Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways
Abstract
:1. Introduction
2. Historical Overview and Current Status of China’s Carp Aquaculture
2.1. Historical Evolution of Carp Aquaculture in China
2.2. China’s Dominance in Global Carp Aquaculture Production
Culture System | Characteristics & Practices | Typical Stocking Density and Yield | Regional Prevalence | Recent Developments |
---|---|---|---|---|
Traditional Pond Culture (Semi-intensive Polyculture) | Polyculture of 7–10 species (e.g., grass carp, silver carp, bighead carp, common carp, crucian carp, Wuchang bream) [30]. Relies on natural foods (plankton), supplemented by organic fertilizers (manure) and agricultural by-products [31,32]. Low external inputs; integrated nutrient cycling. | Density: Low to moderate (e.g., 300–600 grass carp/mu ≈ 4500–9000 fish/ha) [33]. Yield: 12–15 tons/ha [34,35]. | Nationwide, especially in central/eastern provinces (e.g., Jiangsu, Hubei, Guangdong) [5,35]. | Declining share due to intensification [5]. Modernized via partial pellet feeds and aeration [5,23]. |
Intensified Modern Pond Culture (Formula Feed-Based Polyculture) | “80:20 System”: 80% high-value carp (e.g., grass carp, common carp) fed pellets; 20% filter-feeders (silver/bighead carp) to consume plankton/wastes [23]. Aerated ponds; commercial feeds dominant [5,30]. Fewer species than traditional polyculture. | Density: High (e.g., 1.56 × 103 kg/hm2) (Dong, 2023 [36]). Yield: 15–40 tons/ha [5,34]. FCR: 1.8–2.3 for pellets [33]. | Nationwide, especially in central/eastern provinces (e.g., Jiangsu, Hubei, Guangdong [5,33]. | Dominant trend: Effluent treatment [5,37]. “Slimming carp” models (exercise + low feed) for premium markets [33]. |
Culture-Based Fisheries in Lakes/Reservoirs (Extensive, Stock Enhancement) | Stocking native carps (silver, bighead carp) into open waters for natural growth [38,39]. Minimal feeding/fertilization; relies on natural productivity [38]. Harvest via targeted fishing. | Density: Low stocking (species-specific data not provided). Yield: 743–921 kg/ha (reservoirs/lakes) [38]. | Nationwide, especially large lakes (e.g., the Yangtze basin) and reservoirs [38,40]. | Focus on environmental restoration [39]. Improved stock enhancement protocols for biodiversity [37]. |
Rice-Fish Integrated Systems | Co-culture of carps (e.g., common, crucian, grass carp) in flooded rice paddies [41]. Synergy: Fish control pests/weeds; rice provides shade/organic matter [41]. Extensive/semi-intensive. | Density: Variable, low (species-specific data not provided). Yield: ~2.4% of national freshwater production [33]. | Nationwide, especially in Sichuan, Hunan, and Zhejiang [35,41]. | Diversification (e.g., +crabs/prawns) [31]. Holistic models for sustainability [41]. |
2.3. Value Chain
2.4. Policy Frameworks and Infrastructure
2.5. Technological Advancements and Intensification
3. Economy, Market, and Financing
3.1. Market Dynamics
3.2. Evolution of Financing Mechanisms
3.3. Economic Viability and Investment Dynamics
4. Environmental Sustainability and Resilience
4.1. Environmental Impacts
4.2. Sustainability Efforts
4.3. Resilience and Risk Management
5. Socioeconomic Sustainability
5.1. Socioeconomic Dimensions and Sustainability Challenges
5.2. Labor Structure and Workforce Challenges
5.3. Justice, Equity, Diversity, and Inclusion (JEDI) Gaps and Opportunities
6. Discussion
7. Conclusions and Take-Away Messages
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024. In Blue Transformation in Actio; FAO: Rome, Italy, 2024; ISBN 978-92-5-138763-4. [Google Scholar]
- Béné, C.; Arthur, R.; Norbury, H.; Allison, E.H.; Beveridge, M.; Bush, S.; Campling, L.; Leschen, W.; Little, D.; Squires, D.; et al. Contribution of Fisheries and Aquaculture to Food Security and Poverty Reduction: Assessing the Current Evidence. World Dev. 2016, 79, 177–196. [Google Scholar] [CrossRef]
- Troell, M.; Costa-Pierce, B.; Stead, S.; Cottrell, R.S.; Brugere, C.; Farmery, A.K.; Little, D.C.; Strand, Å.; Pullin, R.; Soto, D.; et al. Perspectives on Aquaculture’s Contribution to the Sustainable Development Goals for Improved Human and Planetary Health. J. World Aquac. Soc. 2023, 54, 251–342. [Google Scholar] [CrossRef]
- FAO. FishStat: Global Aquaculture Production 1950–2023; FAO: Rome, Italy, 2025. [Google Scholar]
- De Silva, S.; Yuan, D. Regional Review on Status and Trends in Aquaculture Development in Asia and the Pacific—2020; FAO: Rome, Italy, 2022; ISBN 9789251356746. [Google Scholar]
- Miao, W.; Wang, W. Trends of Aquaculture Production and Trade: Carp, Tilapia, and Shrimp. Asian Fish. Sci. 2020, 33, 1–10. [Google Scholar] [CrossRef]
- Jayasankar, P. Present Status of Freshwater Aquaculture in India—A Review. Indian J. Fish. 2018, 65, 157–165. [Google Scholar] [CrossRef]
- Belton, B.; Karim, M.; Thilsted, S.; Murshed-E-Jahan, K.; Collis, W.; Phillips, M. Review of Aquaculture and Fish Consumption in Bangladesh; The WorldFish Center: Penang, Malaysia, 2011. [Google Scholar]
- Nadarajah, S.; Eide, A. Are Asian Fresh and Brackish Water Aquaculture Production Vulnerable or Resilient towards Climate Change Impacts? Aquac. Econ. Manag. 2020, 24, 232–254. [Google Scholar] [CrossRef]
- Zhang, W.; Belton, B.; Edwards, P.; Henriksson, P.J.G.J.; Little, D.C.; Newton, R.; Troell, M. Aquaculture Will Continue to Depend More on Land than Sea. Nature 2022, 603, E2–E4. [Google Scholar] [CrossRef]
- Dey, M.M.; Paraguas, F.J.; Bhatta, R.; Alam, F.; Weimin, M. Carp Production in Asia: Past Trends and Present Status. In Carp Genetic Resources for Aquaculture in Asia; WorldFish Center: Penang, Malaysia, 2003; pp. 6–15. [Google Scholar]
- Lu, G.; Luo, M. Genomes of Major Fishes in World Fisheries and Aquaculture: Status, Application and Perspective. Aquac. Fish. 2020, 5, 163–173. [Google Scholar] [CrossRef]
- Newton, R.; Zhang, W.; Xian, Z.; McAdam, B.; Little, D.C. Intensification, Regulation and Diversification: The Changing Face of Inland Aquaculture in China. Ambio 2021, 50, 1739–1756. [Google Scholar] [CrossRef]
- Yang, Z.; Leibrecht, M.; Zhang, J.; Yang, C. Market Integration and Market Leadership: Evidence for Cyprinoid Markets in China. Aquaculture 2024, 578, 740010. [Google Scholar] [CrossRef]
