Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = vesicular acetylcholine transporter (VAChT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6485 KiB  
Article
Exogenous Administration of Delta-9-Tetrahydrocannabinol Affects Adult Hippocampal Neurotransmission in Female Wistar Rats
by Ana M. Neves, Sandra Leal, Bruno M. Fonseca and Susana I. Sá
Int. J. Mol. Sci. 2025, 26(13), 6144; https://doi.org/10.3390/ijms26136144 - 26 Jun 2025
Viewed by 390
Abstract
Delta-9-tetrahydrocannabinol (THC) is a psychoactive element of Cannabis sativa and affects the human cannabinoid system through its receptors, CB1R and CB2R. CB1R was found in several brain areas, including the hippocampal formation (HF), and it is responsible for most THC side effects. We [...] Read more.
Delta-9-tetrahydrocannabinol (THC) is a psychoactive element of Cannabis sativa and affects the human cannabinoid system through its receptors, CB1R and CB2R. CB1R was found in several brain areas, including the hippocampal formation (HF), and it is responsible for most THC side effects. We investigated THC’s effects in the HF of female Wistar rats to assess changes in its neurotransmission. Female Wister rats (n = 20) were gonadectomized under anesthesia at 8 weeks old. Afterwards, they received estradiol benzoate (EB) and/or THC. Immunohistochemistry was performed to assess the expression of the cholinergic receptor alpha 7 subunit (CHRNA7), the vesicular acetylcholine transporter (VAChT), the vesicular glutamate transporter (VGLUT), the gamma-aminobutyric acid type A receptor (GABRA), the CB1 receptor, and estradiol receptor alpha (EBα). In the HF, the expression of CHRNA7 was increased by EB and by THC in the Oil groups but decreased by THC in the EB groups. The same is true for VGLUT expression in the DG and hilum and for GABRA expression in the hilum. The expression of VAChT and CB1 is reduced by EB, while the concomitant administration of THC increases it. GAD expression is reduced by EB administration in CA1, CA3, and DG. Our results may help with decision-making regarding the prescription of low doses of THC as a therapeutical approach. Full article
Show Figures

Figure 1

21 pages, 1989 KiB  
Article
Vagus Nerve Mediated Liver-Brain-Axis Is a Major Regulator of the Metabolic Landscape in the Liver
by Camila F. Brito, Roberta C. Fonseca, Lucas Rodrigues-Ribeiro, João S. F. Guimarães, Bruna F. Vaz, Gabriel S. S. Tofani, Ana C. S. Batista, Ariane B. Diniz, Paola Fernandes, Núbia A. M. Nunes, Rafaela M. Pessoa, Amanda C. C. Oliveira, Ivana S. Lula, Valbert N. Cardoso, Simone O. A. Fernandes, Maristela O. Poletini, Jacqueline I. Alvarez-Leite, Gustavo B. Menezes, Adaliene V. M. Ferreira, Mariana T. Q. Magalhães, Vladimir Gorshkov, Frank Kjeldsen, Thiago Verano-Braga, Alan M. Araujo and André G. Oliveiraadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(5), 2166; https://doi.org/10.3390/ijms26052166 - 28 Feb 2025
Viewed by 1411
Abstract
The liver serves as a major energetic reservoir for other tissues and its metabolic function is controlled by humoral and neural factors. The vagus nerve innervating the gastrointestinal tract plays an important role in regulating peripheral metabolism and energy expenditure. Although the liver [...] Read more.
The liver serves as a major energetic reservoir for other tissues and its metabolic function is controlled by humoral and neural factors. The vagus nerve innervating the gastrointestinal tract plays an important role in regulating peripheral metabolism and energy expenditure. Although the liver receives vagus nerve fibers, the impact of this circuitry in the regulation of hepatic metabolism is still poorly understood. Herein, we used a combination of quantitative proteomics and in vivo imaging techniques to investigate the impact of the vagus nerve on liver metabolism in male mice. Liver-brain axis was impaired by vagotomy (VNX) or knocking down of the vesicular acetylcholine transporter (VAChT-KD). Mice were challenged with high carbohydrate or high-fat feeding. The vagus nerve shapes the metabolic framework of the liver, as vagotomy led to a significant alteration of the hepatic proteome landscape. Differential protein expression and pathway enrichment analyses showed that glycolytic and fatty acid biosynthesis were increased following VNX, whereas β-oxidation was decreased. These results were corroborated in VAChT-KD mice. This metabolic shift facilitated lipid accumulation in hepatocytes in mice fed with a standard commercial diet. Furthermore, VNX worsened liver steatosis following high-carbohydrate or high-fat dietary challenges. This study describes the liver-brain axis mediated by the vagus nerve as an important regulator of the hepatic metabolic landscape. Full article
(This article belongs to the Special Issue Molecular Insights in Hepatological Complications)
Show Figures

