Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,746)

Search Parameters:
Keywords = vertical systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4034 KB  
Article
Estimating Deep Soil Salinity by Inverse Modeling of Loop–Loop Frequency Domain Electromagnetic Induction Data in a Semi-Arid Region: Merguellil (Tunisia)
by Dorsaf Allagui, Julien Guillemoteau and Mohamed Hachicha
Land 2026, 15(1), 32; https://doi.org/10.3390/land15010032 - 23 Dec 2025
Abstract
Accumulation of salts in irrigated soils can be detrimental not only to growing crops but also to groundwater quality. Soil salinity should be regularly monitored, and appropriate irrigation at the required leaching rate should be applied to prevent excessive salt accumulation in the [...] Read more.
Accumulation of salts in irrigated soils can be detrimental not only to growing crops but also to groundwater quality. Soil salinity should be regularly monitored, and appropriate irrigation at the required leaching rate should be applied to prevent excessive salt accumulation in the root zone, thereby improving soil fertility and crop production. We combined two frequency domain electromagnetic induction (FD-EMI) mono-channel sensors (EM31 and EM38) and operated them at different heights and with different coil orientations to monitor the vertical distribution of soil salinity in a salt-affected irrigated area in Kairouan (central Tunisia). Multiple measurement heights and coil orientations were used to enhance depth sensitivity and thereby improve salinity predictions from this type of proximal sensor. The resulting multi-configuration FD-EMI datasets were used to derive soil salinity information via inverse modeling with a recently developed in-house laterally constrained inversion (LCI) approach. The collected apparent electrical conductivity (ECa) data were inverted to predict the spatial and temporal distribution of soil salinity. The results highlight several findings about the distribution of salinity in relation to different irrigation systems using brackish water, both in the short and long term. The expected transfer of salinity from the surface to deeper layers was systematically observed by our FD-EMI surveys. However, the intensity and spatial distribution of soil salinity varied between different crops, depending on the frequency and amount of drip or sprinkler irrigation. Furthermore, our results show that vertical salinity transfer is also influenced by the wet or dry season. The study provides insights into the effectiveness of combining two different FD-EMI sensors, EM31 and EM38, for monitoring soil salinity in agricultural areas, thereby contributing to the sustainability of irrigated agricultural production. The inversion approach provides a more detailed representation of soil salinity distribution across spatial and temporal scales at different depths, and across irrigation systems, compared to the classical method based on soil samples and laboratory analysis, which is a point-scale measurement. It provides a more extensive assessment of soil conditions at depths up to 4 m with different irrigation systems. For example, the influence of local drip irrigation was imaged, and the history of a non-irrigated plot was evaluated, confirming the potential of this method. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

17 pages, 8204 KB  
Article
Advanced Microstructural Investigation of the Endodontic Sealing Ability of Three Different Obturation Techniques
by Mihaela Păstrav, Radu Marcel Chisnoiu, Marioara Moldovan, Lucian Barbu Tudoran, Ioan Petean, Andrea Maria Chisnoiu and Ovidiu Păstrav
Dent. J. 2026, 14(1), 9; https://doi.org/10.3390/dj14010009 (registering DOI) - 23 Dec 2025
Abstract
Objectives: This study evaluated and compared the sealing ability and elemental composition of a resin-based endodontic sealer (AH Plus) used with three root canal obturation techniques: single cone (SC), lateral compaction (LC), and warm vertical condensation (WVC). The investigation focused on microstructural characteristics, [...] Read more.
Objectives: This study evaluated and compared the sealing ability and elemental composition of a resin-based endodontic sealer (AH Plus) used with three root canal obturation techniques: single cone (SC), lateral compaction (LC), and warm vertical condensation (WVC). The investigation focused on microstructural characteristics, interfacial integrity, and elemental distribution within filled root canals. Material and Methods: Sixty extracted single-root teeth were instrumented using the ProTaper Gold system and randomly assigned to three groups (n = 20) according to the obturation technique. The AH Plus Jet sealer was applied in all cases. Following obturation, samples were subjected to radiographic investigation and analyzed using optical microscopy and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) to assess the sealing performance and chemical composition. Results: Radiographic and microscopic assessments indicated that the SC method showed strong gutta-percha adhesion to dentin with a thin cement layer, whereas WVC provided excellent adaptation and penetration of gutta-percha. The LC technique demonstrated good adhesion but displayed occasional structural irregularities. SC has the thicker adhesion layer with uneven distribution regarding coronal, median, and apical, regions ranging from 45 to 80 μm, while WVC ensures a thin and uniform sealing layer of about 35 μm in all regions. SEM and EDX analyses detailed the interfacial microstructure and confirmed the presence of carbon (C), oxygen (O), calcium (Ca), zinc (Zn), barium (Ba), and sulfur (S) across all groups. Conclusions: All three obturation techniques (SC, WVC, LC) achieved effective sealing when combined with the AH Plus sealer. The main difference between the methods consists of the sealer layer thickness and its even distribution regarding gutta-percha cones. Full article
(This article belongs to the Special Issue Present Status and Future Directions in Endodontics)
Show Figures