- Suo, N.; Zhou, Z.X.; Xu, J.; Cao, D.D.C.; Wu, B.Y.; Zhang, H.Y.; Xu, P.; Zhao, Z.Z.X. Transcriptome Analysis Reveals Molecular Underpinnings of Common Carp (Cyprinus carpio) Under Hypoxia Stress. Front. Genet. 2022, 13, 907944. [Google Scholar] [CrossRef]
- Nakajima, T.; Hudson, M.J.; Uchiyama, J.; Makibayashi, K.; Zhang, J. Common Carp Aquaculture in Neolithic China Dates Back 8000 Years. Nat. Ecol. Evol. 2019, 3, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Rabanal, H.R. ASEAN/SF/88/Tech. 7 HISTORY OF AQUACULTURE; ASEAN/UNDP/FAO Regional Small-Scale Coastal Fisheries Development Project: Manila, Philippines, 1988. [Google Scholar]
- Jiang, L. The Socialist Origins of Artificial Carp Reproduction in Maoist China. Sci. Technol. Soc. 2017, 22, 59–77. [Google Scholar] [CrossRef]
- Hishamunda, N.; Subasinghe, R.P. Aquaculture Development in China: The Role of Public Sector Policies; FAO: Rome, Italy, 2003. [Google Scholar]
- Wang, W. Culture and Enhancement of Fishes, 1st ed.; China Agriculture Press: Beijing, China, 2000; ISBN 978-7-109-06617-5. (In Chinese) [Google Scholar]
- Zou, L.; Huang, S. Chinese Aquaculture in Light of Green Growth. Aquac. Rep. 2015, 2, 46–49. [Google Scholar] [CrossRef]
- Edwards, P. The Changing Face of Pond Aquaculture in China. Glob. Aquac. Advocate 2008, 11, 77–80. [Google Scholar]
- Edwards, P. Aquaculture Environment Interactions: Past, Present and Likely Future Trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Chiu, A.; Li, L.; Guo, S.; Bai, J.; Fedor, C.; Naylor, L.R.; Naylor, R.L. Feed and Fishmeal Use in the Production of Carp and Tilapia in China. Aquaculture 2013, 414–415, 127–134. [Google Scholar] [CrossRef]
- Edwards, P. Rural Aquaculture: From Integrated Carp Polyculture to Intensive Monoculture in the Pearl River Delta, South China. Aquac. Asia Mag. 2008, XIII, 3–7. Available online: https://enaca.org/?id=384#:~:text=Peter%20Edwards%20writes%20on%20rural%20aquaculture%3A%20From%20integrated,South%20China.%20Better%20management%20practices%20for%20Vietnamese%20catfish (accessed on 25 April 2025).
- Zhang, W.; Ma, X. China’s Aquaculture Development Trends since 2000 and Future Directions. J. Shanghai Ocean Univ. 2019, 29, 1–10, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 987209. [Google Scholar] [CrossRef]
- MARA. China Fishery Statistical Yearbook 2024; China Agriculture Press: Beijing, China, 2024; ISBN 9787109321267. [Google Scholar]
- Shi, X.; Luo, Z.; Chen, G.H.; Chen, F.; Zhang, L.H.; Zhu, X.M.; Liu, X. Replacement of Fishmeal by a Mixture of Soybean Meal and Chlorella Meal in Practical Diets for Juvenile Crucian Carp. Carassius Auratus. J. World Aquac. Soc. 2017, 48, 770–781. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Wang, W. Freshwater Fish Culture in China Aquafeeds, Other Technologies Drive Industry Evolution. Glob. Aquac. Advocate 2007, 33–34. Available online: https://www.globalseafood.org/advocate/freshwater-fish-culture-in-china/ (accessed on 25 April 2025).
- Miao, W.; Liao, M. Analysis of Feeds and Fertilizers for Sustainable Aquaculture Development in China; FAO: Rome, Italy, 2007; pp. 141–190. [Google Scholar]
- Hasan, M.R.; Hecht, T.; De Silva, S.S.; Tacon, A.G.J.; Fisheries, F.A.O.; Paper, T. Study and Analysis of Feeds and Fertilizers for Sustainable Aquaculture Development, 1st ed.; Hasan, M.R., Hecht, T., De Silva, S.S., Tacon, A.G.J., Eds.; FAO FISHERIES TECHNICAL PAPER: Rome, Italy, 2007; ISBN 978-92-5-105862-6. [Google Scholar]
- Xie, C.; Li, J.; Shen, D.; Gao, Y.; Zhang, Z. Traditionally Farmed Species/Species Groups and Farming Practices Grass Carp: The Fish That Feeds Half of China. Aquac. China Success Stories Mod. Trends 2018, 93–115. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture for Enhancing Nutritional and Economic Improvement in Asia. In Proceedings of the Asian Pacific Aquaculture, Kochi, India, 17–20 January 2011; pp. 1–12. [Google Scholar]
- Waite, R.; Beveridge, M.; Brummett, R.; Castine, S.; Chaiyawannakarn, N.; Kaushik, S.; Mungkung, R.; Nawapakpilai, S.; Phillips, M. Improving Productivity and Environmental Performance of Aquaculture. In Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2014; pp. 1–60. Available online: http://www.worldresourcesreport.org (accessed on 25 April 2025).
- Dong, S. Introduction. In Aquaculture Ecology; Dong, S.-L., Tian, X.-L., Gao, Q.-F., Dong, Y.-W., Eds.; Springer: Singapore, 2023; pp. 1–31. ISBN 9789811954863. [Google Scholar]
- Gui, J.; Zhou, L.; Zhang, X. Research Advances and Prospects for Fish Genetic. Bull. Chin. Acad. Sci. 2018, 33, 932–939, (In Chinese with English Abstract). [Google Scholar]
- De Silva, S. Culture-Based Fisheries: An Underutilised Opportunity in Aquaculture Development. Aquaculture 2003, 221, 221–243. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Zhang, T.; Ye, S.; Li, W.; Yuan, J.; Li, Z. Development of Lake and Reservoir Aquaculture Related Practices in China. In Aquaculture in China: Success Stories and Modern Trends; Wiley-Blackwell: Oxford, UK, 2018; pp. 599–610. ISBN 9781119120759. [Google Scholar]
- Zhu, C.; Dong, S.; Zhu, C.; Dong, S. Aquaculture Site Selection and Carrying Capacity Management in China. In Proceedings of the Site Selection and Carrying Capacities for Inland and Coastal Aquaculture, Expert Workshop, 6–8 December 2010; Stirling, the United Kingdom of Great Britain and Northern Ireland; FAO Fisheries and Aqua; Ross, L.G., Telfer, T.C., Falconer, L., Soto, D., Aguilar-Manjarrez, J., Eds.; FAO/Institute of Aquaculture, University of Stirling: Rome, Italy, 2013; pp. 219–230. [Google Scholar]
- Miao, W. Recent Developments in Rice-Fish Culture in China: A Holistic Approach for Livelihood Improvement in Rural Areas. In Success Stories in Asian Aquaculture; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–40. [Google Scholar]
- ISO 3166-2: CN Standard; In ISO 3166-2:2020(en)Codes for the Representation of Names of Countries and Their Subdivisions—Part 2: Country Subdivision Code. International Organization for Standardization: Geneva, Switzerland, 2020.
