Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = vertical farming systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 - 2 Aug 2025
Viewed by 223
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 167
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

21 pages, 1456 KiB  
Article
Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming
by Ana C. Cavallo, Michael Parkes, Ricardo F. M. Teixeira and Serena Righi
Appl. Sci. 2025, 15(15), 8429; https://doi.org/10.3390/app15158429 - 29 Jul 2025
Viewed by 230
Abstract
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. [...] Read more.
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. This study assesses the environmental performance of a prospective IVF system located on a university campus in Portugal, focusing on the integration of photovoltaic (PV) energy as an alternative to the conventional electricity grid (GM). A Life Cycle Assessment (LCA) was conducted using the Environmental Footprint (EF) method and the LANCA model to account for land use and soil-related impacts. The PV-powered system demonstrated lower overall environmental impacts, with notable reductions across most impact categories, but important trade-offs with decreased soil quality. The LANCA results highlighted cultivation and packaging as key contributors to land occupation and transformation, while also revealing trade-offs associated with upstream material demands. By combining EF and LANCA, the study shows that IVF systems that are not soil-based can still impact soil quality indirectly. These findings contribute to a broader understanding of sustainability in urban farming and underscore the importance of multi-dimensional assessment approaches when evaluating emerging agricultural technologies. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

15 pages, 466 KiB  
Article
Epidemiological Insights into Maedi-Visna Virus in Algeria: First National Seroprevalence Survey and Risk Factor Profiling in Sheep Herds
by Takfarinas Idres, Nasir Adam Ibrahim, Ali Lamara, Sofiane Boudjellaba, Assia Derguini, Nosiba Sulaiman Basher, Soraya Temim, Mohammed Saad Aleissa and Yahia Chebloune
Animals 2025, 15(15), 2166; https://doi.org/10.3390/ani15152166 - 23 Jul 2025
Viewed by 257
Abstract
Maedi-visna virus (MVV), a small ruminant lentivirus causing chronic multisystemic disease in sheep, poses significant economic burdens due to reduced productivity and a lack of effective treatments. Despite its worldwide prevalence, epidemiological data from Algeria remain absent. This first national seroprevalence study aimed [...] Read more.
Maedi-visna virus (MVV), a small ruminant lentivirus causing chronic multisystemic disease in sheep, poses significant economic burdens due to reduced productivity and a lack of effective treatments. Despite its worldwide prevalence, epidemiological data from Algeria remain absent. This first national seroprevalence study aimed to elucidate MVV distribution, risk factors, and transmission dynamics in Algerian sheep herds. A cross-sectional survey of 1400 sheep across four regions (East, Center, West, South) was conducted, with sera analyzed via indirect ELISA (IDvet). Risk factors (geography, age, sex, breed, farming system) were evaluated using chi-square tests and Cramer’s V. Overall seroprevalence was 9.07% (95% CI: 7.57–10.57), with significant variation by sex (females: 20.44% vs. males: 3.68%; p < 0.05), age (1–5 years: 6.86% vs. <1 year: 0.29%; p = 0.01), and region (Central: 3.36% vs. Eastern: 0.86%; p < 0.05). Notably, no association was found with breed or farming system (p ≥ 0.08), contrasting prior studies and suggesting region-specific transmission dynamics. Females exhibited heightened seropositivity, implicating prolonged herd retention and vertical transmission risks. Geographic disparities highlighted industrialized farming in central Algeria as a potential transmission amplifier. Strikingly, seronegative animals in high-prevalence herds hinted at genetic resistance, warranting further investigation. This study provides foundational insights into MVV epidemiology in North Africa, underscoring the need for targeted surveillance, ewe-focused control measures, and genetic research to mitigate transmission. The absence of prior national data elevates its significance, offering actionable frameworks for resource-limited settings and enriching the global understanding of SRLV heterogeneity. Full article
Show Figures

