Scholar] [CrossRef]
- Kouijzer, M.M.T.E.; Kip, H.; Bouman, Y.H.A.; Kelders, S.M. Implementation of Virtual Reality in Healthcare: A Scoping Review on the Implementation Process of Virtual Reality in Various Healthcare Settings. Implement. Sci. Commun. 2023, 4, 67. [Google Scholar] [CrossRef]
- Rudolph, B.; Musick, G.; Wiitablake, L.; Lazar, K.B.; Mobley, C.; Boyer, D.M.; Moysey, S.; Robb, A.; Babu, S.V. Investigating the Effects of Display Fidelity of Popular Head-Mounted Displays on Spatial Updating and Learning in Virtual Reality. In Advances in Visual Computing; Bebis, G., Yin, Z., Kim, E., Bender, J., Subr, K., Kwon, B.C., Zhao, J., Kalkofen, D., Baciu, G., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12509, pp. 666–679. ISBN 978-3-030-64555-7. [Google Scholar]
- Bailenson, J. Experience on Demand: What Virtual Reality Is, How It Works, and What It Can Do; W. W. Norton & Company: New York, NY, USA, 2018; ISBN 978-0-393-25369-6. [Google Scholar]
- Fan, X.; Jiang, X.; Deng, N. Immersive Technology: A Meta-Analysis of Augmented/Virtual Reality Applications and Their Impact on Tourism Experience. Tour. Manag. 2022, 91, 104534. [Google Scholar] [CrossRef]
- Jensen, L.; Konradsen, F. A Review of the Use of Virtual Reality Head-Mounted Displays in Education and Training. Educ. Inf. Technol. 2018, 23, 1515–1529. [Google Scholar] [CrossRef]
- Kourtesis, P.; Korre, D.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Guidelines for the Development of Immersive Virtual Reality Software for Cognitive Neuroscience and Neuropsychology: The Development of Virtual Reality Everyday Assessment Lab (VR-EAL), a Neuropsychological Test Battery in Immersive Virtual Reality. Front. Comput. Sci. 2020, 1, 12. [Google Scholar] [CrossRef]
- Pottle, J. Virtual Reality and the Transformation of Medical Education. Future Healthc. J. 2019, 6, 181–185. [Google Scholar] [CrossRef]
- Freeman, D. 7 Virtual Reality (VR) for the Treatment of Mental Health Disorders. J. Neurol. Neurosurg. Psychiatry 2020, 91, e3. [Google Scholar] [CrossRef]
- Uimonen, J.; Villarreal, S.; Laari, S.; Arola, A.; Ijäs, P.; Salmi, J.; Hietanen, M. Virtual Reality Tasks with Eye Tracking for Mild Spatial Neglect Assessment: A Pilot Study with Acute Stroke Patients. Front. Psychol. 2024, 15, 1319944. [Google Scholar] [CrossRef]
- Zibold, R.; Sangeux, M.; Winter, R.; Visscher, R.; Cattin, P.C.; Viehweger, E. Effect of Visual Input on Gait Stability Using Immersive Virtual Reality in Children with Cerebral Palsy. Gait Posture 2024, 113, 268. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual Reality for Stroke Rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar] [CrossRef]
- Malloy, K.M.; Milling, L.S. The Effectiveness of Virtual Reality Distraction for Pain Reduction: A Systematic Review. Clin. Psychol. Rev. 2010, 30, 1011–1018. [Google Scholar] [CrossRef]
- Carl, E.; Stein, A.T.; Levihn-Coon, A.; Pogue, J.R.; Rothbaum, B.; Emmelkamp, P.; Asmundson, G.J.G.; Carlbring, P.; Powers, M.B. Virtual Reality Exposure Therapy for Anxiety and Related Disorders: A Meta-Analysis of Randomized Controlled Trials. J. Anxiety Disord. 2019, 61, 27–36. [Google Scholar] [CrossRef]
