Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (785)

Search Parameters:
Keywords = vessel monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 934 KiB  
Article
STID-Mixer: A Lightweight Spatio-Temporal Modeling Framework for AIS-Based Vessel Trajectory Prediction
by Leiyu Wang, Jian Zhang, Guangyin Jin and Xinyu Dong
Eng 2025, 6(8), 184; https://doi.org/10.3390/eng6080184 (registering DOI) - 3 Aug 2025
Abstract
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and [...] Read more.
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and irregular sampling intervals, while vessel trajectories are characterized by strong spatial–temporal dependencies. These factors pose significant challenges for efficient and accurate modeling. To address this issue, we propose a lightweight vessel trajectory prediction framework that integrates Spatial–Temporal Identity encoding with an MLP-Mixer architecture. The framework discretizes spatial and temporal features into structured IDs and uses dual MLP modules to model temporal dependencies and feature interactions without relying on convolution or attention mechanisms. Experiments on a large-scale real-world AIS dataset demonstrate that the proposed STID-Mixer achieves superior accuracy, training efficiency, and generalization capability compared to representative baseline models. The method offers a compact and deployable solution for large-scale maritime trajectory modeling. Full article
20 pages, 6543 KiB  
Article
Study of Antarctic Sea Ice Based on Shipborne Camera Images and Deep Learning Method
by Xiaodong Chen, Shaoping Guo, Qiguang Chen, Xiaodong Chen and Shunying Ji
Remote Sens. 2025, 17(15), 2685; https://doi.org/10.3390/rs17152685 (registering DOI) - 3 Aug 2025
Abstract
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab [...] Read more.
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab and U-Net, were employed to automatically obtain sea ice concentration (SIC) and sea ice thickness (SIT), providing high-frequency data at 5-min intervals. During the observation period, ice navigation accounted for 32 days, constituting less than 20% of the total 163 voyage days. Notably, 63% of the navigation was in ice fields with less than 10% concentration, while only 18.9% occurred in packed ice (concentration > 90%) or level ice regions. SIT ranges from 100 cm to 234 cm and follows a normal distribution. The results demonstrate that, to achieve enhanced navigation efficiency and fulfill expedition objectives, the research vessel substantially reduced duration in high-concentration ice areas. Additionally, the results of SIC extracted from shipborne camera images were compared with the data from the Copernicus Marine Environment Monitoring Service (CMEMS) satellite remote sensing. In summary, the sea ice parameter data obtained from shipborne camera images offer high spatial and temporal resolution, making them more suitable for engineering applications in establishing sea ice environmental parameters. Full article
Show Figures

Figure 1

19 pages, 3765 KiB  
Article
Mathematical Study of Pulsatile Blood Flow in the Uterine and Umbilical Arteries During Pregnancy
by Anastasios Felias, Charikleia Skentou, Minas Paschopoulos, Petros Tzimas, Anastasia Vatopoulou, Fani Gkrozou and Michail Xenos
Fluids 2025, 10(8), 203; https://doi.org/10.3390/fluids10080203 (registering DOI) - 1 Aug 2025
Abstract
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than [...] Read more.
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than 200 pregnant women (in the second and third trimesters) reveals significant increases in the umbilical arterial peak systolic velocity (PSV) between the 22nd and 30th weeks, while uterine artery velocities remain relatively stable, suggesting adaptations in vascular resistance during pregnancy. By combining the Navier–Stokes equations with Doppler ultrasound-derived inlet velocity profiles, we quantify several key fluid dynamics parameters, including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), Reynolds number (Re), and Dean number (De), evaluating laminar flow stability in the uterine artery and secondary flow patterns in the umbilical artery. Since blood exhibits shear-dependent viscosity and complex rheological behavior, modeling it as a non-Newtonian fluid is essential to accurately capture pulsatile flow dynamics and wall shear stresses in these vessels. Unlike conventional imaging techniques, CFD offers enhanced visualization of blood flow characteristics such as streamlines, velocity distributions, and instantaneous particle motion, providing insights that are not easily captured by Doppler ultrasound alone. Specifically, CFD reveals secondary flow patterns in the umbilical artery, which interact with the primary flow, a phenomenon that is challenging to observe with ultrasound. These findings refine existing hemodynamic models, provide population-specific reference values for clinical assessments, and improve our understanding of the relationship between umbilical arterial flow dynamics and fetal growth restriction, with important implications for maternal and fetal health monitoring. Full article
Show Figures