Figure 1

19 pages, 4189 KiB  
Article
Microplastic and the Enteric Nervous System: Effect of PET Microparticles on Selected Neurotransmitters and Cytokines in the Porcine Ileum
by Ismena Gałęcka and Jarosław Całka
Int. J. Mol. Sci. 2024, 25(21), 11645; https://doi.org/10.3390/ijms252111645 - 30 Oct 2024
Viewed by 1467
Abstract
Microplastic is an environmental hazard to which both animals and humans are exposed. Current reports show that it can cause inflammation, including in the gastrointestinal tract. To examine the impact on the ileum, 15 eight-week-old gilts (five individuals/group) were exposed to PET microplastics [...] Read more.
Microplastic is an environmental hazard to which both animals and humans are exposed. Current reports show that it can cause inflammation, including in the gastrointestinal tract. To examine the impact on the ileum, 15 eight-week-old gilts (five individuals/group) were exposed to PET microplastics (7.6 µm–416.9 µm) at a dose of 0.1 g/day or 1 g/day for 28 days. The collected ileum fragments were investigated for the cytokine concentrations (IL-1β, IL-6, IL-8, IL-10, and TNF-α; ELISA test), neuron populations (cocaine and amphetamine-regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter, and vasoactive intestinal peptide; immunofluorescence staining), and morphometric parameters (histological analysis). Under the influence of MP-PET, there was a reduction in the populations of CART- and GAL-positive neurons in the submucosal plexuses and of nNOS-, VAChT-, and VIP-positive neurons in all the plexuses. In contrast, there was an increase in GAL-positive neurons in the myenteric plexus and SP-positive neurons in all the plexuses. The concentrations of IL-1β, IL-6, IL-8, IL-10, and TNF-α did not undergo statistically significant changes under the influence of the low or high dose of MP-PET. The changes in the histological structure exclusively concerned the thinning of the mucosa and the muscularis externa. The results support the thesis that MP-PET is not neutral to the ileal cells. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

15 pages, 2186 KiB  
Article
Comparison of the Influence of Bisphenol A and Bisphenol S on the Enteric Nervous System of the Mouse Jejunum
by Krystyna Makowska and Sławomir Gonkowski
Int. J. Mol. Sci. 2024, 25(13), 6941; https://doi.org/10.3390/ijms25136941 - 25 Jun 2024
Viewed by 1747
Abstract
Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic [...] Read more.
Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS. Full article
Show Figures

Figure 1

27 pages, 5066 KiB  
Article
Neuroprotection of Cholinergic Neurons with a Tau Aggregation Inhibitor and Rivastigmine in an Alzheimer’s-like Tauopathy Mouse Model
by Maciej Zadrozny, Patrycja Drapich, Anna Gasiorowska-Bien, Wiktor Niewiadomski, Charles R. Harrington, Claude M. Wischik, Gernot Riedel and Grazyna Niewiadomska
Cells 2024, 13(7), 642; https://doi.org/10.3390/cells13070642 - 6 Apr 2024
Cited by 6 | Viewed by 2780
Abstract
Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer’s disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has [...] Read more.
Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer’s disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets. Full article
Show Figures