Figure 1

17 pages, 3372 KiB  
Article
Impact of Nitrogen Fertilizer Application Rates on Plant Growth and Yield of Organic Kale and Swiss Chard in Vertical Farming System
by Andruw Jones, Sai Prakash Naroju, Dilip Nandwani, Anthony Witcher and Shahidullah Chowdhary
Horticulturae 2025, 11(7), 827; https://doi.org/10.3390/horticulturae11070827 - 11 Jul 2025
Viewed by 463
Abstract
To support the growing global population, sustainable farming methods like vertical farming must complement traditional agriculture. This study evaluated the effects of various nitrogen fertilizer application rates (N_low (1055.3 ppm), N_rec (1640.9 ppm), N_high (2811.3 ppm), and N_0 (469.9 ppm)) on organic kale [...] Read more.
To support the growing global population, sustainable farming methods like vertical farming must complement traditional agriculture. This study evaluated the effects of various nitrogen fertilizer application rates (N_low (1055.3 ppm), N_rec (1640.9 ppm), N_high (2811.3 ppm), and N_0 (469.9 ppm)) on organic kale (Brassica oleracea L. var. acephala ‘Lacinato’) and Swiss chard (Beta vulgaris subsp. Vulgaris ‘Ruby/Rhubarb Red’), grown in a vertical growing system installed in a high tunnel during the spring and fall season of 2023 at the organic farm of Tennessee State University. Growth parameters studied included fresh weight, Brix, chlorophyll, plant height, and leaf count. Most parameters did not exhibit statistically significant differences (alpha = 0.05). However, consistent numerical trends and deviations were observed. Although not statistically significant, kale achieved the highest mean fresh weight in N_rec (688.08 g), and Swiss chard in N_high by spring (649.62 g). Among the few parameters, significant differences were observed for Swiss chard plant height (48.07 cm) and leaf count (47.25), with N_high during fall. Findings suggest that while definitive conclusions were limited, recommended nitrogen rates (N_rec) may enhance crop performance and contribute sustainable yields in resource constrained vertical farming systems. Further controlled studies are warranted to validate trends and refine nutrient strategies in vertical growing system. Full article
(This article belongs to the Special Issue Horticultural Production in Controlled Environment)
Show Figures

Graphical abstract

20 pages, 2130 KiB  
Article
Intercropping Lettuce with Alfalfa Under Variable Nitrate Supply: Effects on Growth Performance and Nutrient Dynamics in a Vertical Hydroponic System
by Luis D-Andrade, Nivia Escalante-Garcia, Ernesto Olvera-Gonzalez, Francesco Orsini, Giuseppina Pennisi, Felix Vega de Luna, Hector Silos-Espino and Cinthia Najera
Plants 2025, 14(13), 2060; https://doi.org/10.3390/plants14132060 - 5 Jul 2025
Viewed by 446
Abstract
Vertical farming systems offer an efficient solution for sustainable food production in urban areas. However, managing nitrate (NO3) levels remains a significant challenge for improving crop yield, quality, and safety. This study evaluated the effects of nitrate availability on growth [...] Read more.
Vertical farming systems offer an efficient solution for sustainable food production in urban areas. However, managing nitrate (NO3) levels remains a significant challenge for improving crop yield, quality, and safety. This study evaluated the effects of nitrate availability on growth performance, nutrient uptake, and water use efficiency in a vertical hydroponic system that intercropped lettuce (Lactuca sativa) with alfalfa (Medicago sativa). The experiment was conducted in a controlled vertical hydroponic system using Nutrient Film Technique (NFT) channels, with nitrogen levels set at 0, 33, 66, 100, and 133% of the standard concentration. The results indicated that the intercropping treatment with 66% nitrate (IC-N66%) improved water use efficiency by 38% and slightly increased leaf area compared to the other intercropping treatments. However, the control group, which consisted of a monoculture with full nitrate supply, achieved the highest overall biomass. Ion concentrations, including nitrate, calcium, magnesium, and micronutrients, were moderately affected by the intercropping strategy and nitrate levels. These findings suggest that moderate nitrate input, combined with nitrogen-fixing legumes, can enhance resource efficiency in hydroponic systems without significantly compromising yield. These findings offer a promising framework for incorporating legumes into hydroponic systems, minimizing the need for synthetic inputs while maintaining yield. These results support the use of agroecological intensification strategies in highly efficient soilless systems. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