Figure 1

20 pages, 3582 KiB  
Article
Design and Development of a Real-Time Pressure-Driven Monitoring System for In Vitro Microvasculature Formation
by Gayathri Suresh, Bradley E. Pearson, Ryan Schreiner, Yang Lin, Shahin Rafii and Sina Y. Rabbany
Biomimetics 2025, 10(8), 501; https://doi.org/10.3390/biomimetics10080501 (registering DOI) - 1 Aug 2025
Viewed by 34
Abstract
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost [...] Read more.
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost and compatibility across diverse device architectures. Our work presents an advanced experimental module for quantifying pressure within a vascularizing microfluidic platform. Equipped with an integrated Arduino microcontroller and image monitoring, the system facilitates real-time remote monitoring to access temporal pressure and flow dynamics within the device. This setup provides actionable insights into the hemodynamic parameters driving vascularization in vitro. In-line pressure sensors, interfaced through I2C communication, are employed to precisely record inlet and outlet pressures during critical stages of microvasculature tubulogenesis. Flow measurements are obtained by analyzing changes in reservoir volume over time (dV/dt), correlated with the change in pressure over time (dP/dt). This quantitative assessment of various pressure conditions in a microfluidic platform offers insights into their impact on microvasculature perfusion kinetics. Data acquisition can help inform and finetune functional vessel network formation and potentially enhance the durability, stability, and reproducibility of engineered in vitro platforms for organoid vascularization in regenerative medicine. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

12 pages, 1939 KiB  
Article
Fe3+-Modulated In Situ Formation of Hydrogels with Tunable Mechanical Properties
by Lihan Rong, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li and Yuyan Liu
Gels 2025, 11(8), 586; https://doi.org/10.3390/gels11080586 - 30 Jul 2025
Viewed by 116
Abstract
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report [...] Read more.
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report a novel one-pot strategy where controlled amounts of Fe3+ are directly added to polyacrylamide-sodium acrylate (PAM-SA) precursor solutions, ensuring homogeneous ion distribution. Combining this with Photoinduced Electron/Energy Transfer Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) polymerization enables efficient hydrogel fabrication under open-vessel conditions, improving its scalability. Fe3+ concentration achieves unprecedented modulation of mechanical properties: Young’s modulus (10 to 150 kPa), toughness (0.26 to 2.3 MJ/m3), and strain at break (800% to 2500%). The hydrogels also exhibit excellent compressibility (90% strain recovery), energy dissipation (>90% dissipation efficiency at optimal Fe3+ levels), and universal adhesion to diverse surfaces (plastic, metal, PTFE, and cardboard). Finally, these Fe3+-incorporated hydrogels demonstrated high effectiveness as strain sensors for monitoring finger/elbow movements, with gauge factors dependent on composition. This work provides a scalable, oxygen-tolerant route to tunable hydrogels for advanced wearable devices. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