- FAO. FAO-Turkey Partnership Programme on Food and Agriculture (FTPP II) FAO-Turkey Partnership Programme on Food and Agriculture (FTPP II). In Webinar on Carp Farming, 8–9 December 2020; Summary Report; FAO: Ankara, Turkey, 2020. [Google Scholar]
- Devaux, A.; Torero, M.; Donovan, J.; Horton, D. Agricultural Innovation and Inclusive Value-Chain Development: A Review. J. Agribus. Dev. Emerg. Econ. 2018, 8, 99–123. [Google Scholar] [CrossRef]
- Orr, S. Erratum: Stakeholders and Invasive Asian Carp in the Great Lakes. Case Stud. Environ. 2023, 7, 1422170c. [Google Scholar] [CrossRef]
- Liang, Q.; Ma, K.; Liu, W. The Role of Farmer Cooperatives in Promoting Environmentally Sustainable Agricultural Development in China: A Review. Ann. Public Coop. Econ. 2023, 94, 741–759. [Google Scholar] [CrossRef]
- Yuan, X. Economics of Aquaculture Feeding Practices: China. In Economics of Aquaculture Feeding Practices in Selected Asian Countries; FAO Fisheries Technical Paper. No. 505; Hasan, M.R., Ed.; FAO: Rome, Italy, 2007; pp. 65–97. [Google Scholar]
- Liu, T.; Wei, W.; Wang, K.; Yang, Q.; Wang, E. Pathological and Immunological Analyses of Thelohanellus Kitauei (Myxozoa:Myxosporea) Infection in the Scattered Mirror Carp. Cyprinus Carpio. Sci. Rep. 2019, 9, 20014. [Google Scholar] [CrossRef]
- Yuan, Y.; Miao, W.; Yuan, X.; Dai, Y.; Yuan, Y.; Gong, Y. The Impact of COVID-19 on Aquaculture in China and Recommended Strategies for Mitigating the Impact. J. World Aquac. Soc. 2022, 53, 933–947. [Google Scholar] [CrossRef]
- Li, D.; Prinyawiwatkul, W.; Tan, Y.; Luo, Y.; Hong, H. Asian Carp: A Threat to American Lakes, a Feast on Chinese Tables. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2968–3990. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Wang, C.; Xie, C. Biology and Ecology of Grass Carp in China: A Review and Synthesis. N. Am. J. Fish. Manag. 2020, 40, 1379–1399. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Q. Discussion on the Optimization of China’s Aquaculture Industrial Chain: A Perspective Based on the Investigation of Representative Industries. Mar. Econ. 2022, 12, 24–39, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. In Towards Blue Transformation; FAO: Rome, Italy, 2022; ISBN 9789251072257. [Google Scholar]
- Hu, F.; Zhong, H.; Wu, C.; Wang, S.; Guo, Z.; Tao, M.; Zhang, C.; Gong, D.; Gao, X.; Tang, C.; et al. Development of Fisheries in China. Reprod. Breed. 2021, 1, 64–79. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, J.; Wei, W.; Wei, Y. Evolutionary Path and Influences on Marine Ecological Farming: Dual Perspective of Government Intervention and Enterprise Participation. Discret. Dyn. Nat. Soc. 2022, 2022, 3250863. [Google Scholar] [CrossRef]
- Liu, H.; Peng, D.; Yang, H.J.; Mu, Y.; Zhu, Y. A Proposed Scheme of Fishing Quota Allocation to Ensure the Sustainable Development of China’s Marine Capture Fisheries. Front. Mar. Sci. 2022, 9, 881306. [Google Scholar] [CrossRef]
- Su, S.; Tang, Y.; Chang, B.; Zhu, W.; Chen, Y. Evolution of Marine Fisheries Management in China from 1949 to 2019: How Did China Get Here and Where Does China Go Next? Fish Fish. 2020, 21, 435–452. [Google Scholar] [CrossRef]
- Liu, X.G.; Shao, Z.; Cheng, G.; Lu, S.; Gu, Z.; Zhu, H.; Shen, H.; Wang, J.; Chen, X. Ecological Engineering in Pond Aquaculture: A Review from the Whole-Process Perspective in China. Rev. Aquac. 2021, 13, 1060–1076. [Google Scholar] [CrossRef]
- Cao, L.; Naylor, R.; Henriksson, P.; Leadbitter, D.; Metian, M.; Troell, M.; Zhang, W. China’s Aquaculture and the World’s Wild Fisheries. Science 2015, 347, 133–135. [Google Scholar] [CrossRef]
- Cao, L.; Chen, Y.; Dong, S.; Hanson, A.; Huang, B.; Leadbitter, D.; Little, D.C.; Pikitch, E.K.; Qiu, Y.; Sadovy de Mitcheson, Y.; et al. Opportunity for Marine Fisheries Reform in China. Proc. Natl. Acad. Sci. USA 2017, 114, 435–442. [Google Scholar] [CrossRef]
- Liu, X. Granting Quasi-Property Rights to Aquaculturists to Achieve Sustainable Aquaculture in China. Ocean Coast. Manag. 2007, 50, 623–633. [Google Scholar] [CrossRef]
- Zhang, Y. The Demsetz’s Evolutionary Theory of Property Rights as Applied to Rural Land of China: A Supplement. Land 2021, 10, 888. [Google Scholar] [CrossRef]
- Chen, W.; Gao, S. Current Status of Industrialized Aquaculture in China: A Review. Environ. Sci. Pollut. Res. 2023, 30, 32278–32287. [Google Scholar] [CrossRef] [PubMed]
- Mei, B.; Khan, A.A.; Khan, S.U.; Ali, M.A.S.; Luo, J. An Estimation of the Effect of Green Financial Policies and Constraints on Agriculture Investment: Evidences of Sustainable Development Achievement in Northwest China. Front. Public Health 2022, 10, 903431. [Google Scholar] [CrossRef]
- Gui, J.F.; Tang, Q.S.; Li, Z.J.; Liu, J.S.; De Silva, S.S. Aquaculture in China: Success Stories and Modern Trends; John Wiley & Sons Ltd.: Oxford, UK, 2018. [Google Scholar]
- Wang, Y. China P.R.: A Review of National Aquaculture Development. In Proceedings of the Aquaculture in the Third Millennium, Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand, 20–25 February 2000; Subasinghe, P., Bueno, M.J., Phillips, C., Hough, S., McGladdery, E., Arthur, J.R., Eds.; NACA: Bangkok, Thailand; FAO: Rome, Italy, 2001; pp. 307–316. [Google Scholar]
- Tu, C.; Ma, H.; Li, Y.; Fu, C.; You, Z.J.; Newton, A.; Luo, Y. Transdisciplinary, Co-Designed and Adaptive Management for the Sustainable Development of Rongcheng, a Coastal City in China in the Context of Human Activities and Climate Change. Front. Environ. Sci. 2022, 10, 670397. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020; ISBN 9789251326923. [Google Scholar]
- MARA. The 14th Five-Year Plan for National Fishery Development Issued. Available online: http://english.moa.gov.cn/news_522/202201/t20220110_300772.html (accessed on 30 October 2023).