- Javvaji, C.K.; Reddy, H.; Vagha, J.D.; Taksande, A.; Kommareddy, A.; Reddy, N.S. Immersive Innovations: Exploring the Diverse Applications of Virtual Reality (VR) in Healthcare. Cureus 2024, 16, e56137. [Google Scholar] [CrossRef] [PubMed]
- Mergen, B.; Ramsey, D.J. Underdiagnosis of Glaucoma in Patients with Exudative Age-Related Macular Degeneration. Eye 2021, 35, 3350–3357. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Wang, J.; Xu, P.; Ye, X.; Ye, J. Socioeconomic Disparity in Global Burden of Cataract: An Analysis for 2013 with Time Trends Since 1990. Am. J. Ophthalmol. 2017, 180, 91–96. [Google Scholar] [CrossRef]
- Zhang, X.; Cotch, M.F.; Ryskulova, A.; Primo, S.A.; Nair, P.; Chou, C.-F.; Geiss, L.S.; Barker, L.E.; Elliott, A.F.; Crews, J.E.; et al. Vision Health Disparities in the United States by Race/Ethnicity, Education, and Economic Status: Findings from Two Nationally Representative Surveys. Am. J. Ophthalmol. 2012, 154, S53–S62.e1. [Google Scholar] [CrossRef]
- Sekimitsu, S.; Collins, M.E.; Zebardast, N. US Children from Non-English-Speaking Households Are Less Likely to Undergo Vision Testing. J. AAPOS 2025, 29, 104110. [Google Scholar] [CrossRef]
- Chauhan, B.C.; Garway-Heath, D.F.; Goni, F.J.; Rossetti, L.; Bengtsson, B.; Viswanathan, A.C.; Heijl, A. Practical Recommendations for Measuring Rates of Visual Field Change in Glaucoma. Br. J. Ophthalmol. 2008, 92, 569–573. [Google Scholar] [CrossRef]
- Delavar, A.; Radha Saseendrakumar, B.; Weinreb, R.N.; Baxter, S.L. Racial and Ethnic Disparities in Cost-Related Barriers to Medication Adherence Among Patients with Glaucoma Enrolled in the National Institutes of Health All of Us Research Program. JAMA Ophthalmol. 2022, 140, 354. [Google Scholar] [CrossRef] [PubMed]
- Musa, I.; Bansal, S.; Kaleem, M.A. Barriers to Care in the Treatment of Glaucoma: Socioeconomic Elements That Impact the Diagnosis, Treatment, and Outcomes in Glaucoma Patients. Curr. Ophthalmol. Rep. 2022, 10, 85–90. [Google Scholar] [CrossRef]
- Hicks, P.M.; Kang, L.; Armstrong, M.L.; Pongrac, J.R.; Stagg, B.C.; Saylor, K.M.; Newman-Casey, P.A.; Woodward, M.A. A Scoping Review of Patients’ Barriers to Eye Care for Glaucoma and Keratitis. Surv. Ophthalmol. 2023, 68, 567–577. [Google Scholar] [CrossRef]
- Newman-Casey, P.A.; Shtein, R.M.; Coleman, A.L.; Herndon, L.; Lee, P.P. Why Patients with Glaucoma Lose Vision: The Patient Perspective. J. Glaucoma 2016, 25, e668–e675. [Google Scholar] [CrossRef]
- Acuff, K.; Wu, J.; Varkhedi, V.; Baxter, S.L. Social Determinants of Health and Health Disparities in Glaucoma: A Review. Clin. Exp. Ophthalmol. 2024, 52, 276–293. [Google Scholar] [CrossRef]
- Peterson, C.L.; Yap, C.L.; Tan, T.F.; Tan, L.L.Y.; Sim, K.T.; Ong, L.; Tan, Z.K.; Tan, Y.W.; Man, R.; Fenwick, E.; et al. Monocular and Binocular Visual Function Assessments and Activities of Daily Living Performance in Age-Related Macular Degeneration. Ophthalmol. Retin. 2024, 8, 32–41. [Google Scholar] [CrossRef]
- Alwashmi, K.; Meyer, G.; Rowe, F.; Ward, R. Enhancing Learning Outcomes through Multisensory Integration: A fMRI Study of Audio-Visual Training in Virtual Reality. NeuroImage 2024, 285, 120483. [Google Scholar] [CrossRef] [PubMed]