Graphical abstract

24 pages, 5157 KB  
Article
Hydrogel Versus Alternative Vehicles for (Trans)dermal Delivery of Propranolol Hydrochloride—In Vitro and Ex Vivo Studies
by Nataša Bubić Pajić, Milica Kaurin, Adrijana Klepić, Darija Knežević Ratković, Aneta Stojmenovski, Veljko Krstonošić and Ranko Škrbic
Gels 2026, 12(1), 10; https://doi.org/10.3390/gels12010010 - 23 Dec 2025
Abstract
The development of advanced macromolecular systems with tailored structural and functional properties is a key objective in modern materials science, particularly for biomedical applications such as targeted drug delivery. In this study, hydrogel (HG), a polymer-based formulation, was investigated as a functional carrier [...] Read more.
The development of advanced macromolecular systems with tailored structural and functional properties is a key objective in modern materials science, particularly for biomedical applications such as targeted drug delivery. In this study, hydrogel (HG), a polymer-based formulation, was investigated as a functional carrier for the enhanced intradermal and transdermal delivery of propranolol hydrochloride (PRO-HCl), a highly water-soluble model compound, and its potential was compared to other vehicles easily obtained by pharmacists: ointment (OM), liposomal cream (LCR), and microemulsion (ME). The formulations were characterized by their physicochemical and rheological characteristics, and evaluated in vitro and ex vivo using vertical diffusion cells equipped with synthetic membranes, intact porcine skin, and skin pretreated with solid microneedles (MNs). The HG formulation exhibited superior release performance (2396.85 ± 48.18 μg/cm2) and the highest intradermal drug deposition (19.87 ± 4.12 μg/cm2), while its combination with MNs significantly enhanced transdermal permeation (p = 0.0017). In contrast, the synergistic effect of MNs and ME led to a pronounced increase in drug accumulation within the skin (up to 60.3-fold). These findings highlight the crucial role of matrix composition and properties in modulating molecular transport through biological barriers. The study demonstrates that polymeric HGs represent versatile, functional materials with tunable structural and mechanical features, suitable for controlled release and potential systemic delivery applications. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Figure 1

23 pages, 3802 KB  
Article
Stakeholder Perspectives on Aligning Sawmilling and Prefabrication for Greater Efficiency in Australia’s Timber Manufacturing Sector
by Harshani Dissanayake, Tharaka Gunawardena and Priyan Mendis
Sustainability 2026, 18(1), 148; https://doi.org/10.3390/su18010148 - 22 Dec 2025
Abstract
Improving alignment between timber sawmilling and prefabrication, defined as the coordination of information, materials, and decision-making across the supply chain, is critical for sustainable construction. This study examined integration through semi-structured interviews with 15 industry practitioners. Using framework analysis supported by NVivo, eight [...] Read more.
Improving alignment between timber sawmilling and prefabrication, defined as the coordination of information, materials, and decision-making across the supply chain, is critical for sustainable construction. This study examined integration through semi-structured interviews with 15 industry practitioners. Using framework analysis supported by NVivo, eight interlinked themes were identified: supply chain fragmentation and market cycles; data-driven forecasting; inventory and moisture management; digital integration; smart planning and production; quality assurance and workforce capability; circular economy and residue utilisation; and systemic enablers and constraints. The findings show that technical capabilities such as optimisation, grading, and QR-based traceability are often undermined by organisational and policy barriers, including distributor-mediated purchasing, limited interoperability, outdated standards, and uneven skills pathways. Integration was considered more feasible for mass timber prefabrication, where batch planning, tighter quality assurance, and vertical integration align with mill operations, compared with frame-and-truss networks that rely on just-in-time project workflows. The study provides empirical evidence of practitioner perspectives and identifies priorities for action that translate into sustainability gains through improved material efficiency, waste reduction, higher-value residue pathways, and supportive policy settings. Full article
15 pages, 1850 KB  
Article
Analytical Description and Evaluation of Soil Infiltration Processes Under Horizontal Moistube Irrigation
by Di Liu, Zhiwei Yang, Yongting Huang, Xiongshi Wang, Xingrong Liu, Guoxin Zhang and Tao Liu
Water 2026, 18(1), 35; https://doi.org/10.3390/w18010035 (registering DOI) - 22 Dec 2025
Abstract
In the optimal design and operation of moistube irrigation systems, a wetted body and its components are important factors. This study presents an analytical characterization of the soil wetted body under horizontal moistube irrigation. In the laboratory experiment, the temporal and spatial changes [...] Read more.
In the optimal design and operation of moistube irrigation systems, a wetted body and its components are important factors. This study presents an analytical characterization of the soil wetted body under horizontal moistube irrigation. In the laboratory experiment, the temporal and spatial changes in the wetted body during irrigation were observed. Specifically, the maximum wetting distances in the horizontal, vertical upward, and vertical downward directions on the soil profile were measured every 30 min. Additionally, images documenting the wetted body’s changes at different time points were recorded throughout the experiment. On this basis, by locating the soil profile of the wetted body in a coordinate system, the main motion equations describing the temporal and spatial changes in the wetted body’s soil profile were derived. Through integral processing of these motion equations, an analytical model for the wetted body under horizontal moistube irrigation was constructed. Finally, the model was validated using the experimental data. The results show that the model outcomes are consistent with the natural movement of water in the soil. Therefore, when characterizing the size of the wetted body under horizontal moistube irrigation using the soil profile area, the proposed method, which involves analyzing the shape and components of the wetted body’s soil profile at different time points and determining its soil profile size by integrating four distinct parabolas, is feasible. Full article
(This article belongs to the Special Issue Assessment and Management of Soil Salinity: Methods and Technologies)
Show Figures