21 pages, 2255 KiB  
Article
Cloud-Based Architecture for Hydrophone Data Acquisition and Processing of Surface and Underwater Vehicle Detection
by Francisco Pérez Carrasco, Anaida Fernández García, Alberto García, Verónica Ruiz Bejerano, Álvaro Gutiérrez and Alberto Belmonte-Hernández
J. Mar. Sci. Eng. 2025, 13(8), 1455; https://doi.org/10.3390/jmse13081455 - 30 Jul 2025
Viewed by 231
Abstract
This paper presents a cloud-based architecture for the acquisition, transmission, and processing of acoustic data from hydrophone arrays, designed to enable the detection and monitoring of both surface and underwater vehicles. The proposed system offers a modular and scalable cloud infrastructure that supports [...] Read more.
This paper presents a cloud-based architecture for the acquisition, transmission, and processing of acoustic data from hydrophone arrays, designed to enable the detection and monitoring of both surface and underwater vehicles. The proposed system offers a modular and scalable cloud infrastructure that supports real-time and distributed processing of hydrophone data collected in diverse aquatic environments. Acoustic signals captured by heterogeneous hydrophones—featuring varying sensitivity and bandwidth—are streamed to the cloud, where several machine learning algorithms can be deployed to extract distinguishing acoustic signatures from vessel engines and propellers in interaction with water. The architecture leverages cloud-based services for data ingestion, processing, and storage, facilitating robust vehicle detection and localization through propagation modeling and multi-array geometric configurations. Experimental validation demonstrates the system’s effectiveness in handling high-volume acoustic data streams while maintaining low-latency processing. The proposed approach highlights the potential of cloud technologies to deliver scalable, resilient, and adaptive acoustic sensing platforms for applications in maritime traffic monitoring, harbor security, and environmental surveillance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1591 KiB  
Systematic Review
Management of Aberrant Internal Carotid Artery Injury Caused During Otologic Procedures: Systematic Review and Multicenter Case Series
by Andreas Spörlein, Susan Arndt, Till F. Jakob, Antje Aschendorff, Theo Demerath, Christian Taschner, Andrzej Balcerowiak, Patrycja Rusin, Ann-Kathrin Rauch and Wojciech Gawęcki
J. Clin. Med. 2025, 14(15), 5285; https://doi.org/10.3390/jcm14155285 - 26 Jul 2025
Viewed by 354
Abstract
Background/Objectives: An aberrant internal carotid artery (aICA) in the middle ear is a rare vascular anomaly with potentially catastrophic consequences if injured during otologic procedures. Given its rarity, standardized treatment recommendations are lacking. This study aims to present four cases of aICA bleeding, [...] Read more.
Background/Objectives: An aberrant internal carotid artery (aICA) in the middle ear is a rare vascular anomaly with potentially catastrophic consequences if injured during otologic procedures. Given its rarity, standardized treatment recommendations are lacking. This study aims to present four cases of aICA bleeding, systematically review the literature, and evaluate the outcomes of conservative and interventional management. Methods: A retrospective review of four patients treated for intraoperative aICA hemorrhage at two tertiary referral centers was performed. A systematic review was conducted following PRISMA guidelines. Neurologic and otologic outcomes, hemostasis, and complications were analyzed. Results: Two patients were treated conservatively with external auditory canal packing, while two required endovascular coil embolization due to pseudoaneurysm formation or persistent bleeding. One patient suffered a stroke due to traumatic ICA occlusion. The systematic review identified 20 additional cases. Conservative treatment alone sufficed in 37.5% of cases, whereas 62.5% required vessel occlusion via coiling, balloon occlusion, or stenting. Neurologic complications occurred in 25% of patients, while otologic outcomes varied widely and were inconsistently reported. Conclusions: Initial external auditory canal packing and a CT angiogram should be recommended for all patients. Initial conservative management may be appropriate for cases with early hemostasis if close monitoring is ensured. Endovascular treatment is often necessary, particularly in cases of pseudoaneurysm or rebleeding. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

22 pages, 1329 KiB  
Review
Visual Field Examinations for Retinal Diseases: A Narrative Review
by Ko Eun Kim and Seong Joon Ahn
J. Clin. Med. 2025, 14(15), 5266; https://doi.org/10.3390/jcm14155266 - 25 Jul 2025
Viewed by 190
Abstract
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal [...] Read more.
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal functional loss before structural changes become visible. This review summarizes how VF testing is applied across key conditions: hydroxychloroquine (HCQ) retinopathy, age-related macular degeneration (AMD), diabetic retinopathy (DR) and macular edema (DME), and inherited disorders including inherited dystrophies such as retinitis pigmentosa (RP). Traditional methods like the Goldmann kinetic perimetry and simple tools such as the Amsler grid help identify large or central VF defects. Automated perimetry (e.g., Humphrey Field Analyzer) provides detailed, quantitative data critical for detecting subtle paracentral scotomas in HCQ retinopathy and central vision loss in AMD. Frequency-doubling technology (FDT) reveals early neural deficits in DR before blood vessel changes appear. Microperimetry offers precise, localized sensitivity maps for macular diseases. Despite its value, VF testing faces challenges including patient fatigue, variability in responses, and interpretation of unreliable results. Recent advances in artificial intelligence, virtual reality perimetry, and home-based perimetry systems are improving test accuracy, accessibility, and patient engagement. Integrating VF exams with these emerging technologies promises more personalized care, earlier intervention, and better long-term outcomes for patients with retinal disease. Full article
(This article belongs to the Special Issue New Advances in Retinal Diseases)
Show Figures

