Intercropping Lettuce with Alfalfa Under Variable Nitrate Supply: Effects on Growth Performance and Nutrient Dynamics in a Vertical Hydroponic System
Abstract
1. Introduction
2. Results
2.1. Nutritive Solution Dynamics
2.1.1. Water Consumption
2.1.2. pH Dynamics
2.1.3. Electrical Conductivity (EC)
2.2. Plant Growth and Biomass Accumulation
2.3. Accumulation of Mineral Elements in Plant Tissue
2.4. Energy Consumption
3. Discussion
3.1. Nitrate Availability and Lettuce Growth Performance
3.2. Nitrate Accumulation and Food Safety
3.3. Water Use Efficiency and Leaf Area
3.4. Root-Zone Physicochemical Conditions (pH and EC)
3.5. Ion Uptake and Nutrient Balance
3.6. Biological Interaction and Rhizospheric Resilience
3.7. Implications for Sustainable Vertical Farming
4. Materials and Methods
4.1. Plant Material
4.2. Biofertilizers Used in the Experiment
4.3. Plant Nutrition
4.4. Plant Growing Conditions
Light System Characteristics
4.5. Measurements of Plant Growth Parameters
4.5.1. Leaf Area (LA) and Number of Leaves (NLs)
4.5.2. Aerial Fresh and Dry Weight (AFW, ADW)
4.5.3. Elemental Nutrient Analysis
4.5.4. Specific Leaf Area (SLA)
4.5.5. Water Use Efficiency (WUE)
4.6. Measurements of Water Consumption (WC), pH, and Electrical Conductivity (EC)
4.6.1. Water Consumption (WC)
4.6.2. pH and EC
4.7. Energy Consumption
4.8. Statical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Rani, J.; Phogat, P.; Kumar, R. Urban and Vertical Farming: A Sustainable Solution for the Future. AgriTech Today 2025, 2, 70–72. [Google Scholar]
- Malik, A. Smart Green Housing: Vertical Farming. In Recent Advancements in Sustainable Agricultural Practices; Springer Nature: Singapore, 2024; pp. 133–149. [Google Scholar]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef]
- Fathi, A. Role of Nitrogen (N) in Plant Growth, Photosynthesis Pigments, and N Use Efficiency: A Review. Agrisost 2022, 28, 1–8. [Google Scholar] [CrossRef]
- Riggio, G.; Jones, S.; Gibson, K. Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation. Horticulturae 2019, 5, 25. [Google Scholar] [CrossRef]
- Pomoni, D.I.; Koukou, M.K.; Vrachopoulos, M.G.; Vasiliadis, L. A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies 2023, 16, 1690. [Google Scholar] [CrossRef]
- Demšar, J.; Osvald, J.; Vodnik, D. The Effect of Light-Dependent Application of Nitrate on the Growth of Aeroponically Grown Lettuce (Lactuca sativa L.). J. Am. Soc. Hortic. Sci. 2004, 129, 570–575. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of Different Ratios of Blue and Red LED Light on Brassicaceae Microgreens under a Controlled Environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Wenceslau, D.D.S.L.; de Oliveira, D.F.; de Oliveira Rabelo, H.; Ferbonink, G.F.; Gomes, L.A.A.; Leonel, É.C.A.; Caione, G. Nitrate Concentration and Nitrate/Ammonium Ratio on Lettuce Grown in Hydroponics in Southern Amazon. Afr. J. Agric. Res. 2021, 17, 862–868. [Google Scholar] [CrossRef]