Figure 1

37 pages, 1515 KB  
Review
Designing Neural Dynamics: From Digital Twin Modeling to Regeneration
by Calin Petru Tataru, Adrian Vasile Dumitru, Nicolaie Dobrin, Mugurel Petrinel Rădoi, Alexandru Vlad Ciurea, Octavian Munteanu and Luciana Valentina Munteanu
Int. J. Mol. Sci. 2026, 27(1), 122; https://doi.org/10.3390/ijms27010122 (registering DOI) - 22 Dec 2025
Abstract
Cognitive deterioration and the transition to neurodegenerative disease does not develop through simple, linear regression; it develops as rapid and global transitions from one state to another within the neural network. Developing understanding and control over these events is among the largest tasks [...] Read more.
Cognitive deterioration and the transition to neurodegenerative disease does not develop through simple, linear regression; it develops as rapid and global transitions from one state to another within the neural network. Developing understanding and control over these events is among the largest tasks facing contemporary neuroscience. This paper will discuss a conceptual reframing of cognitive decline as a transitional phase of the functional state of complex neural networks resulting from the intertwining of molecular degradation, vascular dysfunction and systemic disarray. The paper will integrate the latest findings that have demonstrated how the disruptive changes in glymphatic clearance mechanisms, aquaporin-4 polarity, venous output, and neuroimmune signaling increasingly correlate with the neurophysiologic homeostasis landscape, ultimately leading to the destabilization of the network attraction sites of memory, consciousness, and cognitive resilience. Furthermore, the destabilizing processes are exacerbated by epigenetic silencing; neurovascular decoupling; remodeling of the extracellular matrix; and metabolic collapse that result in accelerating the trajectory of neural circuits towards the pathological tipping point of various neurodegenerative diseases including Alzheimer’s disease; Parkinson’s disease; traumatic brain injury; and intracranial hypertension. New paradigms in systems neuroscience (connectomics; network neuroscience; and critical transition theory) provide an intellectual toolkit to describe and predict these state changes at the systems level. With artificial intelligence and machine learning combined with single cell multi-omics; radiogenomic profiling; and digital twin modeling, the predictive biomarkers and early warnings of impending collapse of the system are beginning to emerge. In terms of therapeutic intervention, the possibility of reprogramming the circuitry of the brain into stable attractor states using precision neurointervention (CRISPR-based neural circuit reprogramming; RNA guided modulation of transcription; lineage switching of glia to neurons; and adaptive neuromodulation) represents an opportunity to prevent further progression of neurodegenerative disease. The paper will address the ethical and regulatory implications of this revolutionary technology, e.g., algorithmic transparency; genomic and other structural safety; and equity of access to advanced neurointervention. We do not intend to present a list of the many vertices through which the mechanisms listed above instigate, exacerbate, or maintain the neurodegenerative disease state. Instead, we aim to present a unified model where the phenomena of molecular pathology; circuit behavior; and computational intelligence converge in describing cognitive decline as a translatable change of state, rather than an irreversible succumbing to degeneration. Thus, we provide a framework for precision neurointervention, regenerative brain medicine, and adaptive intervention, to modulate the trajectory of neurodegeneration. Full article
(This article belongs to the Special Issue From Molecular Insights to Novel Therapies: Neurological Diseases)
Show Figures