Figure 1

32 pages, 9845 KiB  
Article
Real-Time Analysis of Millidecade Spectra for Ocean Sound Identification and Wind Speed Quantification
by Mojgan Mirzaei Hotkani, Bruce Martin, Jean Francois Bousquet and Julien Delarue
Acoustics 2025, 7(3), 44; https://doi.org/10.3390/acoustics7030044 - 24 Jul 2025
Viewed by 307
Abstract
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain, [...] Read more.
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain, vessels, fin and blue whales, as well as clicks and whistles from dolphins. Positioned as a foundational tool for implementing the Ocean Sound Essential Ocean Variable (EOV), it contributes to understanding long-term trends in climate change for sustainable ocean health and predicting threats through forecasts. The proposed soundscape classification algorithm, validated using extensive acoustic recordings (≥32 kHz) collected at various depths and latitudes, demonstrates high performance, achieving an average precision of 89% and an average recall of 86.59% through optimized parameter tuning via a genetic algorithm. Here, wind speed is determined using a cubic function with power spectral density (PSD) at 6 kHz and the MASLUW method, exhibiting strong agreement with satellite data below 15 m/s. Designed for compatibility with low-power electronics, the algorithm can be applied to both archival datasets and real-time data streams. It provides a straightforward metric for ocean monitoring and sound source identification. Full article
Show Figures

Figure 1

16 pages, 2549 KiB  
Article
An Engine Load Monitoring Approach for Quantifying Yearly Methane Slip Emissions from an LNG-Powered RoPax Vessel
by Benoit Sagot, Raphael Defossez, Ridha Mahi, Audrey Villot and Aurélie Joubert
J. Mar. Sci. Eng. 2025, 13(7), 1379; https://doi.org/10.3390/jmse13071379 - 21 Jul 2025
Viewed by 466
Abstract
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less [...] Read more.
Liquefied natural gas (LNG) is increasingly used as a marine fuel due to its capacity to significantly reduce emissions of particulate matter, sulfur oxides (SOx), and nitrogen oxides (NOx), compared to conventional fuels. In addition, LNG combustion produces less carbon dioxide (CO2) than conventional marine fuels, and the use of non-fossil LNG offers further potential for reducing greenhouse gas emissions. However, this benefit can be partially offset by methane slip—the release of unburned methane in engine exhaust—which has a much higher global warming potential than CO2. This study presents an experimental evaluation of methane emissions from a RoPax vessel powered by low-pressure dual-fuel four-stroke engines with a direct mechanical propulsion system. Methane slip was measured directly during onboard testing and combined with a year-long analysis of engine operation using an Engine Load Monitoring (ELM) method. The yearly average methane slip coefficient (Cslip) obtained was 1.57%, slightly lower than values reported in previous studies on cruise ships (1.7%), and significantly lower than the default values specified by the FuelEU (3.1%) Maritime regulation and IMO (3.5%) LCA guidelines. This result reflects the ship’s operational profile, characterized by long crossings at high and stable engine loads. This study provides results that could support more representative emission assessments and can contribute to ongoing regulatory discussions. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