Figure 1

10 pages, 3239 KiB  
Brief Report
Age-Dependent Changes in the Occurrence and Segregation of GABA and Acetylcholine in the Rat Superior Cervical Ganglia
by Alfredo Hernández, Constanza González-Sierra, María Elena Zetina, Fredy Cifuentes and Miguel Angel Morales
Int. J. Mol. Sci. 2024, 25(5), 2588; https://doi.org/10.3390/ijms25052588 - 23 Feb 2024
Cited by 1 | Viewed by 1345
Abstract
The occurrence, inhibitory modulation, and trophic effects of GABA have been identified in the peripheral sympathetic nervous system. We have demonstrated that GABA and acetylcholine (ACh) may colocalize in the same axonal varicosities or be segregated into separate ones in the rat superior [...] Read more.
The occurrence, inhibitory modulation, and trophic effects of GABA have been identified in the peripheral sympathetic nervous system. We have demonstrated that GABA and acetylcholine (ACh) may colocalize in the same axonal varicosities or be segregated into separate ones in the rat superior cervical ganglia (SCG). Neurotransmitter segregation varies with age and the presence of neurotrophic factors. Here, we explored age-dependent changes in the occurrence and segregation of GABA and ACh in rats ranging from 2 weeks old (wo) to 12 months old or older. Using immunohistochemistry, we characterized the expression of L-glutamic acid decarboxylase of 67 kDa (GAD67) and vesicular acetylcholine transporter (VAChT) in the rat SCG at 2, 4, 8, 12 wo and 12 months old or older. Our findings revealed that GAD67 was greater at 2 wo compared with the other ages, whereas VAChT levels were greater at 4 wo than at 12 wo and 12 months old or older. The segregation of these neurotransmitters was more pronounced at 2 and 4 wo. We observed a caudo-rostral gradient of segregation degree at 8 and 12 wo. Data point out that the occurrence and segregation of GABA and ACh exhibit developmental adaptative changes throughout the lifetime of rats. We hypothesize that during the early postnatal period, the increase in GABA and GABA-ACh segregation promotes the release of GABA alone which might play a role in trophic actions. Full article
(This article belongs to the Special Issue GABA Signaling in Health and Disease in the Nervous System)
Show Figures

Figure 1

15 pages, 3549 KiB  
Article
The Assessment of the Efficacy of Imperatorin in Reducing Overactive Bladder Symptoms
by Paulina Iwaniak, Piotr Dobrowolski, Jan Wróbel, Tomasz Kluz, Artur Wdowiak, Iwona Bojar, Klaudia Stangel-Wójcikiewicz, Ewa Poleszak, Artur Jakimiuk, Marcin Misiek, Łukasz Zapała and Andrzej Wróbel
Int. J. Mol. Sci. 2023, 24(21), 15793; https://doi.org/10.3390/ijms242115793 - 31 Oct 2023
Cited by 2 | Viewed by 2325
Abstract
Overactive bladder syndrome (OAB) is a prevalent condition that affects the elderly population in particular and significantly impairs quality of life. Imperatorin, a naturally occurring furocoumarin, possesses diverse pharmacological properties that warrant consideration for drug development. The aim of this study was to [...] Read more.
Overactive bladder syndrome (OAB) is a prevalent condition that affects the elderly population in particular and significantly impairs quality of life. Imperatorin, a naturally occurring furocoumarin, possesses diverse pharmacological properties that warrant consideration for drug development. The aim of this study was to investigate the potential of imperatorin (IMP) to attenuate the cystometric and biochemical changes typically associated with retinyl acetate-induced overactive bladder (OAB) and to assess its viability as a pharmacological intervention for OAB patients. A total of 60 rats were divided into four groups: I—control, II—rats with rapamycin (RA)-induced OAB, III—rats administered IMP at a dose of 10 mg/kg/day, and IV—rats with RA-induced OAB treated with IMP. IMP or vehicle were injected intraperitoneally for 14 days. The cystometry and assessment of bladder blood flow were performed two days after the last dose of IMP. The rats were then placed in metabolic cages for 24 h. Urothelial thickness measurements and biochemical analyses were performed. Intravesical infusion of RA induced OAB. Notably, intraperitoneal administration of imperatorin had no discernible effect on urinary bladder function and micturition cycles in normal rats. IMP attenuated the severity of RA-induced OAB. RA induced increases in urothelial ATP, calcitonin gene-related peptide (CGRP), organic cation transporter 3 (OCT3), and vesicular acetylcholine transporter (VAChT), as well as significant c-Fos expression in all micturition areas analyzed, which were attenuated by IMP. Furthermore, elevated levels of Rho kinase (ROCK1) and VAChT were observed in the detrusor, which were reversed by IMP in the context of RA-induced OAB in the urothelium, detrusor muscle, and urine. Imperatorin has a mitigating effect on detrusor overactivity. The mechanisms of action of IMP in the bladder appear to be diverse and complex. These findings suggest that IMP may provide protection against RA-induced OAB and could potentially develop into an innovative therapeutic strategy for the treatment of OAB. Full article
Show Figures