Figure 1

21 pages, 10179 KB  
Article
A Comparative Analysis of the Synoptic Conditions and Thermodynamics of Two Thundersnow Weather Events in Shaanxi Province, China, During 2023
by Yueqi Li, Hongbo Ni, Jialu Liu, Yan Chou, Xinkai Hao and Shaoyang Liu
Atmosphere 2026, 17(1), 8; https://doi.org/10.3390/atmos17010008 (registering DOI) - 22 Dec 2025
Abstract
This study presents a comparative analysis of two rare thundersnow events accompanied by snowfall that occurred on 11 November 2023 and 10 December 2023 in Shaanxi province, China. Multiple data sources were integrated, including MICAPS surface and upper-air conventional detection observations, hourly meteorological [...] Read more.
This study presents a comparative analysis of two rare thundersnow events accompanied by snowfall that occurred on 11 November 2023 and 10 December 2023 in Shaanxi province, China. Multiple data sources were integrated, including MICAPS surface and upper-air conventional detection observations, hourly meteorological records from Yanliang Airport, lightning location data, and ERA5 reanalysis, to examine and contrast the synoptic conditions, moisture transport mechanisms, and convective characteristics underlying these two events. The results indicate that the large-scale circulation patterns were characterized by a “high in the west and low in the east” configuration and a “two troughs-one ridge” pattern for the November and December cases, respectively. In both episodes, Shaanxi Province was located on the rear side of a high-pressure ridge, where a strong pressure gradient induced pronounced northerly winds that advected cold air southward, forming a distinct near-surface cold pool. During the November event, the convective cloud system developed east of the Tibetan plateau, guided by a westerly flow, and propagated eastward while gradually weakening, with a minimum brightness temperature of −42 °C. Conversely, in December, the convective activity initiated over southwestern Shaanxi and moved northeastward under a southwesterly flow, reaching a lower minimum brightness temperature of −55 °C, indicative of stronger vertical development. In both events, the principal water vapor transport occurred near the 700 hPa height level and was primarily sourced from the Bay of Bengal via a southwesterly flow. The November event featured a stronger northwesterly cold-air intrusion, whereas the December case exhibited a broader moisture channel. The CAPE values peaked during the afternoon and nighttime periods in both cases. The cold-pool and inversion-layer thickness were approximately 2 km/45 hPa in November and 0.8 km/150 hPa in December. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 3290 KB  
Article
Magnetically Sculpted Microfluidics for Continuous-Flow Fractionation of Cell Populations by EpCAM Expression Level
by Zhenwei Liang, Xiaolei Guo, Xuanhe Zhang, Yiqing Chen, Chuan Du, Yuan Ma and Jiadao Wang
Micromachines 2026, 17(1), 9; https://doi.org/10.3390/mi17010009 (registering DOI) - 22 Dec 2025
Abstract
Continuous-flow separation of magnetically labeled cells according to surface-marker expression levels is increasingly needed to study phenotypic heterogeneity and support downstream assays. Here, we present a microfluidic platform that uses spatially engineered soft magnetic strips (SMS) to sculpt lateral magnetic deflection fields for [...] Read more.
Continuous-flow separation of magnetically labeled cells according to surface-marker expression levels is increasingly needed to study phenotypic heterogeneity and support downstream assays. Here, we present a microfluidic platform that uses spatially engineered soft magnetic strips (SMS) to sculpt lateral magnetic deflection fields for quantitative, label-guided cell fractionation. Under a uniform bias field, the SMS generates controllable magnetic gradients within the microchannel, producing distinct lateral velocities among EpCAM-labeled tumor cells that carry different Dynabead loads, which indirectly report membrane protein expression. Multi-outlet collection converts these “race-based” trajectory differences into discrete expression-level-resolved fractions. A COMSOL–MATLAB framework and a force-equivalent metric |(H·∇)H| are used to optimize key structural parameters of the magnetic interface, including strip thickness, width, and vertical spacing from the flow channel. Three journey nodes at 1.5, 3, and 9 mm along the flow path define a three-stage cascade that partitions MDA-MB-231, Caco-2, and A549 cells into four EpCAM-related magnetic subgroups: high (H), medium (M), low (L), and near-negative (N). Experiments show that the sorted fractions follow the expected expression trends reported in the literature, while maintaining high cell recovery (>90%) and viability retention of 98.2 ± 1.3%, indicating compatibility with downstream whole-blood assays and culture. Rather than introducing a new biomarker, this work establishes a quantitative magnetic-field design strategy for continuous microfluidic sorting, in which the spatial configuration of soft magnetic elements is exploited to implement expression-level-dependent fractionation in next-generation magneto-fluidic separation systems. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