- Breś, W.; Kleiber, T.; Markiewicz, B.; Mieloszyk, E.; Mieloch, M. The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy 2022, 12, 244. [Google Scholar] [CrossRef]
- Holatko, J.; Kucerik, J.; Mustafa, A.; Lonova, K.; Siddiqui, M.H.; Naveed, M.; Hammerschmiedt, T.; Kintl, A.; Malicek, O.; Chorazy, T.; et al. Influence of Biochar Feedstock Blends on Soil Enzyme Activity, Nutrient Cycling, Lettuce Biomass Accumulation and Photosynthesis. BMC Plant Biol. 2025, 25, 323. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Carmona, J.; Martínez, V.; Garcia-Sánchez, F.; Mestre, T.C.; Navarro-Pérez, V.; Cámara-Zapata, J.M. Reducing Nitrate Accumulation through the Management of Nutrient Solution in a Floating System Lettuce (Lactuca sativa, L.). Sci. Hortic. 2024, 336, 113377. [Google Scholar] [CrossRef]
- Soufi, H.R.; Roosta, H.R.; Fatehi, F.; Ghorbanpour, M. Spectral Composition of LED Light Differentially Affects Biomass, Photosynthesis, Nutrient Profile, and Foliar Nitrate Accumulation of Lettuce Grown under Various Replacement Methods of Nutrient Solution. Food Sci. Nutr. 2023, 11, 8143–8162. [Google Scholar] [CrossRef]
- Tabaglio, V.; Boselli, R.; Fiorini, A.; Ganimede, C.; Beccari, P.; Santelli, S.; Nervo, G. Reducing Nitrate Accumulation and Fertilizer Use in Lettuce with Modified Intermittent Nutrient Film Technique (NFT) System. Agronomy 2020, 10, 1208. [Google Scholar] [CrossRef]
- Swarnalakshmi, K.; Yadav, V.; Tyagi, D.; Dhar, D.W.; Kannepalli, A.; Kumar, S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. Plants 2020, 9, 1596. [Google Scholar] [CrossRef] [PubMed]
- Matse, D.T.; Huang, C.-H.; Huang, Y.-M.; Yen, M.-Y. Effects of Coinoculation of Rhizobium with Plant Growth Promoting Rhizobacteria on the Nitrogen Fixation and Nutrient Uptake of Trifolium Repens in Low Phosphorus Soil. J. Plant Nutr. 2020, 43, 739–752. [Google Scholar] [CrossRef]
- Ju, W.; Liu, L.; Fang, L.; Cui, Y.; Duan, C.; Wu, H. Impact of Co-Inoculation with Plant-Growth-Promoting Rhizobacteria and Rhizobium on the Biochemical Responses of Alfalfa-Soil System in Copper Contaminated Soil. Ecotoxicol. Environ. Saf. 2019, 167, 218–226. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, L.; Gao, J.; Zhang, G.; Peng, F.; Zhang, C.; Zhao, Q.; Peng, Q.; Shao, M. Changes in Nutrient Accumulation and Transportation of Waxy Sorghum in Waxy Sorghum-Soybean Intercropping Systems Under Different Row Ratio Configurations. Front. Plant Sci. 2022, 13, 921860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Feng, Y.; Zhao, Z.; Cui, Z.; Baoyin, B.; Wang, H.; Li, Q.; Cui, J. Maize/Soybean Intercropping with Nitrogen Supply Levels Increases Maize Yield and Nitrogen Uptake by Influencing the Rhizosphere Bacterial Diversity of Soil. Front. Plant Sci. 2024, 15, 1437631. [Google Scholar] [CrossRef]
- Prakash, J.; Kour, M.; Aradhna; Shubham; Kaushal, S. Pest Management in Hydroponics Crop Production: Challenges and Solutions. Int. J. Plant Soil Sci. 2025, 37, 28–37. [Google Scholar] [CrossRef]
