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Abstract: Excessive consumption of highly processed foods, such as chips, crisps, biscuits and coffee,
exposes the human to different doses of acrylamide. This chemical compound has a multidirectional,
adverse effect on human and animal health, including the central and peripheral nervous systems. In
this study, we examined the effect of different doses of acrylamide on the enteric nervous system (ENS)
of the porcine jejunum. Namely, we took into account the quantitative changes of neurons located in
the jejunum wall expressing substance P (SP), galanin (GAL), a neuronal form of nitric oxide synthase
(nNOS), the vesicular acetylcholine transporter (VAChT) and cocaine- and amphetamine-regulated
transcript (CART). The obtained results indicate that acrylamide causes a statistically significant
increase in the number of neurons immunoreactive to SP, GAL, VAChT and CART in all types of
examined enteric plexuses and a significant drop in the population of nNOS-positive enteric neurons.
Changes were significantly greater in the case of a high dose of acrylamide intoxication. Our results
indicate that acrylamide is not indifferent to ENS neurons. A 28-day intoxication with this substance
caused marked changes in the chemical coding of ENS neurons in the porcine jejunum.
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1. Introduction

Acrylamide (CH2 = CH–CO–NH2, prop-2-enamide) is a low-molecular-weight organic
compound composed of carbon (50.69%), hydrogen (7.09%), nitrogen (19.71%), and oxygen
(22.51%) atoms. It is an odorless and flavorless crystalline substance with a melting point
of 84.5 ◦C, readily soluble in water and organic solvents, such as acetone and ethanol [1].
After entering the soil, it becomes biodegraded [2]. In the laboratory, acrylamide is used for
the selective modification of sulfhydryl (–SH) groups of proteins, while polyacrylamide
is used for the electrophoretic separation of proteins and DNA [3]. Interest in acrylamide
increased significantly in recent years, mainly as a result of studies conducted by Swedish
scientists, which indicated large amounts of this compound in food products, particularly
those containing large amounts of carbohydrates and subjected to heat treatment [4].
The mechanism of acrylamide formation in food is well understood. The results of the
studies published to date indicate that the factor necessary for its formation is an elevated
temperature of at least up to approximately 100 ◦C. The main factor leading to the formation
of acrylamide in food products is the Maillard reaction in which aldehydes, ketones and
carbohydrates condense with amino acids, peptides and proteins. This reaction imparts
the flavor and color to food products, and one of its consequences is the formation of
acrylamide [1,5–7].

The exposure of an animal or human organism to acrylamide has an adverse effect
on the central and peripheral nervous systems in particular [8,9]. This toxicity involves
the impairment of the function of nervous tissue enzymes, in particular keratin kinase,
and the impairment in neurotransmitter release [10]. One of the main routes by which
acrylamide enters the organism is the gastrointestinal tract [11]. This leads to its absorption
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and systemic intoxication, while causing damage within the gastrointestinal tract itself. The
components of the gastrointestinal tract that are most vulnerable to damage include the
enteric nervous system [12]. This system is a characteristic feature of the gastrointestinal
tract, which gives its particular sections relative functional autonomy. The enteric nervous
system components are present in all structures of the gastrointestinal tract (esophagus,
stomach, small and large intestines). This system regulates, via the submucosal plexus
situated between the submucosal and muscle layer (divided in large animals and humans
on two separated structures: outer and inner submucosal plexus) and the myenteric plexus
located between the particular muscle layer, both the motor activity and the resorption and
secretion processes occurring within the gastrointestinal tract. The aforementioned func-
tions are carried out via the neurotransmitters synthesized and released from the neurons
of the enteric nervous system [13–15]. The total of substances synthesized by a particular
neuron is its chemical phenotype. A characteristic feature of both the central and peripheral
neurons is their ability to adapt and change during different pathological conditions. This
property, already observed in phylogenetically primitive species, is referred to as neural
plasticity [16]. The essence of this process is to rearrange the nerve cell genome so that
by changing the synthesizing neurotransmitters, it will be able to deal with the changes
occurring in the surrounding environment and continue to serve its function.