- Groth, S.L.; Linton, E.F.; Brown, E.N.; Makadia, F.; Donahue, S.P. Evaluation of Virtual Reality Perimetry and Standard Automated Perimetry in Normal Children. Transl. Vis. Sci. Technol. 2023, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Tsapakis, S.; Papaconstantinou, D.; Diagourtas, A.; Droutsas, K.; Andreanos, K.; Moschos, M.M.; Brouzas, D. Visual Field Examination Method Using Virtual Reality Glasses Compared with the Humphrey Perimeter. Clin. Ophthalmol. 2017, 7, 1431–1443. [Google Scholar] [CrossRef]
- Wroblewski, D.; Francis, B.A.; Sadun, A.; Vakili, G.; Chopra, V. Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes. BioMed Res. Int. 2014, 2014, 206082. [Google Scholar] [CrossRef]
- Phu, J.; Wang, H.; Kalloniatis, M. Comparing a Head-mounted Virtual Reality Perimeter and the Humphrey Field Analyzer for Visual Field Testing in Healthy and Glaucoma Patients. Ophthalmic Physiol. Opt. 2024, 44, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Stapelfeldt, J.; Kucur, Ş.S.; Huber, N.; Höhn, R.; Sznitman, R. Virtual Reality–Based and Conventional Visual Field Examination Comparison in Healthy and Glaucoma Patients. Transl. Vis. Sci. Technol. 2021, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Razeghinejad, R.; Gonzalez-Garcia, A.; Myers, J.S.; Katz, L.J. Preliminary Report on a Novel Virtual Reality Perimeter Compared with Standard Automated Perimetry. J. Glaucoma 2021, 30, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Martino Cinnera, A.; Bisirri, A.; Chioccia, I.; Leone, E.; Ciancarelli, I.; Iosa, M.; Morone, G.; Verna, V. Exploring the Potential of Immersive Virtual Reality in the Treatment of Unilateral Spatial Neglect Due to Stroke: A Comprehensive Systematic Review. Brain Sci. 2022, 12, 1589. [Google Scholar] [CrossRef]
- Daibert-Nido, M.; Pyatova, Y.; Cheung, K.; Nayomi, C.; Markowitz, S.N.; Bouffet, E.; Reber, M. Case Report: Visual Rehabilitation in Hemianopia Patients. Home-Based Visual Rehabilitation in Patients with Hemianopia Consecutive to Brain Tumor Treatment: Feasibility and Potential Effectiveness. Front. Neurol. 2021, 12, 680211. [Google Scholar] [CrossRef]
- Molina-Martín, A.; Leal-Vega, L.; De Fez, D.; Martínez-Plaza, E.; Coco-Martín, M.B.; Piñero, D.P. Amblyopia Treatment through Immersive Virtual Reality: A Preliminary Experience in Anisometropic Children. Vision 2023, 7, 42. [Google Scholar] [CrossRef]
- Žiak, P.; Holm, A.; Halička, J.; Mojžiš, P.; Piñero, D.P. Amblyopia Treatment of Adults with Dichoptic Training Using the Virtual Reality Oculus Rift Head Mounted Display: Preliminary Results. BMC Ophthalmol. 2017, 17, 105. [Google Scholar] [CrossRef]
- Birckhead, B.; Khalil, C.; Liu, X.; Conovitz, S.; Rizzo, A.; Danovitch, I.; Bullock, K.; Spiegel, B. Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study. JMIR Ment. Health 2019, 6, e11973. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Yeh, P.-H.; Cheng, Y.-C.; Su, W.-W.; Hwang, Y.-S.; Chen, H.S.-L.; Lee, Y.-S.; Shen, S.-C. Application and Validation of LUXIE: A Newly Developed Virtual Reality Perimetry Software. J. Pers. Med. 2022, 12, 1560. [Google Scholar] [CrossRef]
- Kim, J.-H.; Son, H.-J.; Lee, S.-H.; Kwon, S.-C. VR/AR Head-Mounted Display System Based Measurement and Evaluation of Dynamic Visual Acuity. J. Eye Mov. Res. 2019, 12, 1–18. [Google Scholar] [CrossRef]