Figure 1

14 pages, 2219 KiB  
Article
Changes Caused by Bisphenols in the Chemical Coding of Neurons of the Enteric Nervous System of Mouse Stomach
by Krystyna Makowska and Slawomir Gonkowski
Int. J. Environ. Res. Public Health 2023, 20(6), 5125; https://doi.org/10.3390/ijerph20065125 - 14 Mar 2023
Cited by 4 | Viewed by 2076
Abstract
Bisphenol A (BPA), an organic chemical compound which is widely used in the production of plastics, can severely damage live organisms. Due to these findings, the plastic industry has started to replace it with other substances, most often with bisphenol S (BPS). Therefore, [...] Read more.
Bisphenol A (BPA), an organic chemical compound which is widely used in the production of plastics, can severely damage live organisms. Due to these findings, the plastic industry has started to replace it with other substances, most often with bisphenol S (BPS). Therefore, during the present investigation, with the use of double immunofluorescence labeling, we compared the effect of BPA and BPS on the enteric nervous system (ENS) in the mouse corpus of the stomach. The obtained results show that both studied toxins impact the amount of nerve cells immunoreactive to substance P (SP), galanin (GAL), vesicular acetylcholine transporter (VAChT is used here as a marker of cholinergic neurons) and vasoactive intestinal polypeptide (VIP). Changes observed under the impact of both bisphenols depended on the neuronal factor, the type of the enteric ganglion and the doses of bisphenols studied. Generally, the increase in the percentage of neurons immunoreactive to SP, GAL and/or VIP, and the decrease in the percentage of VAChT-positive neurons, was noted. Severity of changes was more visible after BPA administration. However, the study has shown that long time exposure to BPS also significantly affects the ENS. Full article
(This article belongs to the Special Issue Toxicological and Health Effects of Environmental Contaminants)
Show Figures

Figure 1

17 pages, 2203 KiB  
Article
The Comparison of the Influence of Bisphenol A (BPA) and Its Analogue Bisphenol S (BPS) on the Enteric Nervous System of the Distal Colon in Mice
by Krystyna Makowska, Ewa Lepiarczyk and Slawomir Gonkowski
Nutrients 2023, 15(1), 200; https://doi.org/10.3390/nu15010200 - 30 Dec 2022
Cited by 10 | Viewed by 3626
Abstract
Bisphenol A (BPA), commonly used as a plasticizer in various branches of industry has a strong negative effect on living organisms. Therefore, more and more often it is replaced in production of plastics by other substances. One of them is bisphenol S (BPS). [...] Read more.
Bisphenol A (BPA), commonly used as a plasticizer in various branches of industry has a strong negative effect on living organisms. Therefore, more and more often it is replaced in production of plastics by other substances. One of them is bisphenol S (BPS). This study for the first time compares the impact of BPA and BPS on the enteric neurons using double immunofluorescence technique. It has been shown that both BPA and BPS affect the number of enteric neurons containing substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuronal isoform of nitric oxide synthase (nNOS—a marker of nitrergic neurons) and/or vesicular acetylcholine transporter (VAChT- a marker of cholinergic neurons). The changes noted under the impact of both bisphenols are similar and consisted of an increase in the number of enteric neurons immunoreactive to all neuronal factors studied. The impact of BPS on some populations of neurons was stronger than that noted under the influence of BPA. The obtained results clearly show that BPS (similarly to BPA) administered for long time is not neutral for the enteric neurons even in relatively low doses and may be more potent than BPA for certain neuronal populations. Full article
(This article belongs to the Special Issue Nutrition and Endocrine Disorders)
Show Figures