The jejunum is the longest section of the digestive tract in mammals and the section
where intensive nutrient absorption processes take place [17]. Therefore, disturbances
in the course of this process may result in adverse systemic changes. The current study
focused on studying the quantitative changes in the neurons of the enteric nervous system
of the porcine jejunum. Of the numerous biologically active substances synthesized in the
neuron, the current study covered substance P (SP), galanin (GAL), a neuronal form of
nitric oxide synthase (nNOS), the vesicular acetylcholine transporter (VAChT) and cocaine-
and amphetamine-regulated transcript (CART). SP is considered to be the major sensory
neurotransmitter and/or neuromodulator involved in the emergence of pain stimuli in
external and internal primary afferent neurons of the gut. Moreover, it is also responsible
for blood flow regulation as well as control of gastric glands functions [18]. In turn,
GAL in the gastrointestinal tract plays an important role in regulation of inflammatory
processes and exhibits neuroprotective properties [19]. Nitric oxide is an unstable gaseous
neurotransmitter. In the alimentary tract, nitric oxide is considered as an inhibitory factor.
The inhibitory function of NO is especially prominent in reference to the smooth muscle
of the jejunum, where it causes relaxation of smooth muscle and a drop in the motor
functions [15,20]. VAChT is a marker of cholinergic neurons. In the gut, these neurons
regulate motor activity on particular parts of the intestine [21]. CART-positive neurons are
widely expressed in the gastrointestinal tract. This peptide regulates food intake, gastric
blood flow and motor activity of all segments of the alimentary tract [22]. All the above
mentioned substances play an important role in both the physiology and pathological
conditions of the gastrointestinal tract. In contrast, little is known about the changes in the
synthesis of the substances as a result of chronic exposure to acrylamide. The aim of the
current study is to determine the response of neurons of the enteric nervous system of the
porcine jejunum to intoxication with acrylamide administered in various doses.

In recent years, the pig has gained status as a better animal model for biomedical
study rather than rats or mice, with results that can be applied to humans. The main reason
is that the physiological function of specific internal organs is very similar. Particularly,
the gastrointestinal tract of the pig, as an omnivorous animal, physiologically exhibits
many features common to those of the human gastrointestinal tract. A similar rate of
blood flow, especially in the intestine area and motor activity of particular parts of the
gastrointestinal tract, including jejunum should also be mentioned [23,24]. Therefore, our
results are important for human safety. Infants and toddlers are the most exposed group
to acrylamide exposure. Lower body weight compared with adults, high consumption
of some kinds of baby foods, and their metabolism make them more vulnerable to the
effects of the contaminants. Mean acrylamide exposure in children range between 0.06
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and 4.32 µg/kg bw/day depending on country of residence and eating habits [25]. Addi-
tionally, the estimated dietary intake (EDI = 2 µg/kg bw/day) was exceeded among 7%
of children aged 12–36 months [26]. In the present study, we used 2 doses of acrylamide
(0.5 µg/kg bw/day and 10 times higher—5 µg/kg bw/day) in young animals which are
the most exposed to the negative effects of acrylamide. Doses of acrylamide used in the
present study are related to human exposure to this substance and can be extrapolated to
human toxicology.

2. Materials and Methods
2.1. Animals

Fifteen immature gilts at the age of 8 weeks Danish landrace were used. Animals
were purchase from a local farm. At the beginning of the experiment, the body weight
of pigs was 15 kg. Immediately after onset of acrylamide supplementation, pigs were
divided into three groups: the control group and two experimental groups, each of them
contained 5 animals (n = 5). Animals were kept in cages compliant with the requirements
for this species with natural lighting conditions. Due to the fact that daily exposure to
acrylamide contained in food products in humans ranges between 0.3 to 0.6 µg/kg of body
weight [23] animals from the first experimental group receiving tolerable daily intake (TDI)
dose (0.5 µg/kg bw/day); (>99%; Sigma-Aldrich, Poznań, Poland) in gelatin capsules,
while gilts from second experimental group receiving a high dose of acrylamide (ten times
higher than TDI, i.e., 5 µg/kg bw/day) in gelatin capsules. Pigs from the control group
received empty gelatin capsules. The capsules were administered orally for a period of
28 days after the morning feeding. One time per week animals were weighed and the dose
was adjusted to the actual weight of the animal. During the experiment period, all pigs
received the same standardized diet (rapeseed meal 6.0%, soybean meal 9.0%, wheat 54.0%,
barley 28.5%, and others 2.5%) and tap water at libitum. After the end of the experiment,
all animals were euthanized with lethal doses of sodium pentobarbital (Morbital, Biowet
Puławy, Puławy, Poland).