- Neugebauer, A.; Stingl, K.; Ivanov, I.; Wahl, S. Influence of Systematic Gaze Patterns in Navigation and Search Tasks with Simulated Retinitis Pigmentosa. Brain Sci. 2021, 11, 223. [Google Scholar] [CrossRef]
- Massiceti, D.; Hicks, S.L.; Van Rheede, J.J. Stereosonic Vision: Exploring Visual-to-Auditory Sensory Substitution Mappings in an Immersive Virtual Reality Navigation Paradigm. PLoS ONE 2018, 13, e0199389. [Google Scholar] [CrossRef]
- Jerdan, S.W.; Grindle, M.; Van Woerden, H.C.; Kamel Boulos, M.N. Head-Mounted Virtual Reality and Mental Health: Critical Review of Current Research. JMIR Serious Games 2018, 6, e14. [Google Scholar] [CrossRef] [PubMed]
- Godinez, A.; Martín-González, S.; Ibarrondo, O.; Levi, D.M. Scaffolding Depth Cues and Perceptual Learning in VR to Train Stereovision: A Proof of Concept Pilot Study. Sci. Rep. 2021, 11, 10129. [Google Scholar] [CrossRef]
- VRcompare—The Internet’s Largest VR & AR Headset Database. Available online: https://vr-compare.com/ (accessed on 28 July 2025).
- Huygelier, H.; Schraepen, B.; Lafosse, C.; Vaes, N.; Schillebeeckx, F.; Michiels, K.; Note, E.; Vanden Abeele, V.; Van Ee, R.; Gillebert, C.R. An Immersive Virtual Reality Game to Train Spatial Attention Orientation after Stroke: A Feasibility Study. Appl. Neuropsychol. Adult 2022, 29, 915–935. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Aleman, E.M.; Maguire, K.H.; Nadelmann, J.; Weber, M.L.; Maguire, W.M.; Maja, A.; O’Neil, E.C.; Maguire, A.M.; Miller, A.J.; et al. Optimization and Validation of a Virtual Reality Orientation and Mobility Test for Inherited Retinal Degenerations. Transl. Vis. Sci. Technol. 2023, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- VIVE Specs & User Guide–Developer Resources. Available online: https://developer.vive.com/resources/hardware-guides/vive-specs-user-guide/ (accessed on 28 July 2025).
- Mehringer, W.; Wirth, M.; Roth, D.; Michelson, G.; Eskofier, B.M. Stereopsis Only: Validation of a Monocular Depth Cues Reduced Gamified Virtual Reality with Reaction Time Measurement. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2114–2124. [Google Scholar] [CrossRef]
- Kartha, A.; Sadeghi, R.; Bradley, C.; Livingston, B.; Tran, C.; Gee, W.; Dagnelie, G. Measuring Visually Guided Motor Performance in Ultra Low Vision Using Virtual Reality. Front. Neurosci. 2023, 17, 1251935. [Google Scholar] [CrossRef]
- Neugebauer, A.; Sipatchin, A.; Stingl, K.; Ivanov, I.; Wahl, S. Influence of Open-Source Virtual-Reality Based Gaze Training on Navigation Performance in Retinitis Pigmentosa Patients in a Crossover Randomized Controlled Trial. PLoS ONE 2024, 19, e0291902. [Google Scholar] [CrossRef]
- Nascimento, E.; Silva, R.; Kim, J.A.; Li, Y.; Chen, C.; Chaudhry, A.F.; Berneshawi, A.R.; Zhang, M.; Villarreal, A.; Liu, J.; et al. Repeatability of a Virtual Reality Headset Perimeter in Glaucoma and Ocular Hypertensive Patients. Transl. Vis. Sci. Technol. 2024, 13, 14. [Google Scholar] [CrossRef]
- Olleyes_VisuALL_Brochure_V2_03JAN2023_LR. Available online: https://online.flippingbook.com/view/7883596/4/?sharedOn= (accessed on 28 July 2025).