16 pages, 5350 KB  
Article
A Scalable Ultra-Compact 1.2 kV/100 A SiC 3D Packaged Half-Bridge Building Block
by Junhong Tong, Wei-Jung Hsu, Qingyun Huang and Alex Q. Huang
Electronics 2026, 15(1), 29; https://doi.org/10.3390/electronics15010029 - 22 Dec 2025
Abstract
This work presents a highly compact and scalable 1.2-kV SiC MOSFET half-bridge building-block module enabled by a die-integrated 3D PCB packaging technology. Compared with conventional DBC-based or TO-247-based SiC half-bridge modules, the proposed design reduces the physical volume and weight by more than [...] Read more.
This work presents a highly compact and scalable 1.2-kV SiC MOSFET half-bridge building-block module enabled by a die-integrated 3D PCB packaging technology. Compared with conventional DBC-based or TO-247-based SiC half-bridge modules, the proposed design reduces the physical volume and weight by more than 90% while maintaining full compatibility with standard PCB manufacturing processes. The vertically laminated DC+/DC− conductors and symmetric PCB–die–PCB stack establish a tightly confined commutation loop, resulting in a measured power-loop inductance of 2.2 nH and a 3.8 nH gate-loop inductance—representing up to 94% and 89% reduction relative to discrete device implementations. Because the parasitic parameters are intrinsically well-balanced across replicated units and the mutual inductance between adjacent modules remains extremely small, the structure naturally supports current sharing during parallel operation. Thermal and insulation evaluations further confirm the suitability of copper filling via high-Tg laminated PCB substrates for high-power SiC applications, achieving withstand voltages exceeding twice the rated bus voltage. The proposed module is experimentally validated through finite-element parasitic extraction and 950 V double-pulse testing, demonstrating controlled dv/dt behavior and robust switching performance. This work establishes a manufacturable and parallel-friendly packaging approach for high-density SiC power conversion systems. Full article
Show Figures