2.2. Tissue Collection

Then, a midline laparotomy was performed and all sections of the gastrointestinal
tract were removed. Approximately 1 cm fragments of the jejunum (approximately 20 cm
from the duodenum) from each animal was collected for further research. Tissue were
subjected to the standard immunofluorescence frozen procedure by Makowska et al. as
previously described [25]. Collected jejunum fragments were placed in a 4% buffered
solution of paraformaldehyde (pH 7.4). Immersion fixation time was 1 h. Subsequently,
samples were transferred to a phosphate buffer solution (PBS, pH 7.4) for 72 h (a buffer
was exchanged 3 times, every 24 h). After this time, the collected jejunum were dehydrated
into an 18% buffered sucrose solution for two weeks. After this time, frozen blokes were
performed. The tissue blocks were cut in frontal or sagittal planes by means of a Microm
HM 560 cryostat (Carl Zeiss, Berlin, Germany) at a thickness of 14 µm and attached on
gelatinized glass slides suitable for immunohistochemistry.

2.3. Immunofluorescence Procedures

The following step was a double immunohistochemistry staining procedure that in-
cluded washing in a buffer solution (PBS, 3 times, 10 min) and blocking in a blocking
mixture (10% horse serum, 0.1% bovine serum albumin in 0.1 MPBS, 1% Triton X-100, 0.05%
thimerosal, and 0.01% sodium aside) for 1 h. For detection of investigated substances,
following unconjugated primary antibody were used. In order to investigate intragan-
glionic distribution of the perikarya, one of two antibodies used was directed against
protein gene-product 9.5 (PGP 9.5, working dilution 1:1000, mouse, Bio-Rad, Hercules,
CA, USA, code 7863-2004, used here as a pan-neuronal marker), substance P (SP, working
dilution 1:150, rat monoclonal, AbD Serotec, Raleigh, NC, USA, code 8450-0505;), cocaine-
and amphetamine-regulated transcript peptide (CART, working dilution 1:8000; rabbit,
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Phoenix Pharmaceuticals, Burlingame, CA, USA, code H-003-61), neuronal isoform of nitric
oxide synthase (nNOS; working dilution 1:2000, rabbit, Sigma-Aldrich, Saint Louis, MO,
USA, code AB5380), vesicular acetylcholine transporter (VAChT, working dilatation 1:
2000, rabbit Phoenix Pharmaceuticals, Burlingame, CA, USA, code H-V007) and galanin
(GAL, working dilatation 1:1000, rabbit, Millipore, Billerica, MA, USA, code AB 2233). The
slides were incubated overnight in a humid chamber. To visualize investigated antibody
on the next day secondary antisera were used: Alexa Fluor 488 (working dilution 1:1000,
donkey anti-mouse IgG, Invitrogen, Carlsbad, CA, USA, code A21202), Alexa Fluor 546
(working dilution 1:1000, goat anti-rabbit IgG, Invitrogen, Carlsbad, CA, USA, A11010),
and Alexa Fluor 546 (working dilution 1:1000, donkey anti-rat, Invitrogen, Carlsbad, CA,
USA, code A21208). Finally, the samples were cover slipped using a mixture of glycerol
with carbonate buffer (pH = 8.4). Negative controls employed in the immunofluorescence
procedure included pre-absorption test. The test was performed as follows: sections of
the ganglions were incubated with “working” dilutions of primary antibodies directed
toward SP, VAChT, nNOS, GAL and CART that had been preabsorbed for 18 h at 37 ◦C
with 20 g of appropriate purified protein. Additional negative controls involved omission
and replacement of all primary antisera with non-immune sera.

2.4. Statistical Analysis

To evaluate the percentage of exanimated neurons, at least 500 of PGP 9.5-labelled
cell bodies in a definite plexus (the myenteric plexus (MP), the outer submucosal plexus
(OSP) and the inner submucosal plexus (ISP)) of the studied pigs were examined. Only
neurons with well-visible nucleus were counted. To prevent double counting of PGP
9.5-immunoreactive cell bodies, the sections were located at least 100 µm apart. The stained
sections were analyzed under an fluorescence microscope Olympus BX 51 (Tokyo, Japan),
with epi-fluorescence and appropriate filter sets, coupled with a digital camera (Olympus
XM 10) connected to a PC and analyzed with Cell F software (Olympus, Tokyo, Japan).