- Guerchi, A.; Mnafgui, W.; Jabri, C.; Merghni, M.; Sifaoui, K.; Mahjoub, A.; Ludidi, N.; Badri, M. Improving Productivity and Soil Fertility in Medicago Sativa and Hordeum Marinum through Intercropping under Saline Conditions. BMC Plant Biol. 2024, 24, 158. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781439878699. [Google Scholar]
- Rajalakshmi, M.; Gunasekaran, K. Improving Nutrient Uptake Efficiency in Hydroponic Systems with Phytoremediation of Nitrate-Nitrogen Contaminated Wastewater. Environ. Qual. Manag. 2024, 34, e22337. [Google Scholar] [CrossRef]
- Pérez Gómez, E.A. Pineda Pineda Joel Principios de Nutrición Vegetal En Cultivos Hidropónicos. In Proceedings of the Nutrición Vegetal; Agrosistemas Controlados: Mexico City, Mexico, 2023. [Google Scholar]
- Morsy, M.; Nossier, M.; Elsebaay, A.E.; Abd-Elrahman, S. Phytoremediation of Pb and Cd by Alfalfa (Medicago Sativa L.): An Applied Study in the Presence of Lettuce Plants (Lactuca Sativa L.). Arab. Univ. J. Agric. Sci. 2022, 30, 163–174. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Y.; Hu, J.; Zhou, H.; Adeleye, A.S.; Keller, A.A. 1 H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. Environ. Sci. Technol. 2016, 50, 2000–2010. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Poudel, M.R.; Dunn, B.L.; Fontanier, C.; Kakani, G. Effect of Greenhouse CO2 Supplementation on Yield and Mineral Element Concentrations of Leafy Greens Grown Using Nutrient Film Technique. Agronomy 2020, 10, 323. [Google Scholar] [CrossRef]
- Mickens, M.A.; Skoog, E.J.; Reese, L.E.; Barnwell, P.L.; Spencer, L.E.; Massa, G.D.; Wheeler, R.M. A Strategic Approach for Investigating Light Recipes for ‘Outredgeous’ Red Romaine Lettuce Using White and Monochromatic LEDs. Life Sci. Space Res. 2018, 19, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Vaštakaitė-Kairienė, V.; Viršilė, A. Light-Emitting Diodes (LEDs) for Higher Nutritional Quality of Brassicaceae Microgreens. In Proceedings of the Research for Rural Development, Jelgava, Latvia, 13–15 April 2015; Volume 1, pp. 111–117. [Google Scholar]
- Waterland, N.L.; Moon, Y.; Tou, J.C.; Kim, M.J.; Pena-Yewtukhiw, E.M.; Park, S. Mineral Content Differs among Microgreen, Baby Leaf, and Adult Stages in Three Cultivars of Kale. HortScience 2017, 52, 566–571. [Google Scholar] [CrossRef]
- Uchibayashi, H.; Shinano, T.; Hirata, T. Nitrogen Accumulation and Initial Growth Response in Lettuce Planted at Different Periods After Hairy Vetch Incorporation. Int. J. Plant Biol. 2024, 15, 1176–1186. [Google Scholar] [CrossRef]
- Matraszek, R. Macronutrients Composition of Lettuce Plants (Lactuca sativa L.) as Affected by Mineral Nutrition Level and ION Exchange Substrate Biona-312 Supplementation. J. Plant Nutr. 2015, 38, 1158–1195. [Google Scholar] [CrossRef]
- Levine, C.P.; Mattson, N.S. Potassium-Deficient Nutrient Solution Affects the Yield, Morphology, and Tissue Mineral Elements for Hydroponic Baby Leaf Spinach (Spinacia oleracea L.). Horticulturae 2021, 7, 213. [Google Scholar] [CrossRef]