- Zhang, C. China’s Five-Year Plan for Fishing Focuses on Aquaculture. Available online: https://chinadialogueocean.net/en/fisheries/chinas-five-year-plan-for-fishing-focuses-on-aquaculture/ (accessed on 30 October 2023).
- Edwards, P. Traditional Asian Aquaculture: Definition, Status and Trends. In New Technologies in Aquaculture, Improving Production Efficiency, Quality and Environmental Management; Burnell, G., Allan, G., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2009; pp. 1029–1063. [Google Scholar]
- Astudillo, M.F.; Thalwitz, G.; Vollrath, F. Modern Analysis of an Ancient Integrated Farming Arrangement: Life Cycle Assessment of a Mulberry Dyke and Pond System. Int. J. Life Cycle Assess. 2015, 20, 1387–1398. [Google Scholar] [CrossRef]
- Dong, S. On Ecological Intensification of Aquaculture Systems in China. Chin. Fish. Econ. 2015, 33, 10–17, (In Chinese with English Abstract). [Google Scholar]
- Aubin, J.; Callier, M.; Rey-Valette, H.; Mathé, S.; Wilfart, A.; Legendre, M.; Slembrouck, J.; Caruso, D.; Chia, E.; Masson, G.; et al. Implementing Ecological Intensification in Fish Farming: Definition and Principles from Contrasting Experiences. Rev. Aquac. 2019, 11, 149–167. [Google Scholar] [CrossRef]
- FAO. Freshwater Aquaculture Development in China. Report of the FAO/UNDP Study Tour Organized for French-Speaking African Countries. 22 April–20 May 1980; FAO: Rome, Italy, 1983. [Google Scholar]
- Kang, B.; Huang, X.; Li, J.; Liu, M.; Guo, L.; Han, C.-C. Inland Fisheries in China: Past, Present, and Future. Rev. Fish. Sci. Aquac. 2017, 25, 270–285. [Google Scholar] [CrossRef]
- MARA. China Fishery Statistical Yearbook 2023; China Agriculture Press: Beijing, China, 2023; ISBN 978-7-109-30778-0. [Google Scholar]
- Xian, Z. A Study of Carp Production and Consumption in Hubei Province of China; University of Stirling: Stirling, UK, 2016. [Google Scholar]
- Costa-Pierce, B.A. Aquaculture, Ecological. In Sustainable Food Production; Christou, P., Ed.; Springer Science+Business Media: New York, NY, USA, 2013; pp. 174–183. ISBN 9781461457978. [Google Scholar]
- Yue, K.; Shen, Y. An Overview of Disruptive Technologies for Aquaculture. Aquac. Fish. 2022, 7, 111–120. [Google Scholar] [CrossRef]
- O’Donncha, F.; Grant, J. Precision Aquaculture. IEEE Internet Things Mag. 2020, 2, 26–30. [Google Scholar] [CrossRef]
- Zhang, W.; Garnett, T.; Murray, F.J.; Edwards, P.; David, C.; Little, D.C. General Overview of China’s Aquaculture and Fisheries Sector; University of Stirling: Stirling, UK, 2013. [Google Scholar]
- FAO. Aquaculture Development. 9. Development of Aquatic Genetic Resources: A Framework of Essential Criteria; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; ISBN 9789251310939. [Google Scholar]
- Dong, Z.; Nguyen, N.H.; Zhu, W. Genetic Evaluation of a Selective Breeding Program for Common Carp Cyprinus carpio Conducted from 2004 to 2014. BMC Genet. 2015, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Zhu, Z. Molecular Basis and Genetic Improvement of Economically Important Traits in Aquaculture Animals. Chin. Sci. Bull. 2012, 57, 1751–1760. [Google Scholar] [CrossRef]
- Yue, G.H.; Tay, Y.X.; Wong, J.; Shen, Y.; Xia, J. Aquaculture Species Diversification in China. Aquac. Fish. 2024, 9, 206–217. [Google Scholar] [CrossRef]
- Su, S.; Li, H.; Du, F.; Zhang, C.; Li, X.; Jing, X.; Liu, L.; Li, Z.; Yang, X.; Xu, P.; et al. Combined QTL and Genome Scan Analyses With the Help of 2b-RAD Identify Growth-Associated Genetic Markers in a New Fast-Growing Carp Strain. Front. Genet. 2018, 9, 00592. [Google Scholar] [CrossRef]
- FAO. Sustainable Intensification of Aquaculture in the Asia-Pacific Region. In Documentation of Successful Practices; FAO: Rome, Italy, 2016; ISBN 978-92-5-109065-7. [Google Scholar]
- Han, D.; Shan, X.; Zhang, W.; Chen, Y.; Wang, Q.; Li, Z.; Zhang, G.; Xu, P.; Li, J.; Xie, S.; et al. A Revisit to Fishmeal Usage and Associated Consequences in Chinese Aquaculture. Rev. Aquac. 2016, 10, 12183. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, M.; Wang, K.; Zhu, K.; Xu, C.; Xie, J.; Xu, J. Aquaculture Impacts on China’s Marine Wild Fisheries Over the Past 30 Years. Front. Mar. Sci. 2021, 8, 710124. [Google Scholar] [CrossRef]
- Xing, Y.; Ying, P. Analysis of Green Development of Aquaculture in China Based on Entropy Method. Sustainability 2023, 15, 5585. [Google Scholar] [CrossRef]
- Dong, S.; Dong, Y.; Cao, L.; Verreth, J.; Olsen, Y.; Liu, W.; Fang, Q.; Zhou, Y.; Li, L.; Li, J.; et al. Optimization of Aquaculture Sustainability through Ecological Intensification in China. Rev. Aquac. 2022, 14, 1249–1259. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Sun, C. Asymmetric Price Transmission and Market Power: A Case of the Aquaculture Product Market in China. Sustainability 2022, 14, 15253. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, X. Sustainable Supply of Aquatic Food in China. J. Shanghai Ocean Univ. 2022, 31, 1305–1316, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wan, A.H.L.; Snellgrove, D.; Davies, S.J. A Comparison Between Marine and Terrestrial Invertebrate Meals for Mirror Carp (Cyprinus carpio) Diets: Impact on Growth, Haematology and Health. Aquac. Res. 2017, 48, 5004–5016. [Google Scholar] [CrossRef]
- Pilecky, M.; Mathieu-Resuge, M.; Závorka, L.; Fehlinger, L.; Winter, K.; Martin-Creuzburg, D.; Kainz, M.J. Common Carp (Cyprinus carpio) Obtain Omega-3 Long-Chain Polyunsaturated Fatty Acids via Dietary Supply and Endogenous Bioconversion in Semi-Intensive Aquaculture Ponds. Aquaculture 2022, 561, 738731. [Google Scholar] [CrossRef]
- Hong, H.; Luo, Y.; Zhu, S.; Shen, H. Application of the General Stability Index Method to Predict Quality Deterioration in Bighead Carp (Aristichthys nobilis) Heads During Storage at Different Temperatures. J. Food Eng. 2012, 113, 554–558. [Google Scholar] [CrossRef]