23 pages, 2820 KiB  
Article
Optimized Spectral and Spatial Design of High-Uniformity and Energy-Efficient LED Lighting for Italian Lettuce Cultivation in Miniature Plant Factories
by Zihan Wang, Haitong Huang, Mingming Shi, Yuheng Xiong, Jiang Wang, Yilin Wang and Jun Zou
Horticulturae 2025, 11(7), 779; https://doi.org/10.3390/horticulturae11070779 - 3 Jul 2025
Viewed by 369
Abstract
Optimizing artificial lighting in controlled-environment agriculture is crucial for enhancing crop productivity and resource efficiency. This study presents a spectral–spatial co-optimization strategy for LED lighting tailored to the physiological needs of Italian lettuce (Lactuca sativa L. var. italica). A miniature plant factory [...] Read more.
Optimizing artificial lighting in controlled-environment agriculture is crucial for enhancing crop productivity and resource efficiency. This study presents a spectral–spatial co-optimization strategy for LED lighting tailored to the physiological needs of Italian lettuce (Lactuca sativa L. var. italica). A miniature plant factory system was developed with dimensions of 400 mm × 400 mm × 500 mm (L × W × H). Seven customized spectral treatments were created using 2835-packaged LEDs, incorporating various combinations of blue and violet LED chips with precisely controlled concentrations of red phosphor. The spectral configurations were aligned with the measured absorption peaks of Italian lettuce (450–470 nm and 640–670 nm), achieving a spectral mixing uniformity exceeding 99%, while the spatial light intensity uniformity surpassed 90%. To address spatial light heterogeneity, a particle swarm optimization (PSO) algorithm was employed to determine the optimal LED arrangement, which increased the photosynthetic photon flux density (PPFD) uniformity from 83% to 93%. The system operates with a fixture-level power consumption of only 75 W. Experimental evaluations across seven treatment groups demonstrated that the E-spectrum group—comprising two violet chips, one blue chip, and 0.21 g of red phosphor—achieved the highest agronomic performance. Compared to the A-spectrum group (three blue chips and 0.19 g of red phosphor), the E-spectrum group resulted in a 25% increase in fresh weight (90.0 g vs. 72.0 g), a 30% reduction in SPAD value (indicative of improved light-use efficiency), and compared with Group A, Group E exhibited significant improvements in plant morphological parameters, including a 7.05% increase in plant height (15.63 cm vs. 14.60 cm), a 25.64% increase in leaf width (6.37 cm vs. 5.07 cm), and a 6.35% increase in leaf length (10.22 cm vs. 9.61 cm). Furthermore, energy consumption was reduced from 9.2 kWh (Group A) to 7.3 kWh (Group E). These results demonstrate that integrating spectral customization with algorithmically optimized spatial distribution is an effective and scalable approach for enhancing both crop yield and energy efficiency in vertical farming systems. Full article
Show Figures

Figure 1

27 pages, 2401 KiB  
Review
Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways
by Yang Song and Wenbo Zhang
Sustainability 2025, 17(12), 5593; https://doi.org/10.3390/su17125593 - 18 Jun 2025
Viewed by 1049
Abstract
China leads global carp aquaculture (farming of species within the family Cyprinidae), producing 20 million tons annually in a sector shaped by favorable policies, infrastructure, and innovation. Carp farming in China is rooted in millennia of traditional practices and transformative post-1978 economic [...] Read more.
China leads global carp aquaculture (farming of species within the family Cyprinidae), producing 20 million tons annually in a sector shaped by favorable policies, infrastructure, and innovation. Carp farming in China is rooted in millennia of traditional practices and transformative post-1978 economic reforms. This review synthesizes the historical trajectory, technological advancements, policy frameworks, and sustainability challenges shaping China’s carp aquaculture sector. Historically, carp polyculture systems, developed during the Tang Dynasty (618–907 CE), laid the foundation for resource-efficient practices. Modern intensification, driven by state-led policies, genetic innovations, and feed-based systems, enabled unprecedented growth. However, rapid expansion has exacerbated environmental trade-offs, including nutrient pollution, habitat loss, and antibiotic resistance, while socioeconomic disparities, aging labor forces, and market volatility threaten sectoral resilience. Policy shifts since the 2000s prioritize ecological sustainability, exemplified by effluent regulations, wetland restoration, and green technologies. Despite progress, challenges persist in reconciling economic viability with environmental safeguards. Key success factors include long-term policy support, smallholder capacity building, vertically integrated supply chains, product differentiation, and adaptive management. With balanced policies emphasizing economic, social, and environmental sustainability, carp aquaculture can enhance domestic food and nutrition security. China’s experience showcases the potential of aquaculture to bolster food security but highlights the urgent need to harmonize productivity with ecological and social equity to ensure long-term resilience. Lessons from China’s model offer actionable insights for global aquaculture systems navigating similar sustainability imperatives. Full article
Show Figures