- Sardar, H.; Khalid, Z.; Ahsan, M.; Naz, S.; Nawaz, A.; Ahmad, R.; Razzaq, K.; Wabaidur, S.M.; Jacquard, C.; Širić, I.; et al. Enhancement of Salinity Stress Tolerance in Lettuce (Lactuca sativa L.) via Foliar Application of Nitric Oxide. Plants 2023, 12, 1115. [Google Scholar] [CrossRef]
- Sugiarto, S.; Rubianto, L.; Shaberina, S.G.R. Response to Addition of Lighting Duration and Electrical Induction in Lettuce (Lactuca sativa L.) Plant on the Uptake of Nitrogen, Phosphors, Potassium and Yield. Indian J. Agric. Res. 2024, 59, 123. [Google Scholar] [CrossRef]
- Faran, M.; Nadeem, M.; Manful, C.F.; Galagedara, L.; Thomas, R.H.; Cheema, M. Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate. Agronomy 2023, 13, 182. [Google Scholar] [CrossRef]
- Qiao, Z.; Luo, K.; Zhou, S.; Fu, M.; Shao, X.; Gong, K.; Peng, C.; Zhang, W. Response Mechanism of Lettuce (Lactuca sativa L.) under Combined Stress of Cd and DBDPE: An Integrated Physiological and Metabolomics Analysis. Sci. Total Environ. 2023, 887, 164204. [Google Scholar] [CrossRef]
- Thakur, P.; Wadhwa, H.; Kaushal, S. Shubham Nutrient Dynamics for Hydroponic Production System. Int. J. Plant Soil Sci. 2023, 35, 982–993. [Google Scholar] [CrossRef]
- Souza, C.F.; Faez, R.; Bacalhau, F.B.; Bacarin, M.F.; Pereira, T.S. In Situ Monitoring of a Controlled Release of Fertilizers in Lettuce Crop. Eng. Agrícola 2017, 37, 656–664. [Google Scholar] [CrossRef]
- Avendaño-Abarca, V.H.; González-Sandoval, D.C.; Munguía-López, J.P.; Hernández-Cuevas, R.; Luna-Maldonado, A.I.; Vidales-Contreras, J.A.; Niño-Medina, G.; Rodríguez Fuentes, H. Crecimiento y Absorción Total Nutrimental de Lechuga Romana Tipo Baby Cultivada Con Iluminación Led Bajo Sistema Fábrica de Plantas. Inf. Tec. Econ. Agrar. 2020, 116, 280–293. [Google Scholar] [CrossRef]
- Buturi, C.V.; Sabatino, L.; Mauro, R.P.; Navarro-León, E.; Blasco, B.; Leonardi, C.; Giuffrida, F. Iron Biofortification of Greenhouse Soilless Lettuce: An Effective Agronomic Tool to Improve the Dietary Mineral Intake. Agronomy 2022, 12, 1793. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Yilmaz, D.; Zikaria, K.; Ikiz, B.; Gruda, N.S. Enhancing the Yield, Quality and Antioxidant Content of Lettuce through Innovative and Eco-Friendly Biofertilizer Practices in Hydroponics. Horticulturae 2023, 9, 1274. [Google Scholar] [CrossRef]
- Mohammadi, P.; Khoshgoftarmanesh, A.H. The Effectiveness of Synthetic Zinc(Zn)-Amino Chelates in Supplying Zn and Alleviating Salt-Induced Damages on Hydroponically Grown Lettuce. Sci. Hortic. 2014, 172, 117–123. [Google Scholar] [CrossRef]
- Rengel, Z.; Cakmak, I.; White, P.J. Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Academic Press: London, UK, 2022; ISBN 9780128197738. [Google Scholar]
- Bhatla, S.C.; Lal, M.A. Essential and Functional Mineral Elements. In Plant Physiology, Development and Metabolism; Springer Nature: Singapore, 2023; pp. 25–49. [Google Scholar]