- Xu, H.; Wu, T.; Budhathoki, M.; Fang, D.S.; Zhang, W. Consumption Patterns and Willingness to Pay for Sustainable Aquatic Food in China. Foods 2024, 13, 2435. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Fabinyi, M. Characteristics and Dynamics of the Freshwater Fish Market in Chengdu, China. Front. Sustain. Food Syst. 2021, 5, 638997. [Google Scholar] [CrossRef]
- Zheng, H.; Li, J.; Zhao, X. How Does Financial Policy Support the Development of China’s Fishery? Characteristics, Experience and Prospects. Mar. Policy 2021, 132, 104678. [Google Scholar] [CrossRef]
- FAO. Fishery and Aquaculture Insurance in China; FAO: Rome, Italy, 2017; Volume 1139, ISBN 9789251097991. [Google Scholar]
- Lv, J.; Zhang, J.; Liu, J.; Chen, J. Technical Efficiency, Total Factor Productivity Growth and Decomposition of Bulk Freshwater Aquaculture Farmers in China—Evidencefrom Micro-Survey Data of 25 Provinces and Cities. J. Agrotech. Econ. 2020, 1, 102–119, (In Chinese with English Abstract). [Google Scholar]
- Boyd, C.E.; McNevin, A.A. Aquaculture, Resource Use, and the Environment; Wiley-Blackwell: Hoboken, NJ, USA, 2015; ISBN 9780470959190. [Google Scholar]
- Gloy, B.A.; Ladue, E.L. Financial Management Practices and Farm Profitability. Agric. Financ. Rev. 2003, 63, 157–174. [Google Scholar] [CrossRef]
- NBSO. NBSO Dalian Report on Aquaculture in China; NBSO: Dalian, China, 2010. [Google Scholar]
- Cai, C.; Gu, X.; Ye, Y.; Yang, C.; Dai, X.; Chen, D.; Yang, C. Assessment of Pollutant Loads Discharged from Aquaculture Ponds around Taihu Lake, China. Aquac. Res. 2013, 44, 795–806. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, X.; Zhou, R.; Zhao, Y.; Sun, Z. Energy Flow Analysis of Grass Carp Pond System Based on Ecopath Model. Environ. Sci. Pollut. Res. 2024, 31, 10184–10197. [Google Scholar] [CrossRef]
- Dubey, D.; Dutta, V. Nutrient Enrichment in Lake Ecosystem and Its Effects on Algae and Macrophytes; Springer: Singapore, 2019; ISBN 9789811363580. [Google Scholar]
- de Donato, P.; Cases, J.M.; Humbert, B.; Lutgen, P.; Feyder, G. Analysis of Polymer Films by Diffuse Reflectance FTIR Spectroscopy: Characterization of Terminal Carboxyl Functionalities. J. Polym. Sci. Part B Polym. Phys. 1992, 30, 1305–1310. [Google Scholar] [CrossRef]
- Micheli, F. Eutrophication, Fishries, and Consumer-Resources Dynamics in Marine Pelagic Ecosystems. Science 1999, 285, 1396–1398. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Qin, B.; Horst, B.; Huang, W.; Yu, S.; Zhang, Y. Nitrogen Surplus of the Upstream Agricultural Land of Lake Taihu and the Eutrophication Impact. J. Lake Sci. 2006, 18, 395–400. (In Chinese) [Google Scholar]
- Liu, M.; Yuan, J.; Ni, M.; Lian, Q.; Guo, A. Treatment of Inland Pond Aquaculture Tail Water by Multi-Stage Combined Process of “Three Ponds and Two Dams”. J. Environ. Eng. Technol. 2021, 11, 97–106, (In Chinese with English Abstract). [Google Scholar]
- Li, Z.; Yu, E.; Zhang, K.; Gong, W.; Xia, Y.; Tian, J.; Wang, G.; Xie, J. Water Treatment Effect, Microbial Community Structure, and Metabolic Characteristics in a Field-Scale Aquaculture Wastewater Treatment System. Front. Microbiol. 2020, 11, 00930. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Chen, S.; Xie, D.; Wang, Q.; Li, Y.; Pan, L.; Ren, X.; Tang, W.; Chen, K.; Cuthbert, R.N. Fish Biodiversity, Endemism, Threats and Conservation in the Qiantang River, China. Pak. J. Zool. 2023, 55, 2877–2886. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, B.; Li, L.; Chen, L.; Song, K.; Jia, M. Remote Monitoring of Expansion of Aquaculture Ponds Along Coastal Region of the Yellow River Delta from 1983 to 2015. Chin. Geogr. Sci. 2018, 28, 430–442. [Google Scholar] [CrossRef]
- Xu, J.; Mu, M.; Liu, Y.; Zhou, Z.; Zhuo, H.; Qiu, G.; Chen, J.; Lei, M.; Huang, X.; Zhang, Y.; et al. Assessing 30-Year Land Use and Land Cover Change and the Driving Forces in Qianjiang, China, Using Multitemporal Remote Sensing Images. Water 2023, 15, 3322. [Google Scholar] [CrossRef]
- Qiao, C.; Ning, Z.; Wang, Y.; Sun, J.; Lin, Q.; Wang, G. Impact of Climate Change on Water Availability in Water Source Areas of the South-to-North Water Diversion Project in China. Front. Earth Sci. 2021, 9, 747429. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Lu, Y.; Hao, G.; Yan, H.; Yasmeen, R. Impact of “Three Red Lines” Water Policy (2011) on Water Usage Efficiency, Production Technology Heterogeneity, and Determinant of Water Productivity Change in China. Int. J. Environ. Res. Public Health 2022, 19, 16459. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Abisha, R.; Krishnani, K.K.; Sukhdhane, K.; Verma, A.K.; Brahmane, M.; Chadha, N.K. Sustainable Development of Climate-Resilient Aquaculture and Culture-Based Fisheries through Adaptation of Abiotic Stresses: A Review. J. Water Clim. Change 2022, 13, 2671–2689. [Google Scholar] [CrossRef]
- Zhang, Y.; Bleeker, A.; Liu, J. Nutrient Discharge from China’s Aquaculture Industry and Associated Environmental Impacts. Environ. Res. Lett. 2015, 10, 045002. [Google Scholar] [CrossRef]
- Woynarovich, A.; Moth-Poulsen, T.; Péteri, A. Carp Polyculture in Central and Eastern Europe, the Caucasus and Central Asia; FAO: Rome, Italy, 2010; ISBN 9789251066669. [Google Scholar]
- Hlaváč, D.; Adámek, Z.; Hartman, P.; Másílko, J. Effects of Supplementary Feeding in Carp Ponds on Discharge Water Quality: A Review. Aquac. Int. 2014, 22, 299–320. [Google Scholar] [CrossRef]
- Roy, A.; Mostafa, M.G. Comparative Implications of Tobacco and Non-Tobacco Crop Farming on Aquatic Ecosystems: A Multi-Index Evaluation of Irrigation Suitability and Pollution Risks. J. Water Health 2025, 23, 648–670. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.C.; Leung, H.M.; Wong, M.H. Metal Concentrations of Common Freshwater and Marine Fish from the Pearl River Delta, South China. Arch. Environ. Contam. Toxicol. 2008, 54, 705–715. [Google Scholar] [CrossRef]
- Zhou, A.; Xie, S.; Tang, H.; Zhang, L.; Zhang, Y.; Zuo, Z.; Li, X.; Zhao, W.; Xu, G.; Zou, J. The Dynamic of the Potential Pathogenic Bacteria, Antibiotic-Resistant Bacteria, and Antibiotic Resistance Genes in the Water at Different Growth Stages of Grass Carp Pond. Environ. Sci. Pollut. Res. 2022, 29, 23806–23822. [Google Scholar] [CrossRef]