Figure 1

14 pages, 1951 KiB  
Article
Changes in the Enteric Neurons Containing Selected Active Substances in the Porcine Descending Colon after the Administration of Bisphenol A (BPA)
by Krystyna Makowska and Sławomir Gonkowski
Int. J. Environ. Res. Public Health 2022, 19(23), 16187; https://doi.org/10.3390/ijerph192316187 - 3 Dec 2022
Cited by 3 | Viewed by 1868
Abstract
Bisphenol A (BPA) is an endocrine disruptor widely distributed in the environment due to its common use in the plastics industry. It is known that it has a strong negative effect on human and animal organisms, but a lot of aspects of this [...] Read more.
Bisphenol A (BPA) is an endocrine disruptor widely distributed in the environment due to its common use in the plastics industry. It is known that it has a strong negative effect on human and animal organisms, but a lot of aspects of this impact are still unexplored. This includes the impact of BPA on the enteric nervous system (ENS) in the large intestine. Therefore, the aim of the study was to investigate the influence of various doses of BPA on the neurons located in the descending colon of the domestic pig, which due to similarities in the organization of intestinal innervation to the human gastrointestinal tract is a good animal model to study processes occurring in human ENS. During this study, the double immunofluorescence technique was used. The obtained results have shown that BPA clearly affects the neurochemical characterization of the enteric neurons located in the descending colon. The administration of BPA caused an increase in the number of enteric neurons containing substance P (SP) and vasoactive intestinal polypeptide (VIP) with a simultaneously decrease in the number of neurons positive for galanin (GAL) and vesicular acetylcholine transporter (VAChT used as a marker of cholinergic neurons). Changes were noted in all types of the enteric plexuses, i.e., the myenteric plexus, outer submucous plexus and inner submucous plexus. The intensity of changes depended on the dose of BPA and the type of enteric plexus studied. The results have shown that BPA may affect the descending colon through the changes in neurochemical characterization of the enteric neurons located in this segment of the gastrointestinal tract. Full article
(This article belongs to the Special Issue Occupational and Environmental Toxicology)
Show Figures

Figure 1

14 pages, 4678 KiB  
Article
Administration of Different Doses of Acrylamide Changed the Chemical Coding of Enteric Neurons in the Jejunum in Gilts
by Michał Bulc, Jarosław Całka and Katarzyna Palus
Int. J. Environ. Res. Public Health 2022, 19(21), 14514; https://doi.org/10.3390/ijerph192114514 - 4 Nov 2022
Cited by 2 | Viewed by 1958
Abstract
Excessive consumption of highly processed foods, such as chips, crisps, biscuits and coffee, exposes the human to different doses of acrylamide. This chemical compound has a multidirectional, adverse effect on human and animal health, including the central and peripheral nervous systems. In this [...] Read more.
Excessive consumption of highly processed foods, such as chips, crisps, biscuits and coffee, exposes the human to different doses of acrylamide. This chemical compound has a multidirectional, adverse effect on human and animal health, including the central and peripheral nervous systems. In this study, we examined the effect of different doses of acrylamide on the enteric nervous system (ENS) of the porcine jejunum. Namely, we took into account the quantitative changes of neurons located in the jejunum wall expressing substance P (SP), galanin (GAL), a neuronal form of nitric oxide synthase (nNOS), the vesicular acetylcholine transporter (VAChT) and cocaine- and amphetamine-regulated transcript (CART). The obtained results indicate that acrylamide causes a statistically significant increase in the number of neurons immunoreactive to SP, GAL, VAChT and CART in all types of examined enteric plexuses and a significant drop in the population of nNOS-positive enteric neurons. Changes were significantly greater in the case of a high dose of acrylamide intoxication. Our results indicate that acrylamide is not indifferent to ENS neurons. A 28-day intoxication with this substance caused marked changes in the chemical coding of ENS neurons in the porcine jejunum. Full article
(This article belongs to the Special Issue Nanotoxicology and Health Effects)
Show Figures