- Khoshgoftarmanesh, A.H.; Hosseini, F.; Afyuni, M. Nickel Supplementation Effect on the Growth, Urease Activity and Urea and Nitrate Concentrations in Lettuce Supplied with Different Nitrogen Sources. Sci. Hortic. 2011, 130, 381–385. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, C.; Tariq, M.; Xiao, Q.; Zhang, W.; Huang, K.; Lu, Q.; Lin, K.; Liu, Z. The Response and Tolerance Mechanisms of Lettuce (Lactuca sativa L.) Exposed to Nickel in a Spiked Soil System. Chemosphere 2019, 222, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Moncada, A.; Miceli, A.; Sabatino, L.; Iapichino, G.; D’Anna, F.; Vetrano, F. Effect of Molybdenum Rate on Yield and Quality of Lettuce, Escarole, and Curly Endive Grown in a Floating System. Agronomy 2018, 8, 171. [Google Scholar] [CrossRef]
- Jokinen, K.; Salovaara, A.-K.; Wasonga, D.O.; Edelmann, M.; Simpura, I.; Mäkelä, P.S.A. Root-Applied Glycinebetaine Decreases Nitrate Accumulation and Improves Quality in Hydroponically Grown Lettuce. Food Chem. 2022, 366, 130558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shi, W.; Ali, S.; Chang, S.; Jia, Q.; Hou, F. Legume/Maize Intercropping and N Application for Improved Yield, Quality, Water and N Utilization for Forage Production. Agronomy 2022, 12, 1777. [Google Scholar] [CrossRef]
- Jayalath, T.C.; van Iersel, M.W. Canopy Size and Light Use Efficiency Explain Growth Differences between Lettuce and Mizuna in Vertical Farms. Plants 2021, 10, 704. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of Lettuce Growth under an Increasing Daily Light Integral Depends on the Combination of the Photosynthetic Photon Flux Density and Photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Ansari, M.; Chaichi, M.R.; Bhandari, S.; Raheja, A. Physiological and Economic Aspects of Lettuce Production under Deficit Water and Nitrogen Conditions. Adv. Agric. Hortic. Entomol. 2020, 2020, AAHE-135. [Google Scholar] [CrossRef]
- Zhang, X.; Teng, Z.; Zhang, H.; Cai, D.; Zhang, J.; Meng, F.; Sun, G. Nitrogen Application and Intercropping Change Microbial Community Diversity and Physicochemical Characteristics in Mulberry and Alfalfa Rhizosphere Soil. J. For. Res. 2021, 32, 2121–2133. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Tong, C.; Wu, Y. Changes in Soil Physicochemical Properties and Soil Bacterial Community in Alfalfa (Medicago sativa L.)/Oat (Avena nuda L.) Intercropping System. arXiv 2021. [Google Scholar] [CrossRef]
- Ramoneda, J.; Le Roux, J.; Stadelmann, S.; Frossard, E.; Frey, B.; Gamper, H.A. Soil Microbial Community Coalescence and Fertilization Interact to Drive the Functioning of the Legume–Rhizobium Symbiosis. J. Appl. Ecol. 2021, 58, 2590–2602. [Google Scholar] [CrossRef]