33 pages, 6970 KiB  
Article
Wake Characteristics and Thermal Properties of Underwater Vehicle Based on DDES Numerical Simulation
by Yu Lu, Jiacheng Cui, Bing Liu, Shuai Shi and Wu Shao
J. Mar. Sci. Eng. 2025, 13(7), 1371; https://doi.org/10.3390/jmse13071371 - 18 Jul 2025
Viewed by 244
Abstract
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; [...] Read more.
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; and both with and without thermal discharge—using Delayed Detached Eddy Simulation (DDES) coupled with the Volume of Fluid (VOF) method. Results indicate that, under heat emission conditions, higher speeds accelerate wake temperature decay, making the thermal wake difficult to detect downstream; without heat emission, turbulent mixing dominates the temperature field, and speed effects are minor. With increased speed, wake vorticity at a fixed location grows by about 30%, free-surface wave height rises from 0.05 to 0.15 m, and wavelength remains around 1.8 m, all positively correlated with speed. Dive depth is negatively correlated with wave height, decreasing from 0.15 to 0.04 m as depth increases from 5 to 20 m, while wavelength remains largely unchanged. At a 10 m submergence depth, the thermal wake is clearly detectable on the surface but becomes hard to detect beyond 20 m, indicating a pronounced depth effect on its visibility. These results not only confirm the positive correlation between vessel speed and wake vorticity reported in earlier studies but also extend those findings by providing the first quantitative evaluation of how submergence depth critically limits thermal wake visibility beyond 20 m. This research provides quantitative evaluations of wake characteristics under varying speeds, depths, and heat emissions, offering valuable insights for stealth navigation and detection technologies. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

17 pages, 2307 KiB  
Article
Albumin Enhances Microvascular Reactivity in Sepsis: Insights from Near-Infrared Spectroscopy and Vascular Occlusion Testing
by Rachael Cusack, Alejandro Rodríguez, Ben Cantan, Orsolya Miskolci, Elizabeth Connolly, Gabor Zilahi, John Davis Coakley and Ignacio Martin-Loeches
J. Clin. Med. 2025, 14(14), 4982; https://doi.org/10.3390/jcm14144982 - 14 Jul 2025
Viewed by 334
Abstract
Background/Objectives: In septic shock, microcirculatory dysfunction contributes to organ failure and mortality. While sidestream dark-field (SDF) imaging is the reference method for assessing microvascular perfusion, its complexity limits routine use. This study evaluates near-infrared spectroscopy (NIRS) with vascular occlusion testing (VOT) as [...] Read more.
Background/Objectives: In septic shock, microcirculatory dysfunction contributes to organ failure and mortality. While sidestream dark-field (SDF) imaging is the reference method for assessing microvascular perfusion, its complexity limits routine use. This study evaluates near-infrared spectroscopy (NIRS) with vascular occlusion testing (VOT) as a potential bedside tool for monitoring microcirculatory changes following fluid resuscitation. Methods: Sixty-three fluid-responsive patients with sepsis were randomized to receive either 20% albumin or crystalloid. NIRS-VOT and sublingual SDF measurements were obtained at baseline and 60 min post-resuscitation. The reoxygenation slope (ReOx) derived from NIRS was calculated and compared with clinical severity scores and SDF-derived microcirculatory parameters. Results: ReOx significantly increased from baseline to 60 min in the albumin group (p = 0.025), but not in the crystalloid group. However, between-group differences at 60 min were not statistically significant. ReOx at 60 min was inversely correlated with APACHE II score (ρ = −0.325) and lactate (ρ = −0.277) and showed a weak inverse trend with norepinephrine dose. AUROC for ICU survival based on ReOx was 0.616. NIRS ReOx showed weak correlations with SDF parameters, including the number of crossings (p = 0.03) and the consensus proportion of perfused vessels (CPPV; p = 0.004). Conclusions: NIRS-VOT detected microcirculatory trends after albumin administration but showed limited agreement with SDF imaging. These findings suggest that NIRS and SDF assess different physiological domains. Further studies are warranted to define the clinical utility of NIRS as a microcirculation monitoring tool (Clinicaltrials.gov: NCT05357339). Full article
(This article belongs to the Special Issue Current Trends and Prospects of Critical Emergency Medicine)
Show Figures