3. Results
3.1. CART-Immunoreactive Neurons

CART-expressing neurons were most abundant in the MP: 10.90 (±0.69) %, while in the
submucosal plexuses, their number was considerably smaller and amounted to 3.73 (±0.40)
% in the OSP and to only 0.87 (±0.26) % in the ISP, respectively [Figures 1 and 2A–I]. The
rise in the number of CART-positive cell bodies in the experimental groups was determined
by the acrylamide dose [Figure 1]. In the animals receiving a low dose, a statistically
significant increase took place only in the neurons of the MP: 10.90 (±0.69) % [Figure 2D,G],
while no changes were observed in the submucosal plexuses in the population of CART-
positive neurons. In the animals administered a high dose, quantitative changes were
observed in the OSP: 5.35 (±0.29) %, and a very pronounced increase was noted in the MP:
21.25 (±0.63) % [Figure 2G,H].

3.2. VAChT-Immunoreactive Neurons

The neurons immunoreactive for this neurotransmitter were the most abundant pop-
ulation, considering all the tested substances [Figures 3 and 4A–I]. In the control group,
a particularly large number of these neurons were observed in the submucosal plexuses:
41.24 (±1.45) % in the OSP [Figure 4B] and 39.33 (±1.43) % in the ISP [Figure 4C], re-
spectively, while in the MP, the population of VAChT-positive neurons was 22.44 (±1.09)
% [Figure 4A]. Following low-dose acrylamide administration, a statistically significant
increase in the population of VAChT-positive neurons was only observed within the neu-
rons of the MP [Figure 4A,D,G], while in the population of these neurons, no statistically
significant changes were observed in the submucosal plexuses. However, the high-dose
administration of acrylamide caused changes in the population of VAChT-positive neurons
in all the tested plexuses of the ENS in the jejunum [Figure 4G–I]. In the MP, 32.50 (±1.37) %
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of VAChT-positive neurons were observed, while in the submucosal plexuses, their number
was 57.33 (±1.98) % in the OSP and 48.37 (±1.38) % in the ISP, respectively.
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Figure 2. Fluorescence microscopy images showing protein gene product 9.5 (PGP 9.5) visible as
green fluorescence that colocalizes with cocaine and amphetamine regulated transcript (CART) visible
as red fluorescence in the enteric neurons of the jejunum in pigs. The obtained images were created
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by computer superimposition of two channels (green and red). The photos show the enteric nervous
system neurons of the pig’s jejunum under physiological conditions (A,D,G) and after administration
of low (B,E,H) and high (C,F,I) doses of acrylamide. Neurons immunoreactive for particular sub-
stances are advisable with arrows. MP—the myenteric plexus; OSP—the outer submucosal plexus;
ISP—the inner submucosal plexus.
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Figure 4. Fluorescence microscopy images showing protein gene product 9.5 (PGP 9.5) visible as
green fluorescence that colocalizes with vesicular acetylcholine transporter (VAChT) visible as red
fluorescence in the enteric neurons of the jejunum in pigs. The obtained images were created by com-
puter superimposition of two channels (green and red). The photos show the enteric nervous system
neurons of the pig’s jejunum under physiological conditions (A,D,G) and after administration of low
(B,E,H) and high (C,F,I) doses of acrylamide. Neurons immunoreactive for particular substances are
advisable with arrows. MP—the myenteric plexus; OSP—the outer submucosal plexus; ISP—the
inner submucosal plexus.

3.3. nNOS-Immunoreactive Neurons

In the control group, a particularly abundant population of nNOS neurons 33.80
(±0.44) % was observed in the MP, while their number was significantly lower and
amounted to 5.82 (±0.44) % in the OSP and to 7.46 (±0.69) % in the ISP [Figure 5]. In
the low-dose acrylamide group, a decrease was observed in the nNOS neuron population
in the ISP: 4.61 (±0.32) % [Figure 6F] and in the MP: 29.50 (±0.64) % [Figure 6D], while
no changes were noted in the OSP. In contrast, in the experimental, high-dose acrylamide
group, a statistically significant drop in the population of nNOS-positive neurons was
observed in all the tested plexuses: in the MP to a value of 26.77 (±1.16) %, while in the
submucosal plexuses to 1.22 (±0.32) % in the OSP, and 1.77 (±0.45) % in the ISP, respectively
[Figure 6G–I].
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green fluorescence that colocalizes with neuronal isoform of nitric oxide synthase (nNOS) visible as
red fluorescence in the enteric neurons of the jejunum in pigs. The obtained images were created by
computer superimposition of two channels (green and red). The photos show the enteric nervous sys-
tem neurons of the pig’s jejunum under physiological conditions (A,D,G) and after administration of
low (B,E,H) and high (C,F,I) doses of acrylamide. Neurons immunoreactive for particular substances
are advisable with arrows. MP—the myenteric plexus; OSP—the outer submucosal plexus; ISP—the
inner submucosal plexus.