- Spencer, L.; Costine, B.; Irwin, T.; Dixit, A.; Spern, C.; Diaz, A.; Lozzi, B.; Li, W.; Khodadad, C.; Smith, T.; et al. Substrate Matters: Ionic Silver Alters Lettuce Growth, Nutrient Uptake, and Root Microbiome in a Hydroponics System. Microorganisms 2024, 12, 515. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Zhang, P.; Cao, Y.; Hu, T.; Yang, P. Rhizobium Symbiosis Contribution to Short-Term Salt Stress Tolerance in Alfalfa (Medicago sativa L.). Plant Soil 2016, 402, 247–261. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.-Q.; Yan, X.-W.; Wei, G.-H.; Zhang, J.-H.; Fang, L.-C. Rhizobium Inoculation Enhances Copper Tolerance by Affecting Copper Uptake and Regulating the Ascorbate-Glutathione Cycle and Phytochelatin Biosynthesis-Related Gene Expression in Medicago Sativa Seedlings. Ecotoxicol. Env. Saf. 2018, 162, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Sabrine, H.; Sara, H.; Mohamed, B.; Luis, E.H.N.; Hamadi, B. Modulation of Antioxidant Responses of Medicago Sativa under Cadmium and Copper Stress. Afr. J. Agric. Res. 2013, 8, 2297–2306. [Google Scholar] [CrossRef]
- Miserocchi, L.; Franco, A. Benchmarking Energy Efficiency in Vertical Farming: Status and Prospects. Therm. Sci. Eng. Prog. 2025, 58, 103165. [Google Scholar] [CrossRef]
- Parks, S.E.; Huett, D.O.; Campbell, L.C.; Spohr, L.J. Nitrate and Nitrite in Australian Leafy Vegetables. Aust. J. Agric. Res. 2008, 59, 632. [Google Scholar] [CrossRef]
- Wu, W.; Chen, L.; Liang, R.; Huang, S.; Li, X.; Huang, B.; Luo, H.; Zhang, M.; Wang, X.; Zhu, H. The Role of Light in Regulating Plant Growth, Development and Sugar Metabolism: A Review. Front. Plant Sci. 2025, 15, 1507628. [Google Scholar] [CrossRef]
- Steiner, A.A. The Universal Nutrient Solution. In Proceedings of the Sixth International Congress on Soilless Culture, Lunteren, The Netherlands, 29 April–5 May 1984. [Google Scholar]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource Use Efficiency of Indoor Lettuce (Lactuca sativa L.) Cultivation as Affected by Red:Blue Ratio Provided by LED Lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
Treatments | DAT 0 | DAT 07 | DAT 14 | DAT 21 | DAT 30 | |||
---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial | Final | |||
IC-N0% | 6.02 ± 0.03 a | 6.87 ± 0.03 c | 5.99 ± 0.04 a | 6.88 ± 0.02 c | 6.02 ± 0.02 a | 6.21 ± 0.02 c | 6.16 ± 0.01 a | 6.06 ± 0.03 b |
IC-N33% | 6.00 ± 0.02 a | 7.36 ± 0.04 a | 5.94 ± 0.01 a | 7.33 ± 0.04 a | 6.06 ± 0.04 a | 6.85 ± 0.03 a | 6.06 ± 0.02 b | 6.46 ± 0.03 a |
IC-N66% | 6.01 ± 0.01 a | 6.92 ± 0.02 c | 5.98 ± 0.03 a | 6.99 ± 0.04 b | 6.03 ± 0.03 a | 6.85 ± 0.03 a | 6.01 ± 0.04 b | 6.13 ± 0.02 b |
IC-N100% | 5.99 ± 0.04 a | 6.25 ± 0.02 d | 6.04 ± 0.02 a | 6.24 ± 0.01 d | 6.09 ± 0.03 a | 6.25 ± 0.03 c | 6.06 ± 0.03 b | 6.09 ± 0.02 b |
IC-N133% | 6.01 ± 0.04 a | 7.15 ± 0.04 b | 6.00 ± 0.01 a | 6.90 ± 0.04 c | 6.04 ± 0.01 a | 6.59 ± 0.02 b | 6.03 ± 0.01 b | 6.13 ± 0.03 b |
CK-N100% | 6.00 ± 0.01 a | 6.04 ± 0.03 e | 6.04 ± 0.02 a | 5.37 ± 0.01 e | 5.90 ± 0.03 a | 5.50 ± 0.02 d | 5.90 ± 0.02 b | 5.30 ± 0.01 c |
Treatments | ||||||
---|---|---|---|---|---|---|
IC-N0% | IC-N33% | IC-N66% | IC-N100% | IC-N133% | CK-N100% | |