Figure 1

18 pages, 8606 KB  
Article
Self-Referencing Digital Twin for Thermal and Task Management in Package Stacked ESP32-S3 Microcontrollers with Mixture-of-Experts and Neural Networks
by Yi Liu, Parth Sandeepbhai Shah, Tian Xia and Dryver Huston
Computers 2026, 15(1), 4; https://doi.org/10.3390/computers15010004 (registering DOI) - 21 Dec 2025
Abstract
Thermal limitations restrict the performance of low-cost, vertically stacked embedded systems. This paper presents a self-referencing digital twin framework for thermal and task management in a multi-device ESP32-S3 stack. The system combines a Mixture-of-Experts (MoE) model for task allocation with a neural network [...] Read more.
Thermal limitations restrict the performance of low-cost, vertically stacked embedded systems. This paper presents a self-referencing digital twin framework for thermal and task management in a multi-device ESP32-S3 stack. The system combines a Mixture-of-Experts (MoE) model for task allocation with a neural network for short-term temperature prediction. Acting as a lightweight digital replica of the physical stack, the digital twin continuously monitors device states, forecasts thermal behavior 30 s into the future, and adapts workload distribution accordingly. The MoE model evaluates each device individually and asynchronously, estimating the portion of workload it should receive based on current state features including SoC temperature, CPU frequency, stack position, and recent task history. A separate neural network predicts future temperatures using real-time data from local and neighboring devices, enabling proactive thermal-aware scheduling. Training data for both models is collected through controlled experiments involving fixed-frequency operation and structured frequency switching with idle phases. All predictions and control actions are driven by in-built sensor feedback from the ESP32-S3 microcontrollers. The resulting digital twin supports distributed task scheduling based on temperature and works well in simple, low-cost edge systems with heat constraints. In one-hour experiments on a 6 ESP32-S3 stack, the proposed scheduling method completes up to 572 computation rounds at a 50C temperature limit, compared with 493 and 542 rounds under logistic regression based control and 534 rounds at fixed 240 MHz operation, while keeping peak temperature at 51C. Full article
27 pages, 10128 KB  
Article
Late Pleistocene to Holocene Depositional Environments in Foredeep Basins: Coastal Plain Responses to Sea-Level and Tectonic Forcing—The Metaponto Area (Southern Italy)
by Agostino Meo and Maria Rosaria Senatore
Geosciences 2026, 16(1), 5; https://doi.org/10.3390/geosciences16010005 (registering DOI) - 20 Dec 2025
Viewed by 43
Abstract
The Metaponto coastal plain (Ionian margin, Southern Italy) records the Late Pleistocene–Holocene evolution of a foredeep coastal system shaped by relative sea-level change, vertical land motion, and compaction. We analyze a 22 m continuous core (Meta 1) using lithofacies logging, grain size statistics [...] Read more.
The Metaponto coastal plain (Ionian margin, Southern Italy) records the Late Pleistocene–Holocene evolution of a foredeep coastal system shaped by relative sea-level change, vertical land motion, and compaction. We analyze a 22 m continuous core (Meta 1) using lithofacies logging, grain size statistics and cumulative curves, multivariate analysis of grain size distributions (PCA and k-means clustering), and three AMS 14C ages, and we compare the record with a nearby borehole (MSB) and a global eustatic curve. Four depositional units document a shift from lower-shoreface–offshore deposition to lagoon–barrier/aeolian systems, culminating in late Holocene near-surface progradation. Textural end members (mud-rich offshore/lagoonal, traction-dominated, and sand-rich) are coherent across classical parameters, Visher-type curves, PCA, and k-means clusters. Depth–age comparisons suggest net uplift during the Late Glacial, followed by near-present relative sea level and a Late Holocene onset of modest net subsidence; a compaction contribution is plausible but unquantified. Subsidence/uplift rates therefore remain upper-bound estimates owing to sparse chronological control and the lack of glacio-isostatic and compaction modeling. Together with the MSB emerged-beach tie-point, the record constrains shoreline position and progradation. The inferred Mid- to Late-Holocene stabilization and progradational trends are consistent with other Italian and wider Mediterranean coastal plains. Additional dating and quantitative paleoecological proxies (e.g., foraminifera/ostracods/molluscs) are key to independently constrain salinity and water-depth changes and to refine the partitioning between subsidence and compaction. Full article
Show Figures