3.4. GAL-Immunoreactive Neurons

In the control animal group, the GAL-positive neurons were a particularly abundant
population within the submucosal plexus area, with their number in the OSP amounting
to 37.96 (±2.63) % and in the ISP to 41.39 (±1.50) % [Figures 7 and 8A–I]. However, in
the MP, the number of GAL-positive neurons was only 2.75 (±0.47) %. Following the
supplementation with a low dose of acrylamide, a statistically significant increase was
observed in the number of GAL-positive neurons in the MP: 6.27 (±0.60) % [Figure 8D]
and in the OSP: 52.20 (±1.22) % [Figure 8E], with no changes noted for the ISP. On the
other hand, a high dose of acrylamide statistically significantly increased the number of
GAL-positive neurons in all the tested plexuses. Within the region of the submucosal
membrane plexuses, the following numbers of GAL-positive neurons were observed: 63.61
(±1.51) % in the ISP and 55.15 (±1.48) % in the OSP. However, in the MP, the number of
GAL-positive neurons was 13.26 (±1.11) % [Figure 8G–I].
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immunoreactive neurons as a result of a low (black bar) and a high (blue bar) dose of acrylamide
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plexus; OSP—the outer submucosal plexus; ISP—the inner submucosal plexus. * p < 0.01, *** p < 0.001
point to differences in the expression of exact substance studied with reference to the control pigs.
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neurons of the jejunum in pigs. The obtained images were created by computer superimposition
of two channels (green and red). The photos show the enteric nervous system neurons of the pig’s
jejunum under physiological conditions (A,D,G) and after administration of low (B,E,H) and high
(C,F,I) doses of acrylamide. Neurons immunoreactive for particular substances are advisable with
arrows. MP—the myenteric plexus; OSP—the outer submucosal plexus; ISP—the inner submu-
cosal plexus.

3.5. SP-Immunoreactive Neurons

SP-positive neurons in the control group were most abundant in the OSP: 25.62
(±0.95) %, while in the ISP, their number was considerably smaller and amounted to 10.14
(±0.44) %, and in the MP, this population only amounted to 0.92 (±0.22) % [Figures 9 and
10A–I]. Following low-dose acrylamide administration, an increase in the population of
SP-positive neurons was only observed in the MP: 1.21 (±0.14) % [Figure 10D]. However,
a high dose of acrylamide increased the number of SP-expressing neurons in both the
MP: 2.35 (±0.41) % [Figure 10G] and in both submucosal plexuses: in the ISP, up to 20.58
(±1.54) % [Figure 10I], and in the OSP, to 34.81 (±0.93) % [Figure 10H].
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Figure 10. Fluorescence microscopy images showing protein gene product 9.5 (PGP 9.5) visible as
green fluorescence that colocalizes with substance P (SP) visible as red fluorescence in the enteric
neurons of the jejunum in pigs. The obtained images were created by computer superimposition
of two channels (green and red). The photos show the enteric nervous system neurons of the pig’s
jejunum under physiological conditions (A,D,G) and after administration of low (B,E,H) and high
(C,F,I) doses of acrylamide. Neurons immunoreactive for particular substances are advisable with
arrows. MP—the myenteric plexus; OSP—the outer submucosal plexus; ISP—the inner submu-
cosal plexus.