Figure 1

20 pages, 526 KiB  
Article
Assessment of Retinal Microcirculation in Primary Open-Angle Glaucoma Using Adaptive Optics and OCT Angiography: Correlation with Structural and Functional Damage
by Anna Zaleska-Żmijewska, Alina Szewczuk, Zbigniew M. Wawrzyniak, Maria Żmijewska and Jacek P. Szaflik
J. Clin. Med. 2025, 14(14), 4978; https://doi.org/10.3390/jcm14144978 - 14 Jul 2025
Viewed by 272
Abstract
Background: This study aimed to evaluate retinal arteriole parameters using adaptive optics (AO) rtx1™ (Imagine Eyes, Orsay, France) and peripapillary and macular vessel densities with optical coherence tomography angiography (OCTA) in eyes with different stages of primary open-angle glaucoma (POAG) compared to healthy [...] Read more.
Background: This study aimed to evaluate retinal arteriole parameters using adaptive optics (AO) rtx1™ (Imagine Eyes, Orsay, France) and peripapillary and macular vessel densities with optical coherence tomography angiography (OCTA) in eyes with different stages of primary open-angle glaucoma (POAG) compared to healthy eyes. It also investigated the associations between vascular parameters and glaucoma severity, as defined by structural (OCT) and functional (visual field) changes. Methods: Fifty-seven eyes from 31 POAG patients and fifty from 25 healthy volunteers were examined. Retinal arteriole morphology was assessed using the AO rtx1™-fundus camera, which measured lumen diameter, wall thickness, total diameter, wall-to-lumen ratio (WLR), and wall cross-sectional area. OCTA was used to measure vessel densities in superficial (SCP) and deep (DCP) capillary plexuses of the macula and radial peripapillary capillary plexus (RPCP) and FAZ area. Structural OCT parameters (RNFL, GCC, rim area) and visual field tests (MD, PSD) were also performed. Results: Glaucoma eyes showed significantly thicker arteriole walls (12.8 ± 1.4 vs. 12.2 ± 1.3 µm; p = 0.030), narrower lumens (85.5 ± 10.4 vs. 100.6 ± 11.1 µm; p < 0.001), smaller total diameters (111.0 ± 10.4 vs. 124.1 ± 12.4 µm; p < 0.001), and higher WLRs (0.301 ± 0.04 vs. 0.238 ± 0.002; p < 0.001) than healthy eyes. In glaucoma patients, OCTA revealed significantly reduced vessel densities in SCP (36.39 ± 3.60 vs. 38.46 ± 1.41; p < 0.001), DCP (36.39 ± 3.60 vs. 38.46 ± 1.41; p < 0.001), and RPCP plexuses (35.42 ± 4.97 vs. 39.27 ± 1.48; p < 0.001). The FAZ area was enlarged in eyes with glaucoma (0.546 ± 0.299 vs. 0.295 ± 0.125 mm2); p < 0.001). Positive correlations were found between vessel densities and OCT parameters (RNFL, r = 0.621; GCC, r = 0.536; rim area, r = 0.489), while negative correlations were observed with visual field deficits (r = −0.517). Conclusions: Vascular deterioration, assessed by AO rtx1™ and OCTA, correlates closely with structural and functional damage in glaucoma. Retinal microcirculation changes may precede structural abnormalities in the optic nerve head. Both imaging methods enable the earlier detection, staging, and monitoring of glaucoma compared to conventional tests. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Graphical abstract

15 pages, 1061 KiB  
Article
Preliminary Study on Some Blood Parameters of White Snook (Centropomus viridis) Broodstock Reared in Aquaculture Recirculating System (RAS)
by Iris Adriana Hernández-López, Virginia Patricia Domínguez-Jiménez, Rosa María Medina-Guerrero, Rodolfo Lozano-Olvera, Oscar Basilio Del Rio-Zaragoza, Leonardo Ibarra-Castro, Juan Manuel Martínez-Brown and Emyr Saúl Peña-Marín
Fishes 2025, 10(7), 347; https://doi.org/10.3390/fishes10070347 - 14 Jul 2025
Viewed by 230
Abstract
The white snook (Centropomus viridis) is an emerging aquaculture species with high market acceptance, exhibiting catadromous and protandric hermaphroditic characteristics in adulthood. This study aimed to preliminarily characterize certain hematological and biochemical parameters, as well as blood cell morphology, for identifying [...] Read more.
The white snook (Centropomus viridis) is an emerging aquaculture species with high market acceptance, exhibiting catadromous and protandric hermaphroditic characteristics in adulthood. This study aimed to preliminarily characterize certain hematological and biochemical parameters, as well as blood cell morphology, for identifying possible variations between sexes maintained under aquaculture recirculating system (RAS) conditions. The white snook broodstock was anesthetized with clove oil, and biometric values, as well as sex classification, were measured. Then, blood samples were collected from 14 females (7132 ± 1610 g) and 20 males (2200 ± 0.963 g) via caudal vessel puncture to analyze selected hematological parameters, blood biochemistry, and cellular morphology. Fulton’s condition factor (K) showed no differences between sexes, indicating a healthy fish status. Females showed significantly higher serum cholesterol, glucose, and triglyceride levels than males. Also, hematocrit (HCT) and mean corpuscular volume (MCV) were elevated in females. No sex-related differences were observed in red or white cell counts or in blood cell dimensions. Morphological characterization identified erythrocytes, thrombocytes, and three types of leukocytes: lymphocytes (small and large lymphocytes), neutrophils, and monocytes, with no eosinophils or basophils detected in either sex. These findings provide fundamental reference values for the hematological and biochemical profiles of C. viridis broodstock in captivity and highlight sex-specific differences relevant for reproductive and health monitoring. However, it should be considered that the sample size used to establish reference ranges for the species is small, so it is recommended to implement a monitoring plan for this and other broodstocks of this emerging species. Full article
Show Figures