Figure 1

25 pages, 12268 KiB  
Article
Modeling Growth Dynamics of Lemna minor: Process Optimization Considering the Influence of Plant Density and Light Intensity
by Jannis von Salzen, Finn Petersen, Andreas Ulbrich and Stefan Streif
Plants 2025, 14(11), 1722; https://doi.org/10.3390/plants14111722 - 5 Jun 2025
Viewed by 706
Abstract
The production of duckweed (Lemnaceae) as a novel protein source could make a valuable contribution to human nutrition. The greatly reduced habitus of duckweed enables simple cultivation with extremely low space requirements, making this free-floating freshwater plant ideal for substrate-free and vertical cultivation [...] Read more.
The production of duckweed (Lemnaceae) as a novel protein source could make a valuable contribution to human nutrition. The greatly reduced habitus of duckweed enables simple cultivation with extremely low space requirements, making this free-floating freshwater plant ideal for substrate-free and vertical cultivation in controlled environment agriculture. Of particular importance in the design of a plant-producing Indoor Vertical Farming process is the determination of light intensity, as artificial lighting is generally the most energy-intensive feature of daylight-independent cultivation systems. In order to make the production process both cost-effective and low emission in the future, it is, therefore, crucial to understand and mathematically describe the primary metabolism, in particular the light utilization efficiency. To achieve this, a growth model was developed that mathematically describes the combined effects of plant density and light intensity on the growth rate of Lemna minor L. and physiologically explains the intraspecific competition of plants for light through mutual shading. Furthermore, the growth model can be utilized to derive environmental and process parameters, including optimum harvest quantities and efficiency-optimized light intensities to improve the production process. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

36 pages, 10251 KiB  
Article
Integrating Advanced Sensor Technologies for Enhanced Agricultural Weather Forecasts and Irrigation Advisories: The MAGDA Project Approach
by Martina Lagasio, Stefano Barindelli, Zenaida Chitu, Sergio Contreras, Amelia Fernández-Rodríguez, Martijn de Klerk, Alessandro Fumagalli, Andrea Gatti, Lukas Hammerschmidt, Damir Haskovic, Massimo Milelli, Elena Oberto, Irina Ontel, Julien Orensanz, Fabiola Ramelli, Francesco Uboldi, Aso Validi and Eugenio Realini
Remote Sens. 2025, 17(11), 1855; https://doi.org/10.3390/rs17111855 - 26 May 2025
Viewed by 704
Abstract
Weather forecasting is essential for agriculture, yet current methods often lack the localized accuracy required to manage extreme weather events and optimize irrigation. The MAGDA Horizon Europe/EUSPA project addresses this gap by developing a modular system that integrates novel European space-based, airborne, and [...] Read more.
Weather forecasting is essential for agriculture, yet current methods often lack the localized accuracy required to manage extreme weather events and optimize irrigation. The MAGDA Horizon Europe/EUSPA project addresses this gap by developing a modular system that integrates novel European space-based, airborne, and ground-based technologies. Unlike conventional forecasting systems, MAGDA enables precise, field-level predictions through the integration of cutting-edge technologies: Meteodrones provide vertical atmospheric profiles where traditional data are sparse; GNSS-reflectometry offers real-time soil moisture insights; and all observations feed into convection-permitting models for accurate nowcasting of extreme events. By combining satellite data, GNSS, Meteodrones, and high-resolution meteorological models, MAGDA enhances agricultural and water management with precise, tailored forecasts. Climate change is intensifying extreme weather events such as heavy rainfall, hail, and droughts, threatening both crop yields and water resources. Improving forecast reliability requires better observational data to refine initial atmospheric conditions. Recent advancements in assimilating reflectivity and in situ observations into high-resolution NWMs show promise, particularly for convective weather. Experiments using Sentinel and GNSS-derived data have further improved severe weather prediction. MAGDA employs a high-resolution cloud-resolving model and integrates GNSS, radar, weather stations, and Meteodrones to provide comprehensive atmospheric insights. These enhanced forecasts support both irrigation management and extreme weather warnings, delivered through a Farm Management System to assist farmers. As climate change increases the frequency of floods and droughts, MAGDA’s integration of high-resolution, multi-source observational technologies, including GNSS-reflectometry and drone-based atmospheric profiling, is crucial for ensuring sustainable agriculture and efficient water resource management. Full article
Show Figures