Figure 1

16 pages, 2411 KiB  
Article
Uterine Inflammation Changes the Expression of Cholinergic Neurotransmitters and Decreases the Population of AChE-Positive, Uterus-Innervating Neurons in the Paracervical Ganglion of Sexually Mature Gilts
by Bartosz Miciński, Barbara Jana and Jarosław Całka
Animals 2022, 12(13), 1676; https://doi.org/10.3390/ani12131676 - 29 Jun 2022
Cited by 1 | Viewed by 2483
Abstract
The focus of this study was based on examining the impact of endometritis on the chemical coding of the paracervical ganglion (PCG) perikaryal populations supplying pig uterus. Four weeks after the injection of Fast Blue retrograde tracer into uterine horns, either the Escherichia [...] Read more.
The focus of this study was based on examining the impact of endometritis on the chemical coding of the paracervical ganglion (PCG) perikaryal populations supplying pig uterus. Four weeks after the injection of Fast Blue retrograde tracer into uterine horns, either the Escherichia coli (E. coli) suspension or saline solution was applied to both horns. Laparotomy treatment was performed for the control group. Uterine cervices containing PCG were extracted on the eighth day after previous treatments. Subsequent macroscopic and histopathologic examinations acknowledged the severe form of acute endometritis in the E. coli-treated gilts, whereas double-labeling immunofluorescence procedures allowed changes to be analyzed in the PCG perikaryal populations coded with vesicular acetylcholine transporter (VAChT) and/or somatostatin (SOM), vasoactive intestinal polypeptide (VIP), a neuronal isoform of nitric oxide synthase (nNOS), galanin (GAL). The acetylcholinesterase (AChE) detection method was used to check for the presence and changes in the expression of this enzyme and further confirm the presence of cholinergic perikarya in PCG. Treatment with E. coli resulted in an increase in VAChT+/VIP+, VAChT+/VIP−, VAChT+/SOM+, VAChT+/SOM−, VAChT+/GAL− and VAChT+/nNOS− PCG uterine perikarya. An additional increase was noted in the non-cholinergic VIP-, SOM- and nNOS-immunopositive populations, as well as a decrease in the number of cholinergic nNOS-positive perikarya. Moreover, the population of cholinergic GAL-expressing perikarya that appeared in the E. coli-injected gilts and E. coli injections lowered the number of AChE-positive perikarya. The neurochemical characteristics of the cholinergic uterine perikarya of the PCG were altered and influenced by the pathological state (inflammation of the uterus). These results may indicate the additional influence of such a state on the functioning of this organ. Full article
(This article belongs to the Topic Animal Diseases in Agricultural Production Systems)
Show Figures

Figure 1

14 pages, 4210 KiB  
Article
Improvement of Cognitive Function in Ovariectomized Rats by Human Neural Stem Cells Overexpressing Choline Acetyltransferase via Secretion of NGF and BDNF
by Eun-Jung Yoon, Yunseo Choi and Dongsun Park
Int. J. Mol. Sci. 2022, 23(10), 5560; https://doi.org/10.3390/ijms23105560 - 16 May 2022
Cited by 16 | Viewed by 3171
Abstract
Menopause is associated with memory deficits attributed to reduced serum estrogen levels. We evaluated whether an increase in brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF) levels, through transplantation of choline acetyltransferase (ChAT)-overexpressing neural stem cells (F3.ChAT), improved learning and memory in ovariectomized [...] Read more.
Menopause is associated with memory deficits attributed to reduced serum estrogen levels. We evaluated whether an increase in brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF) levels, through transplantation of choline acetyltransferase (ChAT)-overexpressing neural stem cells (F3.ChAT), improved learning and memory in ovariectomized rats. PD13 mouse neuronal primary culture cells were treated with estradiol or co-cultured with F3.ChAT cells; choline transporter1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) expression was evaluated using real-time PCR. The relationship between estrogen receptors (ERs) and neurotrophin family members was analyzed using immunohistochemistry. After the transplantation of F3.ChAT cells into OVx rats, we evaluated the memory, ACh level, and the expression of ER, neurotrophin family proteins, and cholinergic system. Estradiol upregulated CHT1, ChAT, and VAChT expression in ER; they were co-localized with BDNF, NGF, and TrkB. Co-culture with F3.ChAT upregulated CHT1, ChAT, and VAChT by activating the neurotrophin signalling pathway. Transplantation of F3.ChAT cells in OVX animals increased the ACh level in the CSF and improved memory deficit. In addition, it increased the expression of ERs, neurotrophin signaling, and the cholinergic system in the brains of OVX animals. Therefore, the estradiol deficiency induced memory loss by the down-regulation of the neurotrophin family and F3.ChAT could ameliorate the cognitive impairment owing to the loss or reduction of estradiol. Full article
Show Figures