- McLaughlin, D.E.; Savatovsky, E.J.; O’Brien, R.C.; Vanner, E.A.; Munshi, H.K.; Pham, A.H.; Grajewski, A.L. Reliability of Visual Field Testing in a Telehealth Setting Using a Head-Mounted Device: A Pilot Study. J. Glaucoma 2024, 33, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Kim, Y.T. Understanding Virtual/Augmented Reality Devices and Their Application in Ophthalmology. J. Retin. 2024, 9, 104–111. [Google Scholar] [CrossRef]
- Soans, R.S.; Renken, R.J.; John, J.; Bhongade, A.; Raj, D.; Saxena, R.; Tandon, R.; Gandhi, T.K.; Cornelissen, F.W. Patients Prefer a Virtual Reality Approach Over a Similarly Performing Screen-Based Approach for Continuous Oculomotor-Based Screening of Glaucomatous and Neuro-Ophthalmological Visual Field Defects. Front. Neurosci. 2021, 15, 745355. [Google Scholar] [CrossRef]
- Mesfin, Y.; Kong, A.; Backus, B.T.; Deiner, M.; Ou, Y.; Oatts, J.T. Pilot Study Comparing a New Virtual Reality–Based Visual Field Test to Standard Perimetry in Children. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2024, 28, 103933. [Google Scholar] [CrossRef]
- Bradley, C.; Ahmed, I.I.K.; Samuelson, T.W.; Chaglasian, M.; Barnebey, H.; Radcliffe, N.; Bacharach, J. Validation of a Wearable Virtual Reality Perimeter for Glaucoma Staging, The NOVA Trial: Novel Virtual Reality Field Assessment. Transl. Vis. Sci. Technol. 2024, 13, 10. [Google Scholar] [CrossRef]
- Narang, P.; Agarwal, A.; Srinivasan, M.; Agarwal, A. Advanced Vision Analyzer–Virtual Reality Perimeter. Ophthalmol. Sci. 2021, 1, 100035. [Google Scholar] [CrossRef]
- Odayappan, A.; Sivakumar, P.; Kotawala, S.; Raman, R.; Nachiappan, S.; Pachiyappan, A.; Venkatesh, R. Comparison of a New Head Mount Virtual Reality Perimeter (C3 Field Analyzer) with Automated Field Analyzer in Neuro-Ophthalmic Disorders. J. Neuro-Ophthalmol. 2023, 43, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Negrillo-Cárdenas, J.; Rueda-Ruiz, A.J.; Ogayar-Anguita, C.J.; Lomas-Vega, R.; Segura-Sánchez, R.J. A System for the Measurement of the Subjective Visual Vertical Using a Virtual Reality Device. J. Med. Syst. 2018, 42, 124. [Google Scholar] [CrossRef]
- Heinzman, Z.; Linton, E.; Marín-Franch, I.; Turpin, A.; Alawa, K.; Wijayagunaratne, A.; Wall, M. Validation of the Iowa Head-Mounted Open-Source Perimeter. Transl. Vis. Sci. Technol. 2023, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Carl Zeiss VR One Plus Specifications • SizeScreens.Com. Available online: https://www.sizescreens.com/carl-zeiss-vr-one-plus-specifications/ (accessed on 28 July 2025).