Graphical abstract

47 pages, 10515 KiB  
Review
Soilless Agricultural Systems: Opportunities, Challenges, and Applications for Enhancing Horticultural Resilience to Climate Change and Urbanization
by Imran Ali Lakhiar, Haofang Yan, Tabinda Naz Syed, Chuan Zhang, Sher Ali Shaikh, Md. Rakibuzzaman and Rahim Bux Vistro
Horticulturae 2025, 11(6), 568; https://doi.org/10.3390/horticulturae11060568 - 22 May 2025
Cited by 2 | Viewed by 2086
Abstract
Rapid urbanization, climate variability, and land degradation are increasingly challenging traditional open-field farming systems. Soilless farming (SLF) has emerged as a complementary approach to enhance horticultural resilience in space-constrained and climate-stressed environments. This review critically evaluates the role of SLF within the broader [...] Read more.
Rapid urbanization, climate variability, and land degradation are increasingly challenging traditional open-field farming systems. Soilless farming (SLF) has emerged as a complementary approach to enhance horticultural resilience in space-constrained and climate-stressed environments. This review critically evaluates the role of SLF within the broader framework of climate-smart agriculture (C-SA), with a particular focus on its applications in urban and peri-urban settings. Drawing on a systematic review of the existing literature, the study explores how SLF technologies contribute to efficient resource use, localized food production, and environmental sustainability. By decoupling crop cultivation from soil, SLF enables precise control over nutrient delivery and water use in enclosed environments, such as vertical farms, greenhouses, and container-based units. These systems offer notable advantages regarding water conservation, increased yield per unit area, and adaptability to non-arable or degraded land, making them particularly relevant for high-density cities, arid zones, and climate-sensitive regions. SLF systems are categorized into substrate-based (e.g., coco peat and rock wool) and water-based systems (e.g., hydroponics, aquaponics, and aeroponics), each with distinct design requirements, nutrient management strategies, and crop compatibility. Emerging technologies—including artificial intelligence, the Internet of Things, and automation—further enhance SLF system efficiency through real-time data monitoring and precision control. Despite these advancements, challenges remain. High setup costs, energy demands, and the need for technical expertise continue to limit large-scale adoption. While SLF is not a replacement for traditional agriculture, it offers a strategic supplement to bolster localized food systems and address climate-related risks in horticultural production. Urban horticulture is no longer a peripheral activity; it is becoming an integral element of sustainable urban development. SLF should be embedded within broader resilience strategies, tailored to specific socioeconomic and environmental contexts. Full article
(This article belongs to the Special Issue Soilless Culture and Hydroponics in Closed Systems)
Show Figures