Figure 1

28 pages, 9145 KB  
Article
The Spatiotemporal Characteristics and Prediction of Soil and Water Conservation as Carbon Sinks in Karst Areas Based on Machine Learning: A Case Study of Puding County, China
by Man Li, Lijun Xie, Rui Dong, Shufen Huang, Qing Yang, Guangbin Yang, Ruidi Ma, Lin Liu, Tingyue Wang and Zhongfa Zhou
Agriculture 2026, 16(1), 15; https://doi.org/10.3390/agriculture16010015 - 20 Dec 2025
Viewed by 43
Abstract
Carbon sequestration by vegetation and soil conservation are vital components in balancing greenhouse gas emissions and enhancing terrestrial ecosystem carbon sinks. They also represent an efficient pathway towards achieving carbon neutrality objectives and addressing numerous environmental challenges arising from global warming. Soil and [...] Read more.
Carbon sequestration by vegetation and soil conservation are vital components in balancing greenhouse gas emissions and enhancing terrestrial ecosystem carbon sinks. They also represent an efficient pathway towards achieving carbon neutrality objectives and addressing numerous environmental challenges arising from global warming. Soil and water conservation, as crucial elements of ecological civilisation development, constitute a key link in realising carbon neutrality. This study systematically quantifies and forecasts the spatiotemporal characteristics of carbon sink capacity in soil and water conservation within the study area of Puding County, a typical karst region in Guizhou Province, China. Following a research approach of “mechanism elucidation–model construction–categorised estimation”, we established a carbon sink calculation system based on the dual mechanisms of vertical biomass carbon fixation via vegetative measures and horizontal soil organic carbon (SOC) retention using engineering measures. This system combines forestry, grassland, and engineering, with the aim of quantifying regional carbon sinks. Machine learning regression algorithms such as Random Forest, ExtraTrees, CatBoost, and XGBoost are used for backtracking estimation and optimisation modelling of soil and water conservation as carbon sinks from 2010 to 2022. The results show that the total carbon sink capacity of soil and water conservation in Puding County in 2017 was 34.53 × 104 t, while the contribution of engineering measures was 22.37 × 104 t. The spatial distribution shows a pattern of “higher in the north and lower in the south”. There are concentration hotspots in the central and western regions. Model comparison demonstrates that the Random Forest and extreme gradient boosting regression models are the best models for plantations/grasslands and engineering measures, respectively. The LSTM model was applied to predict carbon sink variables over the next ten years (2025–2034), showing that the overall situation is relatively stable, with only slight local fluctuations. This study solves the problem of the lack of quantitative data on soil and water conservation as carbon sinks in karst areas and provides a scientific basis for regional ecological governance and carbon sink management. Our findings demonstrate the practical significance of promoting the realisation of the “double carbon” goal. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 2334 KB  
Article
From Laboratory to Field: Concurrent Validity of Kinovea’s Linear Kinematics Tracking Tool for Semi-Automated Countermovement Jump Analysis
by Lucija Faj, Jelena Aleksić, Olivera M. Knežević, Branislav Božović, Hrvoje Brkić, Damir Sekulić and Dragan M. Mirkov
Sensors 2026, 26(1), 24; https://doi.org/10.3390/s26010024 - 19 Dec 2025
Viewed by 120
Abstract
Affordable high-frame-rate cameras and open-source software, such as Kinovea (ver. 2025.1.0), have expanded the potential for conducting kinematic assessments outside laboratory settings. This study examined the reliability and validity of Kinovea’s semi-automated linear kinematics tracking tool by comparing its outputs with those from [...] Read more.
Affordable high-frame-rate cameras and open-source software, such as Kinovea (ver. 2025.1.0), have expanded the potential for conducting kinematic assessments outside laboratory settings. This study examined the reliability and validity of Kinovea’s semi-automated linear kinematics tracking tool by comparing its outputs with those from a 3D marker-based motion capture system (Qualisys). Ten recreationally active male basketball players (x̄ ± SD: age 23.7 ± 1.7 years; height 183 ± 5 cm; body mass 76.8 ± 9.8 kg) performed three CMJ trials, simultaneously recorded using both systems. Reflective markers placed on the shoulder, hip, and knee were tracked in Kinovea by two raters with different levels of experience to extract core CMJ variables (total take-off time and maximum vertical displacement) and complementary variables (eccentric and propulsion duration, and minimum vertical displacement). Inter-rater reliability and concurrent validity were evaluated using intraclass correlation coefficients (ICCs), coefficients of variation (CV%), standard error of measurement (SEM), and Bland–Altman analysis. Results showed excellent inter-rater reliability (ICC = 0.73–0.99) across all markers, with the hip and knee demonstrating the highest consistency. Strong validity relative to Qualisys was observed for both raters (ICC = 0.68–0.99; r > 0.80), with small systematic biases primarily in temporal variables. Collectively, these findings demonstrate that Kinovea’s semi-automated 2D analysis yields reliable and valid CMJ measurements comparable to 3D motion capture, even for less experienced users. As a free and easily deployable tool, it offers a widely accessible alternative for field-based performance monitoring and applied biomechanics research where laboratory-grade equipment is not available. Full article
Show Figures

Figure 1

19 pages, 10274 KB  
Article
Source–Reservoir Structure of Member 2 of Xujiahe Formation and Its Control on Differential Enrichment of Tight Sandstone Gas in the Anyue Area, Sichuan Basin
by Hui Long, Tian Gao, Dongxia Chen, Wenzhi Lei, Xuezhen Sun, Hanxuan Yang, Zhipeng Ou, Chao Geng, Chenghai Li, Tian Liu, Qi Han, Jiaxun Lu and Yani Deng
Energies 2026, 19(1), 19; https://doi.org/10.3390/en19010019 - 19 Dec 2025
Viewed by 104
Abstract
Member 2 of the Xujiahe Formation in the Anyue area of the Sichuan Basin exhibits significant resource potential for tight sandstone gas. However, its characteristic of “extensive gas presence with localized enrichment” leads to substantial variations in single-well productivity, challenges in target zone [...] Read more.
Member 2 of the Xujiahe Formation in the Anyue area of the Sichuan Basin exhibits significant resource potential for tight sandstone gas. However, its characteristic of “extensive gas presence with localized enrichment” leads to substantial variations in single-well productivity, challenges in target zone optimization, and unclear enrichment mechanisms, which hinder efficient exploration and development. This study proposes a hierarchical classification scheme of “two-level, six-type” source–reservoir structures based on the developmental characteristics of fault–fracture systems and vertical source–reservoir configurations. The gas-bearing heterogeneity is quantitatively characterized using parameters such as effective gas layer thickness, charge intensity, and effective gas layer probability, thereby revealing the differential enrichment mechanisms of tight sandstone gas controlled by source–reservoir structures. Our key findings include the following: (1) Member 2 of the Xujiahe Formation develops six subtypes of source–reservoir structures grouped into two levels, with gas-bearing capacities ranked as follows: source–reservoir separation type > source–reservoir adjacent type I > source–reservoir adjacent type II. Among these, the source–reservoir separation type (Level I) and fault–fracture conduit type (Level II) represent the most favorable structures for gas enrichment. (2) Tight sandstone gas enrichment is governed by a tripartite synergistic mechanism: hydrocarbon supply from source rocks, vertical cross-layer migration dominated by fault–fracture systems, and reservoir storage capacity determined by fracture density and reservoir thickness. (3) Three enrichment models are established: (i) a strong enrichment model characterized by “multi-layer source rocks beneath the reservoir, cross-layer migration, and thick fractured reservoirs”; (ii) a moderate enrichment model defined by “single-layer source rocks, localized migration, and medium-thick fractured reservoirs”; and (iii) a weak enrichment model featuring “single-layer hydrocarbon supply, pore-throat migration, and thin tight reservoirs.” This research provides a theoretical basis for optimizing exploration targets in Member 2 of the Xujiahe Formation in the Anyue area and offers insights applicable to analogous continental tight gas reservoirs. Full article
Show Figures