- Cottingham, E.; Burgum, F.; Gosling, S.; Woods, L.; Tandon, A. Assessment of the Impact of a Head-Mounted Augmented Reality Low Vision Aid on Vision and Quality of Life in Children and Young People with Visual Impairment. Br. Ir. Orthopt. J. 2024, 20, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Astek, A.; Sparkes, V.; Sheeran, L. Exploring the Use of Immersive Virtual Reality in Adults with Chronic Primary Pain: A Scoping Review. Digit. Health 2024, 10, 20552076241254456. [Google Scholar] [CrossRef]
- Kim, E.; Shin, G. User Discomfort While Using a Virtual Reality Headset as a Personal Viewing System for Text-Intensive Office Tasks. Ergonomics 2021, 64, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Bull, S.; Roberts, N.; Parker, M. Views of Ethical Best Practices in Sharing Individual-Level Data From Medical and Public Health Research: A Systematic Scoping Review. J. Empir. Res. Hum. Res. Ethics 2015, 10, 225–238. [Google Scholar] [CrossRef]
- Shao, W.; Niu, Y.; Wang, S.; Mao, J.; Xu, H.; Wang, J.; Zhang, C.; Guo, L. Effects of Virtual Reality on the Treatment of Amblyopia in Children: A Systematic Review and Meta-Analysis. J. Pediatr. Nurs. 2023, 72, 106–112. [Google Scholar] [CrossRef]
- Islam, T.; Roy, A.D. A Virtual Approach: Systematic Review and Meta-Analysis of Virtual Reality-Based Therapies for Convergence Insufficiency. J. Optom. 2025, 18, 100540. [Google Scholar] [CrossRef]
- Hekmatjah, N.; Chibututu, C.; Han, Y.; Keenan, J.D.; Oatts, J.T. Virtual Reality Perimetry Compared to Standard Automated Perimetry in Adults with Glaucoma: A Systematic Review. PLoS ONE 2025, 20, e0318074. [Google Scholar] [CrossRef]
Research Type | Research Theme | Intervention Use | |||
---|---|---|---|---|---|
Comparator Interventions | 25 (32.9%) | Visual Impairment | 58 (76.3%) | Therapeutic | 31 (40.8%) |
Outcomes: validated measures | 22 (28.9%) | Visual Cognition | 16 (21.1%) | Diagnostic | 29 (38.2%) |
RCTs | 12 (15.8%) | Visual Impairment + Audition | 1 (1.3%) | Screening | 16 (21.0%) |
Pilot Trials | 12 (15.8%) | Visual Cognition + Audition | 1 (1.3%) | ||
Case Report | 4 (5.3%) | ||||
Cross-sectional | 1 (1.3%) |
Participant Age Group | Participant Medical Condition | Gross Sample Size | |||
---|---|---|---|---|---|
Patients-Adult | 42 (55.3%) | Glaucoma | 20 (26.3%) | 1–19 | 29 (38.2%) |
Healthy-Adult | 13 (17.1%) | Healthy | 18 (23.7%) | 20–49 | 24 (31.6%) |
Patients-Pediatric | 9 (11.8%) | Amblyopia and Other Binocular Vision Disorders | 15 (19.7%) | 50–99 | 14 (18.4%) |
Patients-Adult and Pediatric | 8 (10.5%) | Neuro-Ophthalmic Disorder | 7 (9.2%) | 100–199 | 7 (9.2%) |
Healthy-Pediatric | 4 (5.3%) | Stroke and Visual Neglect | 5 (6.6%) | 200+ | 2 (2.6%) |
Other | 11 (14.5%) |
Model | HMD Type | Display Resolution per Eye (Pixels) | Field of View (°) | Refresh Rate | Degrees of Freedom (DoF) | Eye Tracking | Number of Studies |
---|---|---|---|---|---|---|---|
Oculus Rift DK-1 [46] | Tethered | 640 × 800 | 110 (d) | 60 Hz | 3 | No | 1 |
Oculus Rift DK-2 [47,48] | Tethered | 960 × 1080 | 100 (d) | 75 Hz | 6 | No | 7 |
Oculus Rift CV1 [49] | Tethered | 1080 × 1200 | 110 (d) | 90 Hz | 6 | No | 2 |
Oculus Go [48] | Standalone | 1280 × 1440 | 89 (h) 90 (v) | 60 Hz | 3 | No | 8 |
Oculus Quest [48] | Standalone | 1440 × 1600 | 93 (h) 93 (v) | 72 Hz | 6 | No | 1 |