Figure 1

19 pages, 4271 KiB  
Article
A Low-Energy Lighting Strategy for High-Yield Strawberry Cultivation Under Controlled Environments
by Jun Zou, Zihan Wang, Haitong Huang, Xiaohua Huang and Mingming Shi
Agronomy 2025, 15(5), 1130; https://doi.org/10.3390/agronomy15051130 - 4 May 2025
Cited by 1 | Viewed by 977
Abstract
Optimizing light conditions in controlled-environment agriculture is critical for enhancing crop yield and energy efficiency, particularly in high-value crops like strawberries, where precise spectral tuning can significantly influence both vegetative growth and fruit production. In this study, a windmill-style vertical farming system was [...] Read more.
Optimizing light conditions in controlled-environment agriculture is critical for enhancing crop yield and energy efficiency, particularly in high-value crops like strawberries, where precise spectral tuning can significantly influence both vegetative growth and fruit production. In this study, a windmill-style vertical farming system was developed to facilitate efficient strawberry cultivation under low-light conditions. A custom LED lighting fixture, measuring 3 m in length, was suspended 30 cm above the canopy to uniformly illuminate a planting zone of 3.0 m × 0.3 m. The lighting system, which combines red (655–665 nm) and full-spectrum white LEDs, was optimized using a particle swarm optimization (PSO) algorithm to enhance spatial light distribution. The uniformity of photosynthetic photon flux density (PPFD) improved from 71% to 85%, and the standard deviation decreased from 75 to 15. Under a 16 h optimized lighting regime, strawberry plants exhibited a 55% increase in height compared to the non-supplemented control group (Group D), a 40% increase in leaf width, and a 36% increase in fruit weight (69.76 g per plant) relative to the 12 h supplemental lighting group (Group A). The system operates at a fixture-level power consumption of just 160 W, with its spectral output aligned with the absorption characteristics of strawberry foliage and fruit. These results demonstrate that an algorithm-driven lighting layout can significantly enhance both vegetative and reproductive performance in vertical strawberry farming while maintaining high energy efficiency. Full article
Show Figures

Figure 1

36 pages, 3532 KiB  
Article
Assessing the Resilience of Farming Systems: Insights from the Common Agricultural Policy and Polish Fruit and Vegetable Farming Challenges
by Anna Agata Martikainen
Agriculture 2025, 15(9), 990; https://doi.org/10.3390/agriculture15090990 - 2 May 2025
Viewed by 580
Abstract
Risk management and resilience of agriculture are among the most important issues in the ongoing discussion on the shape of the Common Agricultural Policy (CAP). Farming systems face various risks that increase their vulnerability, which necessitates the strengthening of their resilience. This raises [...] Read more.
Risk management and resilience of agriculture are among the most important issues in the ongoing discussion on the shape of the Common Agricultural Policy (CAP). Farming systems face various risks that increase their vulnerability, which necessitates the strengthening of their resilience. This raises critical questions whether CAP policies adequately support the resilience of farming systems in addressing these challenges. The study investigates the resilience of the Polish fruit and vegetable farming system within the context of the CAP. Employing a mixed-methods approach that includes interviews and stakeholder workshops, the research identifies critical risks such as market volatility, climate change, labor shortages, or international competition. The study reveals that while farmers adopt various coping strategies, existing CAP measures predominantly support robustness, often neglecting adaptability and transformability, which are essential for addressing long-term risks. Stakeholder feedback highlights bureaucratic inefficiencies, limited access to resources for innovation, and an overemphasis on short-term interventions. Recommendations emphasize the need for policy adjustments to foster long-term adaptability through enhanced vertical and horizontal integration, support for innovation, and knowledge transfer. Under future scenarios, policy priorities vary but consistently call for resilience-focused reforms. These findings underscore the benefits of integrating resilience-thinking frameworks into agricultural policy to enable sustainable development and competitiveness of farming systems. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