- Minamoto, T.; Pu, X.; Xie, J.; Dong, Y.; Wu, D.; Kong, H.; Yang, X.; Takahara, T.; Honjo, M.N.; Yamanaka, H.; et al. Monitoring Fish Pathogenic Viruses in Natural Lakes in Yunnan, China. Limnology 2015, 16, 69–77. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, J.; Zhou, Z.; Huo, F.; Miao, W.; Ran, C.; Liu, Y.; Zhang, J.; Feng, J.-X.; Wang, M.; et al. The Genome of the Myxosporean Thelohanellus Kitauei Shows Adaptations to Nutrient Acquisition Within Its Fish Host. Genome Biol. Evol. 2014, 6, 3182–3198. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.D.; Gu, D.E.; Tong, Y.N.; Li, G.J.; Wei, H.; Mu, X.D.; Xu, M.; Yang, Y.X.; Luo, D.; Li, F.Y.; et al. The Current Distribution of Invasive Mrigal Carp (Cirrhinus mrigala) in Southern China, and Its Potential Impacts on Native Mud Carp (Cirrhinus molitorella) Populations. J. Freshw. Ecol. 2019, 34, 603–616. [Google Scholar] [CrossRef]
- Xiao, J.; Zou, T.; Chen, Y.; Chen, L.; Liu, S.; Tao, M.; Zhang, C.; Zhao, R.; Zhou, Y.; Long, Y.; et al. Coexistence of Diploid, Triploid and Tetraploid Crucian Carp (Carassius auratus) in Natural Waters. BMC Genet. 2011, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Z.; Gui, J.F.; Liu, J.; Ye, S.; Yuan, J.; De Silva, S.S. Paradigm Changes in Freshwater Aquaculture Practices in China: Moving towards Achieving Environmental Integrity and Sustainability. Ambio 2018, 47, 410–426. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Food and Agricultural Organization of the United Nations: Rome, Italy, 2018; ISBN 978-92-5-130562-1. [Google Scholar]
- Wang, M.; Mao, D.; Xiao, X.; Song, K.; Jia, M.; Ren, C.; Wang, Z. Interannual Changes of Coastal Aquaculture Ponds in China at 10-m Spatial Resolution during 2016–2021. Remote Sens. Environ. 2023, 284, 113347. [Google Scholar] [CrossRef]
- Sinha, V.R.P. Integrated Carp Farming in Asian Country; NACA/WP/85/25; FAO: Bangkok, Thailand, 1985. [Google Scholar]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of Food Waste, Fish Waste and Food Processing Waste for China’s Aquaculture Industry: Needs and Challenge. Sci. Total Environ. 2018, 613–614, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.-L. Integrated Aquaculture and Structure Optimization. In Aquaculture Ecology; Dong, S.-L., Tian, X.-L., Gao, Q.-F., Dong, Y.-W., Eds.; Springer: Singapore, 2023; pp. 335–367. ISBN 9789811954863. [Google Scholar]
- Costa-Pierce, B.A. Sustainable Ecological Aquaculture Systems: The Need for a New Social Contract for Aquaculture Development. Mar. Technol. Soc. J. 2010, 44, 88–112. [Google Scholar] [CrossRef]
- Fletcher, R. Lessons from China: The Home of Integrated Aquaculture. Available online: https://thefishsite.com/articles/lessons-from-china-the-home-of-integrated-aquaculture (accessed on 20 October 2023).
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of Aquaculture on World Fish Supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.-S.; Ehrlich, P.R.; et al. Does Aquaculture Add Resilience to the Global Food System? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef]
- Thomas, M.; Pasquet, A.; Aubin, J.; Nahon, S.; Lecocq, T. When More Is More: Taking Advantage of Species Diversity to Move towards Sustainable Aquaculture. Biol. Rev. 2021, 96, 767–784. [Google Scholar] [CrossRef]
- Cai, C.; He, J.; Chen, W.; Zhang, J.; Wang, Q.; Song, X.; Ye, Y.; Wang, Y.; Wu, P.; Cao, X. Biological Manipulation of Eutrophication in West Yangchen Lake. Aquac. Fish. 2019, 4, 190–197. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M.; et al. Precision Fish Farming: A New Framework to Improve Production in Aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, W.; Liu, Q. Lake Fisheries in China: Challenges and Opportunities. Fish. Res. 2013, 140, 66–72. [Google Scholar] [CrossRef]
- Wen, F.; Ma, Y.-X.; Liang, Z.-C.; Liao, C.; Pan, J.; Shao, J.-Q.; He, G.-X.; Liu, J.-S.; Guo, C.-B. Opulation biological characteristics and stock assessment of culter mongolicus (basilewsky 1855) in qiandaohu lake. ACTA Hydrobiol. Sin. 2023, 45, 881–888, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- The Nature Conservancy. Global Principles of Restorative Aquaculture; The Nature Conservancy: Arlington, VA, USA, 2021. [Google Scholar]
- Alleway, H.K.; Waters, T.J.; Brummett, R.; Cai, J.; Cao, L.; Cayten, M.R.; Costa-Pierce, B.A.; Dong, Y.W.; Brandstrup Hansen, S.C.; Liu, S.; et al. Global Principles for Restorative Aquaculture to Foster Aquaculture Practices That Benefit the Environment. Conserv. Sci. Pract. 2023, 5, 12982. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Gao, G.; Shao, J.; Pan, J.; He, G.; Hu, Z. Integrating Ecosystem Services Closely Related to Human Well-Being into the Restoration and Management of Deep Lakes Facing Multiple Stressors: Lessons from Long-Term Practice in Qiandao Lake, China. Sci. Total Environ. 2023, 902, 166457. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Hu, L.; Tang, J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X. Ecological Mechanisms Underlying the Sustainability of the Agricultural Heritage Rice-Fish Coculture System. Proc. Natl. Acad. Sci. USA 2011, 108, E1381–E1387. [Google Scholar] [CrossRef]
- Lin, K.; Wu, J. Effect of Introducing Frogs and Fish on Soil Phosphorus Availability Dynamics and Their Relationship With Rice Yield in Paddy Fields. Sci. Rep. 2020, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chu, C.; Zhou, D.; Wang, Q.; Wu, S.; Zheng, X.; Song, K.; Lv, W. Soil Bacterial Community Composition in Rice–Fish Integrated Farming Systems With Different Planting Years. Sci. Rep. 2021, 11, 10855. [Google Scholar] [CrossRef]
- Halwart, M.; Gupta, M.V. Culture of Fish in Rice Fields; FAO: Rome, Italy, 2004; ISBN 983-2346-33-9. [Google Scholar]
- Ren, W.; Hu, L.; Guo, L.; Zhang, J.; Tang, L.; Zhang, E.; Zhang, J.; Luo, S.; Tang, J.; Chen, X. Preservation of the Genetic Diversity of a Local Common Carp in the Agricultural Heritage Rice–Fish System. Proc. Natl. Acad. Sci. USA 2018, 115, E546–E554. [Google Scholar] [CrossRef]