Figure 1

10 pages, 1130 KiB  
Communication
A Comparability Study Between Intravenous Contrast-Enhanced Cone-Beam Computed Tomography (CBCT) and Magnetic Resonance Angiography (MRA) on the Post-Treatment Follow-Up of Intracranial Aneurysms: A Single-Center Prospective Cohort Study
by Man Cho Lee, King Him Fung, Shing Him Liu, Koel Wei Sum Ko, Nok Lun Chan, Neeraj Ramesh Mahboobani, Ka Wai Shek, Tak Lap Poon and Wai Lun Poon
Diagnostics 2025, 15(14), 1774; https://doi.org/10.3390/diagnostics15141774 - 14 Jul 2025
Viewed by 314
Abstract
Background: MRA is used in our center for monitoring post-treatment residual aneurysmal neck and stent patency. IV CBCT offers better spatial resolution and may provide significant advantages. Objective: This study investigates the image quality of IV CBCT compared to that of MRA for [...] Read more.
Background: MRA is used in our center for monitoring post-treatment residual aneurysmal neck and stent patency. IV CBCT offers better spatial resolution and may provide significant advantages. Objective: This study investigates the image quality of IV CBCT compared to that of MRA for the follow-up of intracranial aneurysms. Materials and Methods: In this prospective cohort study, 97 patients (mean age: 63.1 ± 11.7; 75 women and 22 men) with 114 treated cerebral aneurysms were included from July 2023 to April 2024. All patients underwent IV CBCT and MRA on the same day. Two neurointerventional radiologists assessed image quality using a five-point Likert scale on two separate occasions six weeks apart. Diagnostic values were evaluated across six parameters. Intra-observer and inter-observer agreements were calculated. Subgroup analyses were performed. Results: Overall, IV CBCT and MRA are comparable in terms of their ability to assess parent vessel status and the degree of artifacts (p > 0.05) though MRA shows a slight advantage in evaluating residual aneurysmal neck (p = 0.05). For clipped aneurysms, IV CBCT is superior in assessing residual aneurysmal neck (OR = 16.0, p < 0.001) and parent vessel status (OR = 15.1, p < 0.001) with significantly fewer artifacts (OR > 100, p < 0.001). For aneurysms solely treated with stents, IV CBCT is superior in assessing residual aneurysmal neck (OR > 20, p = 0.002) and parent vessel status (OR > 20, p = 0.002) with significantly fewer artifacts (OR > 20, p = 0.002). IV CBCT outperforms MRA in evaluating stent struts and the vessel wall status of a stented segment when MRA is non-diagnostic. Conclusions: IV CBCT and MRA have their own strengths and roles in the follow-up of post-treatment intracranial aneurysms. Overall, IV CBCT is superior in terms of its assessment of intracranial aneurysms treated solely with stents or surgical clips. Full article
(This article belongs to the Special Issue Diagnostic Imaging in Neurological Diseases)
Show Figures

Figure 1

Back to TopTop