38 pages, 4096 KiB  
Review
CO2 Enrichment in Protected Agriculture: A Bibliometric Review on Greenhouses, Controlled Environment Systems, and Vertical Farms—Part 1
by John Javier Espitia, Gina Amado, Jader Rodriguez, Luisa Gomez, Rodrigo Gil, Jorge Flores-Velasquez, Esteban Baeza, Cruz Ernesto Aguilar, Mohammad Akrami, Luis Alejandro Arias and Edwin Villagran
Horticulturae 2025, 11(5), 476; https://doi.org/10.3390/horticulturae11050476 - 29 Apr 2025
Viewed by 888
Abstract
CO2 enrichment in protected agriculture is a key strategy for enhancing crop productivity and quality, optimizing photosynthetic efficiency, and mitigating the impacts of climate change. In this study, a comprehensive bibliometric analysis of research on CO2 enrichment is conducted by compiling [...] Read more.
CO2 enrichment in protected agriculture is a key strategy for enhancing crop productivity and quality, optimizing photosynthetic efficiency, and mitigating the impacts of climate change. In this study, a comprehensive bibliometric analysis of research on CO2 enrichment is conducted by compiling and evaluating 171 relevant documents published between 1982 and 2024 in Scopus, utilizing R-Studio and VOSviewer for data processing. The analysis explores scientific output trends, predominant research methodologies, influencing factors, and emerging applications in controlled-environment agriculture. The findings reveal an exponential growth in scientific publications since 2015, with Asia and Europe leading the research landscape. The physiological and agronomic benefits of CO2 enrichment in C3 crops, particularly tomatoes and lettuce, include enhanced photosynthesis, improved nitrogen assimilation, and reduced abiotic stress. Additionally, advancements in sustainable CO2 capture and delivery technologies, such as industrial capture and fermentation-based systems, have been documented. However, significant challenges remain regarding the economic feasibility, accessibility for small-scale farmers, and environmental sustainability of CO2 enrichment strategies. A network analysis of scientific collaboration highlights an increasing trend of international cooperation, with China, the United States, and Japan emerging as key contributors. The integration of plant physiology, agricultural engineering, and environmental sustainability reflects a transition toward multidisciplinary approaches aimed at optimizing CO2 utilization in controlled environments. This study underscores the potential of CO2 enrichment as a transformative tool in protected agriculture. However, its large-scale adoption necessitates international collaboration, rigorous research on socio-economic and environmental impacts, and the development of context-specific technologies. Strengthening global research networks and fostering applied innovation will be essential to ensuring the widespread and sustainable implementation of CO2 enrichment strategies in protected agriculture. Full article
Show Figures

Figure 1

25 pages, 2517 KiB  
Perspective
Challenges and Opportunities for New Frontiers and Technologies to Guarantee Food Production
by José Cleydson Ferreira Silva, Kleiton Lima de Godoy Machado, Anna Flavia de Souza Silva, Raquel Dias, Victor Ricardo Bodnar, Wallison Oliveira Vieira, Maria Alejandra Moreno-Pizani, Jenifer Dias Ramos, Ivani Pauli and Lucas Cavalcante da Costa
Sustainability 2025, 17(9), 3792; https://doi.org/10.3390/su17093792 - 23 Apr 2025
Cited by 1 | Viewed by 1929
Abstract
The global food production sector is under immense pressure due to rapid population growth and climate change, demanding innovative solutions for food security and sustainability. This review explores innovative advancements in agriculture and food technology, from urban farming (e.g., vertical farming, aquaponics, and [...] Read more.
The global food production sector is under immense pressure due to rapid population growth and climate change, demanding innovative solutions for food security and sustainability. This review explores innovative advancements in agriculture and food technology, from urban farming (e.g., vertical farming, aquaponics, and hydroponics) to regenerative agriculture and agroforestry practices that enhance soil health and biodiversity. We also examine food production in extreme environments, including desert agriculture and space agriculture, as well as advances in biotechnology, synthetic biology, and nanotechnology, that enable improved crop yields and nutrition. The transformative role of AI in precision farming, predictive analytics, and water management is highlighted, as well as the importance of bioproducts and eco-friendly innovations. Finally, we discuss the vital role of policy, regulation, and community-driven approaches in shaping a resilient global food system. Through the integration of technology with sustainable practices, this review aims to inspire research into solutions that ensure future food security while preserving our planet. Full article
Show Figures

Figure 1

Back to TopTop