- Li, K.M. A Review of Rice-Fish Culture in China; FAO: Bangkok, Thailand, 1986. [Google Scholar]
- Roy, A. Economics of Mixed Rice-Fish Farming in South-West Region of Bangladesh. Res. Agric. Livest. Fish. 2016, 3, 453–462. [Google Scholar] [CrossRef]
- Zhu, J. Thinking on Sustainable Development of the Integrated Rice-Crayfish Farming System in China. Curr. Investig. Agric. Curr. Res. 2020, 8, 000289. [Google Scholar] [CrossRef]
- Yu, X.; Hao, X.; Dang, Z.; Yang, L. Report on the Development of China’s Integrated Rice-Fish Industry. China Fish. 2023, 8, 19–26, (In Chinese with English Abstract). [Google Scholar]
- Yu, Z.; Li, L.; Zhu, R.; Li, M.; Wu, L.F. Effects of Bioflocs with Different C/N Ratios on Growth, Immunological Parameters, Antioxidants and Culture Water Quality in Opsariichthys kaopingensis Dybowski. Aquac. Res. 2020, 51, 805–815. [Google Scholar] [CrossRef]
- Tian, X.-L.; Dong, S.-L. Land-Based Intensive Aquaculture Systems. In Aquaculture Ecology; Dong, S.-L., Tian, X.-L., Gao, Q.-F., Dong, Y.-W., Eds.; Springer: Singapore, 2023; pp. 369–402. ISBN 9789811954863. [Google Scholar]
- Li, X.; Li, J.; Wang, Y.; Fu, L.; Fu, Y.; Li, B.; Jiao, B. Aquaculture Industry in China: Current State, Challenges, and Outlook. Rev. Fish. Sci. 2011, 19, 187–200. [Google Scholar] [CrossRef]
- Cao, L.; Wang, W.; Yang, Y.; Yang, C.; Yuan, Z.; Xiong, S.; Diana, J. Environmental Impact of Aquaculture and Countermeasures to Aquaculture Pollution in China. Environ. Sci. Pollut. Res. Int. 2007, 14, 452–462. [Google Scholar]
- De Silva, S.S. Aquaculture: A Newly Emergent Food Production Sector—And Perspectives of Its Impacts on Biodiversity and Conservation. Biodivers. Conserv. 2012, 21, 3187–3220. [Google Scholar] [CrossRef]
- Martinez-Porchas, M.; Martinez-Cordova, L.R. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives. Sci. World J. 2012, 2012, 389623. [Google Scholar] [CrossRef] [PubMed]
- Szuster, B. Coastal Shrimp Farming in Thailand: Searching for Sustainability. In Environment and Livelihoods in Tropical Coastal Zones: Managing Agriculture-Fishery-Aquaculture Conflicts; Cabi Publishing: Oxon, UK, 2006; pp. 86–98. [Google Scholar]
- Belton, B.; Padiyar, A.; Ravibabu, G.; Gopal Rao, K. Boom and Bust in Andhra Pradesh: Development and Transformation in India’s Domestic Aquaculture Value Chain. Aquaculture 2017, 470, 196–206. [Google Scholar] [CrossRef]
- Wen, J.; Xu, Y.; Su, M.; Lu, L.; Wang, H. Susceptibility of Goldfish to Cyprinid Herpesvirus 2 (Cyhv-2) Sh01 Isolated from Cultured Crucian Carp. Viruses 2021, 13, 1761. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen-Ivey, C.R.; Hossain, M.J.; Odom, S.E.; Terhune, J.S.; Hemstreet, W.G.; Shoemaker, C.A.; Zhang, D.; Xu, D.H.; Griffin, M.J.; Liu, Y.J.; et al. Classification of a Hypervirulent Aeromonas Hydrophila Pathotype Responsible for Epidemic Outbreaks in Warm-Water Fishes. Front. Microbiol. 2016, 7, 01615. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Chen, J.; Schneider, K.; Veettil, R.K.; Elmer, K.R.; Zhao, J. Native Bighead Carp Hypophthalmichthys nobilis and Silver Carp Hypophthalmichthys molitrix Populations in the Pearl River Are Threatened by Yangtze River Introductions as Revealed by Mitochondrial DNA. J. Fish Biol. 2020, 96, 651–662. [Google Scholar] [CrossRef]
- Zhou, Q.L.; Habte-Tsion, H.M.; Ge, X.; Liu, B.; Xie, J.; Ren, M.; Miao, L.; Pan, L. Growth Performance and TOR Pathway Gene Expression of Juvenile Blunt Snout Bream, Megalobrama amblycephala, Fed with Diets Replacing Fish Meal with Cottonseed Meal. Aquac. Res. 2017, 48, 3693–3704. [Google Scholar] [CrossRef]
- Raihan, F.; Hossain, M.M. Livelihood Vulnerability Assessments and Adaptation Strategies to Climate Change: A Case Study in Tanguar Haor, Sylhet. J. Water Clim. Change 2021, 12, 3448–3463. [Google Scholar] [CrossRef]
- Huang, R.; Sun, J.; Luo, Q.; He, L.; Liao, L.; Li, Y.; Guo, F.; Zhu, Z.; Wang, Y. Genetic Variations of Body Weight and GCRV Resistance in a Random Mating Population of Grass Carp. Oncotarget 2015, 6, 35433–35442. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Armstrong, B.; Stryhn, H.; Gardner, I.A.; Chang, H.; St-Hilaire, S. A Case Study of Time-Series Regression Modeling: Risk Factors for Pond-Level Mortality of Farmed Grass Carp (Ctenopharyngodon idella) on a Southern Chinese Farm. Aquaculture 2018, 484, 58–64. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Rico, A.; Troell, M.; Klinger, D.H.; Buschmann, A.H.; Saksida, S.; Chadag, M.V.; Zhang, W. Unpacking Factors Influencing Antimicrobial Use in Global Aquaculture and Their Implication for Management: A Review from a Systems Perspective. Sustain. Sci. 2018, 13, 1105–1120. [Google Scholar] [CrossRef]
- Du, Y.; Hu, X.; Miao, L.; Chen, J. Current Status and Development Prospects of Aquatic Vaccines. Front. Immunol. 2022, 13, 1040336. [Google Scholar] [CrossRef]
- Cheng, X.; Lu, Y.; Song, Y.; Zhang, R.; ShangGuan, X.; Xu, H.; Liu, C.; Liu, H. Analysis of Antibiotic Resistance Genes, Environmental Factors, and Microbial Community from Aquaculture Farms in Five Provinces, China. Front. Microbiol. 2021, 12, 679805. [Google Scholar] [CrossRef] [PubMed]
- Démurger, S.; Fournier, M.; Yang, W. Rural Households’ Decisions towards Income Diversification: Evidence from a Township in Northern China. China Econ. Rev. 2010, 21, S32–S44. [Google Scholar] [CrossRef]
- Cai, B.; Shi, F.; Huang, Y.; Abatechanie, M. The Impact of Agricultural Socialized Services to Promote the Farmland Scale Management Behavior of Smallholder Farmers: Empirical Evidence from the Rice-Growing Region of Southern China. Sustainability 2022, 14, 316. [Google Scholar] [CrossRef]
- Miyata, S.; Minot, N.; Hu, D. Impact of Contract Farming on Income: Linking Small Farmers, Packers, and Supermarkets in China. World Dev. 2009, 37, 1781–1790. [Google Scholar] [CrossRef]