4. Discussion

Since confirmation of the toxic properties of acrylamide, the volume of data on the
tissues that are potentially at risk of being adversely affected by this substance has been
on the increase [6]. This study presents data concerning the effect of acrylamide on the
expression of biologically active substances in the neurons of the enteric nervous system
of the porcine jejunum. Due to the function it serves in the body, the gastrointestinal
tract is particularly vulnerable to the adverse effects of substances found in the food
consumed [27–29]. As acrylamide is formed as a by-product during the thermal processing
of food, it is a compound that frequently enters the gastrointestinal tract. Of course, it is
important to note that the amount of acrylamide entering the body varies and is determined
by many factors. For this reason, the current study used two acrylamide doses referred to as
low and high, respectively. The study focused on the effect of these doses on the quantitative
changes within the population of neurons making up the enteric nervous system of the
porcine jejunum. The quantitative changes in the neurons immunoreactive for CART,
VAChT, nNOS, GAL, and SP were determined using the double immunofluorescence
staining method. The obtained results clearly show a close correlation in the quantitative
changes between the applied dose and the tested plexus. Similar relationships can be
observed in other toxicological studies (supplementation of bisphenols, non-steroidal anti-
inflammatory drugs) and pathological conditions that disturb the systemic metabolism
(diabetes mellitus) [30–35]. The application of acrylamide at a low dose had a significantly
weaker effect than the high-dose acrylamide supplementation. This is particularly evident
for the external submucosal plexus, where low doses of acrylamide caused no statistically
significant changes in the number of neurons expressing the tested substances. For the
internal submucosal plexus, quantitative changes also only concerned the nNOS-positive
and GAL-positive neurons. However, in the myenteric plexus, even low doses caused
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pronounced changes in the expression of the tested substances (similar to a low dose of
acrylamide), with distinct changes being observed in the number of immunoreactive neuron
expressions for the tested substances. It is well known that the myenteric plexus primarily
serves the function of regulating the motor activity of the gastrointestinal tract [13,14].
Therefore, changes in the neurotransmitter expression in this part of the gastrointestinal
tract may result in an abnormal passage of food content, which is particularly significant
for the jejunum, which is primarily responsible for the intestinal absorption processes.
It should be added that other toxic substances entering the gastrointestinal tract, such
as bisphenol A, also cause significant changes in the expression of the same substances
in the neurons of the jejunum [30]. Long-term use of aspirin also causes changes in the
chemical phenotype of the neurons of the enteric nervous system of the porcine jejunum
which confirms the adaptability of the enteric neurons to adverse factors and pathological
conditions [36].

Moreover, the substances tested in this study are characterized by neuroprotective
and anti-inflammatory properties [37,38]. Their increase may prove that, as a result of
long-term exposure to acrylamide, particularly in a high dose, an inflammation of the
jejunum develops. An inflammation also develops in other studies into the effects of both
exogenous substances (bisphenols, non-steroidal anti-inflammatory drugs) and metabolic
changes (diabetes mellitus) or damage to nerve processes (axotomy), which results in
the development of inflammation [30–36,39]. It is expressed by, among other things, the
variability in the chemical coding of enteric neurons, in particular an increase in the
population of neurons immunoreactive for SP and GAL. Moreover, an increase in the
expression of SP being a neurokinin of a pro-pain nature also indicates sensory changes
that develop following the consumption of acrylamide, particularly in high doses [40]. The
pace of changes in the expression of the studied substances also shows a decreasing trend,
which was noted for the neuronal isoform of the nitric oxide synthase. Similar results were
obtained for the experimentally induced hyperglycemia [40]. Nitric oxide produced within
the gastrointestinal tract is largely responsible for relaxing the smooth muscle coat and
regulating the lumen of blood vessels [29]. Decreasing the lumen may have an adverse
effect on the motor processes and the blood flow and thus the resorption of nutrients, which
is particularly important within the jejunum area. The expression of the CART peptide has
been described for each section of the gastrointestinal tract in numerous animal species
as well as in humans [41]. The authors’ experiments have demonstrated an increase in
the number of neurons expressing it. The pace of changes in the CART expression in the
course of diseases of the gastrointestinal tract (particularly the small intestine) results, as in
the current study, in an increase in its expression. The function of this peptide within the
gastrointestinal tract is mainly associated with the regulation of motor processes and the
passage of food content. Therefore, the increase in the number of CART-positive neurons is
more evidence of the toxic effect of acrylamide on the gastrointestinal tract [42,43].

5. Conclusions

The results obtained in this experiment complement the existing knowledge on acry-
lamide toxicity and confirm the neuroplasticity of the enteric nervous system. In our
research, quantitative changes in neurons expressing SP, VAChT, nNOS, GAL and SP have
been demonstrated. We have also shown that acrylamide, even in low doses, can have
a toxic effect on enteric neurons. It should be emphasized that the tested small intestine
section (jejunum) is significant from the perspective of digestion physiology, in particu-
lar, the nutrient resorption processes occurring there. All disturbances in this part of the
intestine can have an adverse effect on body weight in both animals and humans. The
obtained results also indicate the significant effect of neuropeptides as agents involved in
the processes of the gastrointestinal tract adaptation to adverse environmental factors.
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