Oculus Quest 2 [48,50] | Standalone | 1832 × 1920 | 97 (h) 93 (v) | 90 Hz | 6 | No | 2 |
Meta Quest Pro [48] | Standalone | 1800 × 1920 | 106 (h) 95.57 (d) | 90 HZ | 6 | Yes | 1 |
Oculus Rift (Model Unspecified) | Tethered | N/A | N/A | N/A | N/A | N/A | 2 |
HTC VIVE [48,51] | Tethered | 1080 × 1200 | 110 (d) | 90 Hz | 6 | No | 3 |
HTC VIVE Pro [48,52] | Tethered | 1440 × 1600 | 110 (d) | 90 Hz | 6 | No | 1 |
HTC VIVE Pro Eye [53] | Tethered | 1440 × 1600 | 110 (d) | 90 Hz | 6 | Yes | 11 |
Pico Neo Eye 2 [54] | Standalone | 1920 × 2160 | 101 (d) | 75 Hz | 6 | Yes | 3 |
VisuALL S and K [55,56] (Powered by Pico G2 4K) | Standalone | 1920 × 2160 | 101 (d) | 75 Hz | 3 | No | 6 |
Virtual Vision [57,58] (Powered by Pico—Model Unspecified) | Standalone | 1920 × 2160 | – | 75 Hz | – | – | 1 |
Pico (Model Unspecified) | Unspecified | N/A | N/A | N/A | N/A | N/A | 1 |
Fove 0 [44,59] | Tethered | 1280 × 1440 | 100 (d) | 70 Hz | 6 | Yes | 3 |
V8 HMD [46] | Tethered | 640 × 480 | 60 (d) | 60 Hz | 6 | Yes | 1 |
DPVR P1 Pro [48,60] | Standalone | 1280 × 1440 | 100 (d) | 90 Hz | 3 | No | 1 |
Radius VRP [61] | Standalone | 1600 × 1600 | 100 (d) | 60 Hz | – | No | 1 |
Elisar Advanced Vision Analyzer [62] | Standalone | – | 60 (Monocular) | - | – | Yes | 1 |
Remidio C3 Vision Field Analyzer [63] | Smartphone-Based VR | SB | – | SB | – | No | 2 |
Google Cardboard [64] | Smartphone-Based VR | SB | 100 (d) | SB | SB | No | 1 |
Google Daydream (2nd Generation) [65] | Smartphone-Based VR | SB | – | SB | SB | No | 1 |
Zeiss VR One Plus [66] | Smartphone-Based VR | SB | 100 (d) | SB | SB | No | 4 |
Homido Prime VR [67] | Smartphone-Based VR | SB | 110 (d) | SB | SB | No | 1 |
Durovis Dive 7 [45] | Smartphone-Based VR | Tablet-Based | – | Tablet-Based | Tablet-Based | No | 1 |
Trust EXOS 3D VR glasses [32] | Smartphone-Based VR | SB | 80 (d) | SB | SB | No | 1 |
Shinecon (Model Unspecified) | Smartphone-Based VR | N/A | N/A | N/A | N/A | N/A | 2 |
Samsung Gear HMD (Model Unspecified) | Smartphone-Based VR | N/A | N/A | N/A | N/A | N/A | 2 |
Palm Scan VF2000® Visual Field Analyzer (Model Unspecified) | Standalone | N/A | N/A | N/A | N/A | N/A | 1 |
Unspecified | Unspecified | N/A | N/A | N/A | N/A | N/A | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masoudi, K.; Wong, M.; Tchao, D.; Orchanian-Cheff, A.; Reber, M.; Appel, L. Seeing Opportunity in Virtual Reality: A Rapid Review of the Use of VR as a Tool in Vision Care. Technologies 2025, 13, 342. https://doi.org/10.3390/technologies13080342
Masoudi K, Wong M, Tchao D, Orchanian-Cheff A, Reber M, Appel L. Seeing Opportunity in Virtual Reality: A Rapid Review of the Use of VR as a Tool in Vision Care. Technologies. 2025; 13(8):342. https://doi.org/10.3390/technologies13080342
Chicago/Turabian StyleMasoudi, Kiana, Madeline Wong, Danielle Tchao, Ani Orchanian-Cheff, Michael Reber, and Lora Appel. 2025. "Seeing Opportunity in Virtual Reality: A Rapid Review of the Use of VR as a Tool in Vision Care" Technologies 13, no. 8: 342. https://doi.org/10.3390/technologies13080342
APA StyleMasoudi, K., Wong, M., Tchao, D., Orchanian-Cheff, A., Reber, M., & Appel, L. (2025). Seeing Opportunity in Virtual Reality: A Rapid Review of the Use of VR as a Tool in Vision Care. Technologies, 13(8), 342. https://doi.org/10.3390/technologies13080342