Figure 1

21 pages, 5308 KB  
Article
Spray Deposition on Nursery Apple Plants as Affected by an Air-Assisted Boom Sprayer Mounted on a Portal Tractor
by Ryszard Hołownicki, Grzegorz Doruchowski, Waldemar Świechowski, Artur Godyń, Paweł Konopacki, Andrzej Bartosik and Paweł Białkowski
Agronomy 2026, 16(1), 8; https://doi.org/10.3390/agronomy16010008 - 19 Dec 2025
Viewed by 131
Abstract
Contemporary nurseries of fruit trees and ornamental plants constitute a key component in the production of high-quality planting material. At present, conventional technology dominates in nurseries in Poland and throughout the European Union. It is based on universal agricultural tractors working with numerous [...] Read more.
Contemporary nurseries of fruit trees and ornamental plants constitute a key component in the production of high-quality planting material. At present, conventional technology dominates in nurseries in Poland and throughout the European Union. It is based on universal agricultural tractors working with numerous specialized machines—typically underutilized—including sprayers, inter-row cultivation equipment, fertilizer spreaders, and tree lifters. This concept entails several limitations and high investment costs. Because of the considerable size and turning radius of such machinery, a dense network of service roads (every 15–18 m) and wide headlands must be maintained. These areas, which constitute approximately 20% of the total surface, are effectively wasted yet require continuous agronomic maintenance. An alternative concept employs a set of implements mounted on a high-clearance portal tractor (1.6–1.8 m), forming a specialized unit capable of moving above the rows of nursery crops. The study objective of the research was to evaluate the air distribution generated by an air-jet system installed on a crop-spray boom mounted on a portal sprayer, and to assess spray deposition during treatments in nursery trees. Such a configuration enables the mechanization of a broader range of nursery operations than currently possible, while reducing investment costs compared with conventional technology. One still underutilized technology consists of sprayers with an auxiliary airflow (AA) generated by air sleeves. Mean air velocity was measured in three vertical planes, and they showed lower air velocity between 1.0 m and 5.5 m. Spray deposition on apple nursery trees was assessed using a fluorescent tracer. The experimental design consists of a comparative field experiment with and without air flow support, spraying at two standard working rates (200 and 400 L·ha−1) and determining the application of the liquid to plants in the nursery. The results demonstrated a positive effect of the AA system on deposition. At a travel speed of 6.0 km·h−1 and an application rate of 200 L·ha−1, deposition on the upper leaf surface was 68% higher with the fan engaged. For a 400 L·ha−1 rate, deposition increased by 47%, with both differences statistically significant. The study showed that the nursery sprayer mounted on a high-clearance portal tractor and equipped with an AA system achieved an increase of 58% in spray deposition on the upper leaf surface when the fan was operating at 200 L·ha−1 and 28% at 400 L·ha−1. Substantial differences were found between deposition on the upper and lower leaf surfaces, with the former being 20–30 times greater. Given the complexity of nursery production technology, sprayers that ensure the highest possible biological efficacy and high quality of nursery material will play a pivotal role in its development. At the current stage, AA technology fulfils these requirements. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

Back to TopTop