Figure 1

17 pages, 5917 KiB  
Article
Obesity-Related Brain Cholinergic System Impairment in High-Fat-Diet-Fed Rats
by Ilenia Martinelli, Seyed Khosrow Tayebati, Proshanta Roy, Maria Vittoria Micioni Di Bonaventura, Michele Moruzzi, Carlo Cifani, Francesco Amenta and Daniele Tomassoni
Nutrients 2022, 14(6), 1243; https://doi.org/10.3390/nu14061243 - 15 Mar 2022
Cited by 13 | Viewed by 3352
Abstract
A link between obesity and cerebral health is receiving growing recognition. Here, we investigate in the frontal cortex and hippocampus the potential involvement of cholinergic markers in brain alterations previously reported in rats with obesity induced by diet (DIO) after long-term exposure (17 [...] Read more.
A link between obesity and cerebral health is receiving growing recognition. Here, we investigate in the frontal cortex and hippocampus the potential involvement of cholinergic markers in brain alterations previously reported in rats with obesity induced by diet (DIO) after long-term exposure (17 weeks) to a high-fat diet (HFD) in comparison with animals fed with a standard diet (CHOW). The obesity developed after 5 weeks of HFD. Bodyweight, systolic blood pressure, glycemia, and insulin levels were increased in DIO rats compared to the CHOW group. Measurements of malondialdehyde (MDA) provided lipid peroxidation in HFD-fed rats. Western blot and immunohistochemical techniques were performed. Our results showed a higher expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in obese rats but not the VAChT expression in the frontal cortex after 17 weeks of HFD. Furthermore, the acetylcholinesterase (AChE) enzyme was downregulated in HFD both in the frontal cortex and hippocampus. In the brain regions analyzed, it was reported a modulation of certain cholinergic receptors expressed pre- and post-synaptically (alpha7 nicotinic receptor and muscarinic receptor subtype 1). Collectively, these findings point out precise changes of cholinergic markers that can be targeted to prevent cerebral injuries related to obesity. Full article
(This article belongs to the Special Issue Bioactive Compounds in the Prevention of Hypertension)
Show Figures

Figure 1

18 pages, 6194 KiB  
Article
Phenotypical and Myopathological Consequences of Compound Heterozygous Missense and Nonsense Variants in SLC18A3
by Adela Della Marina, Annabelle Arlt, Ulrike Schara-Schmidt, Christel Depienne, Andrea Gangfuß, Heike Kölbel, Albert Sickmann, Erik Freier, Nicolai Kohlschmidt, Andreas Hentschel, Joachim Weis, Artur Czech, Anika Grüneboom and Andreas Roos
Cells 2021, 10(12), 3481; https://doi.org/10.3390/cells10123481 - 9 Dec 2021
Cited by 4 | Viewed by 3702
Abstract
Background: Presynaptic forms of congenital myasthenic syndromes (CMS) due to pathogenic variants in SLC18A3 impairing the synthesis and recycling of acetylcholine (ACh) have recently been described. SLC18A3 encodes the vesicular ACh transporter (VAChT), modulating the active transport of ACh at the neuromuscular junction, [...] Read more.
Background: Presynaptic forms of congenital myasthenic syndromes (CMS) due to pathogenic variants in SLC18A3 impairing the synthesis and recycling of acetylcholine (ACh) have recently been described. SLC18A3 encodes the vesicular ACh transporter (VAChT), modulating the active transport of ACh at the neuromuscular junction, and homozygous loss of VAChT leads to lethality. Methods: Exome sequencing (ES) was carried out to identify the molecular genetic cause of the disease in a 5-year-old male patient and histological, immunofluorescence as well as electron- and CARS-microscopic studies were performed to delineate the muscle pathology, which has so far only been studied in VAChT-deficient animal models. Results: ES unraveled compound heterozygous missense and nonsense variants (c.315G>A, p.Trp105* and c.1192G>C, p.Asp398His) in SLC18A3. Comparison with already-published cases suggests a more severe phenotype including impaired motor and cognitive development, possibly related to a more severe effect of the nonsense variant. Therapy with pyridostigmine was only partially effective while 3,4 diaminopyridine showed no effect. Microscopic investigation of the muscle biopsy revealed reduced fibre size and a significant accumulation of lipid droplets. Conclusions: We suggest that nonsense variants have a more detrimental impact on the clinical manifestation of SLC18A3-associated CMS. The impact of pathogenic SLC18A3 variants on muscle fibre integrity beyond the effect of denervation is suggested by the build-up of lipid aggregates. This in turn implicates the importance of proper VAChT-mediated synthesis and recycling of ACh for lipid homeostasis in muscle cells. This hypothesis is further supported by the pathological observations obtained in previously published VAChT-animal models. Full article
Show Figures

Figure 1

Back to TopTop