- Hu, Z.; Gu, C.; Maucieri, C.; Shi, F.; Zhao, Y.; Feng, C.; Cao, Y.; Zhang, Y. Crayfish–Fish Aquaculture Ponds Exert Reduced Climatic Impacts and Higher Economic Benefits than Traditional Wheat–Rice Paddy Cultivation. Agriculture 2022, 12, 515. [Google Scholar] [CrossRef]
- Zhou, D. Quality Safety for Aquaculture Products of China and Its Management. In Proceedings of the Global Trade Conference on Aquaculture, Qingdao, China, 29–31 May 2007; Food and Agriculture Organization: Rome, Italy, 2007; Volume 9, p. 213. [Google Scholar]
- Broughton, E.I.; Walker, D.G. Policies and Practices for Aquaculture Food Safety in China. Food Policy 2010, 35, 471–478. [Google Scholar] [CrossRef]
- Chen, L. Current Situation and Prospects of the Domestic Aquaculture Product Market in China. In Proceedings of the Global trade conference on aquaculture, Qingdao, China, 29–31 May 2007; Food Agriculture Org: Qingdao, China, 2007; Volume 9, pp. 189–195. [Google Scholar]
- Qi, W.; Liu, F.; Zhang, T.; Qi, X. Can China’s New Rural Cooperative Medical System Improve Farmers’ Subjective Well-Being? Front. Public Heath 2022, 10, 848539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, D.; Xu, L.; Miao, Z.; Mao, W.; Sloan, F.; Tang, S. Ten-Year Impacts of China’s Rural Health Scheme: Lessons for Universal Health Coverage. BMJ Glob. Health 2021, 6, e003714. [Google Scholar] [CrossRef] [PubMed]
- He, A.; Guo, C.; Chen, J. Does Input of Production Factors Really Increase Aquaculture Efficiency? The Case of Bulk Freshwater Aquaculture. Chin. Rural Econ. 2018, 7, 46–62, (In Chinese with English Abstract). [Google Scholar]
- Liu, J.; Fang, Y.; Wang, G.; Liu, B.; Wang, R. The Aging of Farmers and Its Challenges for Labor-Intensive Agriculture in China: A Perspective on Farmland Transfer Plans for Farmers’ Retirement. J. Rural Stud. 2023, 100, 103013. [Google Scholar] [CrossRef]
- Tong, T.; Ye, F.; Zhang, Q.; Liao, W.; Ding, Y.; Liu, Y.; Li, G. The Impact of Labor Force Aging on Agricultural Total Factor Productivity of Farmers in China: Implications for Food Sustainability. Front. Sustain. Food Syst. 2024, 8, 1434604. [Google Scholar] [CrossRef]
- Chi, L. How Does Migration Working Experience Change Farmers’ Social Capital in Rural China? Int. J. Environ. Res. Public Health 2022, 19, 13435. [Google Scholar] [CrossRef]
- De, H.K.; Pandey, D.K. International Journal of Agricultural Extension. Int. J. Agric. Ext. 2014, 2, 81–88. [Google Scholar]
- Wang, W.; Zhang, S. The Impact of Internet Use on Rural Women’s Off-Farm Work Participation: Empirical Evidence from China. Sustainbility 2022, 14, 16972. [Google Scholar] [CrossRef]
- Ministry of Education 9-Year Compulsory Education. Available online: http://www.china.org.cn/english/education/184879.htm (accessed on 1 November 2023).
- Zhang, T.; Minxia, Z. Universalizing Nine-Year Compulsory Education for Poverty Reduction in Rural China. Int. Rev. Educ. 2006, 52, 261–286. [Google Scholar] [CrossRef]
- Seddio, K. 10 Facts About Child Labor in China. Available online: https://borgenproject.org/10-facts-about-child-labor-in-china-2/ (accessed on 20 November 2023).
- Leng, A.; Kang, F. Impact of Two-Child Policy on Female Employment and Corporate Performance: Empirical Evidence from Chinese Listed Companies from 2010 to 2020. Humanit. Soc. Sci. Commun. 2022, 9, 944–949. [Google Scholar] [CrossRef]
- Liu, R. Research on the Moral Hazard of Fishermen in Fisheries Insurance—A Case Study of Shandong Aquaculture; Shandong Agricultural University: Shandong, China, 2023; (In Chinese with English Abstract). [Google Scholar]
- The World Bank. Four Decades of Poverty Reduction in China; The World Bank: Washington, DC, USA, 2022; ISBN 9781464818776. [Google Scholar]
- Rahman, I.U. Poverty Alleviation with Chinese Characteristics: Lessons for Developing Nations. Available online: http://www.china.org.cn/opinion/2021-05/18/content_77506627.htm (accessed on 10 November 2023).
- Hanson, A.; Cui, H.; Zou, L.; Clarke, S.; Muldoon, G.; Potts, J.; Zhang, H. Greening China’s Fish and Fish Products Market Supply Chains; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2010. [Google Scholar]
- Zhang, J.; Hsu, M.K.; Geng, B.; Fan, S. Analyzing the Outcomes of Government-Led Poverty Reduction Policy—The Case of 32 Counties in Southwestern China. J. Dev. Areas 2020, 55. [Google Scholar] [CrossRef]
- United Nations Economic and Social Council. Third Periodic Report Submitted by China under Articles 16 and 17 of the Covenant, Due in 2019; United Nations Economic and Social Council: New York, NY, USA, 2020; Volume 10463. [Google Scholar]
- Ji, Y.; Wang, H.; Liu, Y.; Xu, R.; Zheng, Z. Young Women’s Fertility Intentions and the Emerging Bilateral Family System under China’s Two-Child Family Planning Policy. China Rev. 2020, 20, 113–142. [Google Scholar]
- Lu, H. Analysis of the Mechanism and Effect of Land Fragmentation on Non-Agricultural Labor Supply: A Case Study of Jiangsu, China. Int. Conf. Agric. Econ. 2018, 30, 18. [Google Scholar]
- Wang, J.; Ding, X.; Li, D.; Li, S. The Impact of Organizational Support, Environmental Health Literacy on Farmers’ Willingness to Participate in Rural Living Environment Improvement in China: Exploratory Analysis Based on a PLS-SEM Model. Agriculture 2022, 12, 1798. [Google Scholar] [CrossRef]
- Wang, P.; Mendes, I. Assessment of Changes in Environmental Factors Affecting Aquaculture Production and Fisherfolk Incomes in China between 2010 and 2020. Fishes 2022, 7, 192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhang, W. Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways. Sustainability 2025, 17, 5593. https://doi.org/10.3390/su17125593
Song Y, Zhang W. Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways. Sustainability. 2025; 17(12):5593. https://doi.org/10.3390/su17125593
Chicago/Turabian StyleSong, Yang, and Wenbo Zhang. 2025. "Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways" Sustainability 17, no. 12: 5593. https://doi.org/10.3390/su17125593
APA StyleSong, Y., & Zhang, W. (2025). Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways. Sustainability, 17(12), 5593. https://doi.org/10.3390/su17125593