Plant Parameters | ||||||
Leaf number | 16.50 ± 2.66 b | 29.00 ± 3.58 a | 30.33 ± 2.33 a | 29.00 ± 2.28 a | 24.83 ± 3.19 b | 28.67 ± 5.24 ab |
Leaf area (cm2) | 344.90 ± 86.50 c | 1297.14 ± 263.00 ab | 1512.62 ± 179.40 a | 1041.95 ± 165.30 b | 1173.23 ± 170.40 b | 1357.75 ± 233.90 ab |
Fresh mass (g) | 17.93 ± 3.98 c | 88.30 ± 26.80 ab | 104.57 ± 12.04 ab | 83.55 ± 14.48 b | 98.79 ± 17.52 ab | 114.60 ± 13.27 a |
Dry mass (g) | 5.09 ± 1.32 b | 7.63 ± 2.10 ab | 8.95 ± 1.53 a | 7.63 ± 1.36 ab | 7.55 ± 2.93 ab | 9.90 ± 1.86 a |
Root mass (g) | 19.27 ± 2.11 c | 28.58 ± 6.15 b | 33.93 ± 3.08 ab | 34.90 ± 5.20 ab | 37.97 ± 4.09 a | 33.23 ±6.36 ab |
SLA (cm2 g−1) | 70.49 ± 21.39 b | 178.20 ± 46.80 ab | 170.36 ± 15.82 ab | 138.17 ± 19.25 ab | 202.20 ± 15.41 a | 138.62 ± 19.63 ab |
WUE (gDW L−1) | 1.57 ± 0.43 b | 2.24 ± 0.62 ab | 2.81 ± 0.48 a | 2.39 ± 0.43 ab | 2.52 ± 0.99 ab | 3.26 ± 0.62 a |
Nutrients (mg g−1 DW) | Treatments | Literature Ranges | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
IC-N0% | IC-N33% | IC-N66% | IC-N100% | IC-N133% | CK-N100% | Min | Max | References | ||
Macronutrients | Nitrogen (N) | 12.80 ± 0.77 c | 40.40 ± 2.44 ab | 38.60 ± 2.33 b | 43.80 ± 2.65 a | 41.30 ± 2.50 ab | 40.40 ± 2.44 ab | 24 | 40 | [12,30,31] |
Phosphorus (P) | 3.80 ± 0.23 d | 10.10 ± 0.61 b | 8.60 ± 0.52 c | 10.90 ± 0.66 ab | 11.30 ± 0.67 a | 11.20 ± 0.68 a | 6 | 9.5 | [32,33,34] | |
Potassium (K) | 37.30 ± 2.20 c | 85.20 ± 5.16 a | 77.20 ± 4.67 b | 79.00 ± 4.78 ab | 82.60 ± 5.00 ab | 77.60 ± 4.70 b | 55 | 85 | [32,35] | |
Calcium (Ca) | 6.30 ± 0.38 c | 13.20 ± 0.80 a | 11.70 ± 0.71 b | 11.10 ± 0.67 b | 11.30 ± 0.68 b | 11.80 ± 0.71 b | 9 | 14 | [36,37] | |
Magnesium (Mg) | 2.00 ± 0.12 c | 3.80 ± 0.23 a | 3.30 ± 0.19 b | 3.70 ± 0.22 a | 3.70 ± 0.23 a | 3.10 ± 0.18 b | 2.5 | 4 | [38,39] | |
Sulfur (S) | 1.50 ± 0.10 d | 2.60 ± 0.16 bc | 2.40 ± 0.14 c | 3.00 ± 0.18 a | 2.90 ± 0.17 a | 2.80 ± 0.18 ab | 1.8 | 2.6 | [30,40] | |
Micronutrients | Iron (Fe) | 19.05 ± 1.18 d | 39.10 ± 2.36 b | 34.80 ± 2.10 c | 39.20 ± 2.37 b | 42.00 ± 2.54 b | 48.30 ± 2.92 a | 24 | 35 | [38,41,42] |
Zinc (Zn) | 65.30 ± 3.95 c | 241.00 ± 14.59 ab | 262.00 ± 15.86 a | 244.00 ± 14.77 ab | 223.00 ± 13.50 b | 234.00 ± 14.17 b | 120 | 190 | [43,44] | |
Manganese (Mn) | 239.00 ± 14.47 d | 374.00 ± 22.65 c | 477.00 ± 28.9 a | 419.00 ± 25.37 b | 373.00 ± 22.59 c | 367.00 ± 22.22 c | 310 | 450 | [30,42] | |
Copper (Cu) | 3.16 ± 0.19 d | 9.97 ± 0.60 c | 9.63 ± 0.58 c | 11.50 ± 0.69 b | 11.20 ± 0.67 b | 12.90 ± 0.78 a | 6 | 10 | [30,42] | |
Boron (B) | 30.60 ± 1.85 d | 42.50 ± 2.57 a | 36.40 ± 2.20 b | 42.30 ± 2.56 a | 34.80 ± 2.10 bc | 31.50 ± 1.90 cd | 28 | 40 | [42,45] | |
Nickel (Ni) | 5.52 ± 0.33 a | 0.37 ± 0.02 c | 0.16 ± 0.01 c | 0.22 ± 0.01 c | 0.20 ± 0.01 c | 0.64 ± 0.04 b | 0.15 | 0.35 | [43,46,47] | |
Molybdenum (Mo) | 0.10 ± 0.006 b | 0.12 ± 0.007 a | 0.06 ± 0.003 d | 0.05 ± 0.003 e | 0.09 ± 0.005 c | 0.10 ± 0.005 b | 0.04 | 0.09 | [42,48] |
Subsystem | Energy Consumption (kWh month−1) | Percentage of Total (%) |
---|---|---|
Temperature | 206.1 | 33.58 |
CO2 | 2.7 | 0.45 |
Lights | 293.8 | 47.88 |
Irrigation | 99.7 | 16.25 |
System | 11.3 | 1.84 |
Treatment Code | NO3− (% of Control) | Intercropping | Plants (% Individuals) |
---|---|---|---|
IC-N0% | 0 | Yes | Lettuce (50%) and alfalfa (50%) |
IC-N33% | 33 | Yes | Lettuce (50%) and alfalfa (50%) |
IC-N66% | 66 | Yes | Lettuce (50%) and alfalfa (50%) |
IC-N100% | 100 | Yes | Lettuce (50%) and alfalfa (50%) |
IC-N133% | 133 | Yes | Lettuce (50%) and alfalfa (50%) |
CK-N100% | 100 | No | Lettuce (100%) |
Ions (mEq L−1) | Treatments | |||||
---|---|---|---|---|---|---|
IC-N0% | IC-N33% | IC-N66% | IC-N100% | CK-N100% | ||
Macronutrients | KNO3 | 0.00 | 0.00 | 0.00 | 3.00 | 6.50 |
Ca(NO3)2 | 0.00 | 4.00 | 8.00 | 9.00 | 9.00 | |
HNO3 | 0.00 | 0.90 | 0.90 | 0.90 | 0.90 | |
KH2PO4 | 7.00 | 6.50 | 4.50 | 1.00 | 0.50 | |
K2SO4 | 0.00 | 0.50 | 2.50 | 3.00 | 0.00 | |
CaSO4 | 9.00 | 5.00 | 1.00 | 0.00 | 0.00 | |
MgSO4·7H2O | 4.00 | 4.00 | 4.00 | 4.00 | 3.50 | |
H2SO4 | 0.90 | 0.00 | 0.00 | 0.00 | 0.00 | |
Micronutrients | FeSO4 | 0.1430 | 0.1430 | 0.1430 | 0.1430 | 0.1430 |
CuSO4 | 0.0194 | 0.0194 | 0.0194 | 0.0194 | 0.0194 | |
MnSO4 | 0.0031 | 0.0031 | 0.0031 | 0.0031 | 0.0031 | |
ZnSO4 | 0.0100 | 0.0100 | 0.0100 | 0.0100 | 0.0100 | |
Na2 [B4O5 (OH)4] | 0.0065 | 0.0065 | 0.0065 | 0.0065 | 0.0065 | |
Na2MoO4 | 0.0030 | 0.0030 | 0.0030 | 0.0030 | 0.0030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D-Andrade, L.; Escalante-Garcia, N.; Olvera-Gonzalez, E.; Orsini, F.; Pennisi, G.; de Luna, F.V.; Silos-Espino, H.; Najera, C. Intercropping Lettuce with Alfalfa Under Variable Nitrate Supply: Effects on Growth Performance and Nutrient Dynamics in a Vertical Hydroponic System. Plants 2025, 14, 2060. https://doi.org/10.3390/plants14132060
D-Andrade L, Escalante-Garcia N, Olvera-Gonzalez E, Orsini F, Pennisi G, de Luna FV, Silos-Espino H, Najera C. Intercropping Lettuce with Alfalfa Under Variable Nitrate Supply: Effects on Growth Performance and Nutrient Dynamics in a Vertical Hydroponic System. Plants. 2025; 14(13):2060. https://doi.org/10.3390/plants14132060
Chicago/Turabian StyleD-Andrade, Luis, Nivia Escalante-Garcia, Ernesto Olvera-Gonzalez, Francesco Orsini, Giuseppina Pennisi, Felix Vega de Luna, Hector Silos-Espino, and Cinthia Najera. 2025. "Intercropping Lettuce with Alfalfa Under Variable Nitrate Supply: Effects on Growth Performance and Nutrient Dynamics in a Vertical Hydroponic System" Plants 14, no. 13: 2060. https://doi.org/10.3390/plants14132060
APA StyleD-Andrade, L., Escalante-Garcia, N., Olvera-Gonzalez, E., Orsini, F., Pennisi, G., de Luna, F. V., Silos-Espino, H., & Najera, C. (2025). Intercropping Lettuce with Alfalfa Under Variable Nitrate Supply: Effects on Growth Performance and Nutrient Dynamics in a Vertical Hydroponic System. Plants, 14(13), 2060. https://doi.org/10.3390/plants14132060