Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,129)

Search Parameters:
Keywords = vehicle length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2188 KiB  
Article
Research and Simulation Analysis on a Novel U-Tube Type Dual-Chamber Oscillating Water Column Wave Energy Conversion Device
by Shaohui Yang, Haijian Li, Yan Huang, Jianyu Fan, Zhichang Du, Yongqiang Tu, Chenglong Li and Beichen Lin
Energies 2025, 18(15), 4141; https://doi.org/10.3390/en18154141 - 5 Aug 2025
Abstract
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine [...] Read more.
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine environments, limiting their long-term viability and efficiency. To address these limitations, this paper proposes a novel U-tube type dual chamber OWC wave energy conversion device integrated within a marine vehicle. The research involves the design of a U-tube dual-chamber OWC device, which utilizes the pitch motion of a marine vehicle to drive the oscillation of water columns within the U-tube, generating reciprocating airflow that drives an air turbine. Numerical simulations using computational fluid dynamics (CFD) were conducted to analyze the effects of various structural dimensions, including device length, width, air chamber height, U-tube channel width, and bottom channel height, on the aerodynamic power output. The simulations considered real sea conditions, focusing on low-frequency waves prevalent in China’s sea areas. Simulation results reveal that increasing the device’s length and width substantially boosts aerodynamic power, while air chamber height and U-tube channel width have minor effects. These findings provide valuable insights into the optimal design of U-tube dual-chamber OWC devices for efficient wave energy conversion, laying the foundation for future physical prototype development and experimental validation. Full article
Show Figures

Figure 1

20 pages, 2225 KiB  
Article
Network Saturation: Key Indicator for Profitability and Sensitivity Analyses of PRT and GRT Systems
by Joerg Schweizer, Giacomo Bernieri and Federico Rupi
Future Transp. 2025, 5(3), 104; https://doi.org/10.3390/futuretransp5030104 - 4 Aug 2025
Abstract
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as [...] Read more.
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as they are low-emission and able to attract car drivers. The parameterized cost modeling framework developed in this paper has the advantage that profitability of different PRT/GRT systems can be rapidly verified in a transparent way and in function of a variety of relevant system parameters. This framework may contribute to a more transparent, rapid, and low-cost evaluation of PRT/GRT schemes for planning and decision-making purposes. The main innovation is the introduction of the “peak hour network saturation” S: the number of vehicles in circulation during peak hour divided by the maximum number of vehicles running at line speed with minimum time headways. It is an index that aggregates the main uncertainties in the planning process, namely the demand level relative to the supply level. Furthermore, a maximum S can be estimated for a PRT/GRT project, even without a detailed demand estimation. The profit per trip is analytically derived based on S and a series of more certain parameters, such as fares, capital and maintenance costs, daily demand curve, empty vehicle share, and physical properties of the system. To demonstrate the ability of the framework to analyze profitability in function of various parameters, we apply the methods to a single vehicle PRT, a platooned PRT, and a mixed PRT/GRT. The results show that PRT services with trip length proportional fares could be profitable already for S>0.25. The PRT capacity, profitability, and robustness to tripled infrastructure costs can be increased by vehicle platooning or GRT service during peak hours. Full article
Show Figures

Figure 1

26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 - 31 Jul 2025
Viewed by 254
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

20 pages, 7127 KiB  
Article
Design Method of Array-Type Coupler for UAV Wireless Power Transmission System Based on the Deep Neural Network
by Mingyang Li, Jiacheng Li, Wei Xiao, Jingyi Li and Chenyue Zhou
Drones 2025, 9(8), 532; https://doi.org/10.3390/drones9080532 - 29 Jul 2025
Viewed by 210
Abstract
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life [...] Read more.
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life and operational range. However, the variety of UAV models and different sizes pose challenges for designing couplers in the WPT system. This paper presents a design method for an array-type coupler in a UAV WPT system that uses a deep neural network. By establishing an electromagnetic 3D structure of the array-type coupler using electromagnetic simulation software, the dimensions of the transmitting and receiving coils are modified to assess how changes in the aperture of the transmitting coil and the length of the receiving coil affect the mutual inductance of the coupler. Furthermore, deep learning methods are utilized to train a high-precision model using the calculated data as the training and testing sets. Finally, taking the FAIRSER-X model UAV as an example, the transmitting and receiving coils are wound, and the feasibility and accuracy of the proposed method are verified through an LCR meter, which notably enhances the design efficiency of UAV WPT systems. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

17 pages, 661 KiB  
Article
Adaptive Learning Control for Vehicle Systems with an Asymmetric Control Gain Matrix and Non-Uniform Trial Lengths
by Yangbo Tang, Zetao Chen and Hongjun Wu
Symmetry 2025, 17(8), 1203; https://doi.org/10.3390/sym17081203 - 29 Jul 2025
Viewed by 105
Abstract
Intelligent driving is a key technology in the field of automotive manufacturing due to its advantages in environmental protection, energy efficiency, and economy. However, since the intelligent driving model is an uncertain multi-input multi-output dynamic system, especially in an interactive environment, it faces [...] Read more.
Intelligent driving is a key technology in the field of automotive manufacturing due to its advantages in environmental protection, energy efficiency, and economy. However, since the intelligent driving model is an uncertain multi-input multi-output dynamic system, especially in an interactive environment, it faces uncertainties such as non-uniform trial lengths, unknown nonlinear parameters, and unknown control direction. In this paper, an adaptive iterative learning control method is proposed for vehicle systems with non-uniform trial lengths and asymmetric control gain matrices. Unlike the existing research on adaptive iterative learning for non-uniform test lengths, this paper assumes that the elements of the system’s control gain matrix are asymmetric. Therefore, the assumption made in traditional adaptive iterative learning methods that the control gain matrix of the system is known or real, symmetric, and positive definite (or negative definite) is relaxed. Finally, to prove the convergence of the system, a composite energy function is designed, and the effectiveness of the adaptive iterative learning method is verified using vehicle systems. This paper aims to address the challenges in intelligent driving control and decision-making caused by environmental and system uncertainties and provides a theoretical basis and technical support for intelligent driving, promoting the high-quality development of intelligent transportation. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Intelligent Control and Computing)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 356
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 368
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 393
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

20 pages, 1823 KiB  
Article
Smooth UAV Path Planning Based on Composite-Energy-Minimizing Bézier Curves
by Huanxin Cao, Zhanhe Du, Gang Hu, Yi Xu and Lanlan Zheng
Mathematics 2025, 13(14), 2318; https://doi.org/10.3390/math13142318 - 21 Jul 2025
Viewed by 282
Abstract
Path smoothing is an important part of UAV (Unmanned Aerial Vehicle) path planning, because the smoothness of the planned path is related to the flight safety and stability of UAVs. In existing smooth UAV path planning methods, different characteristics of a path curve [...] Read more.
Path smoothing is an important part of UAV (Unmanned Aerial Vehicle) path planning, because the smoothness of the planned path is related to the flight safety and stability of UAVs. In existing smooth UAV path planning methods, different characteristics of a path curve are not considered comprehensively, and the optimization functions established based on the arc length or curvature of the path curve are complex, resulting in low efficiency and quality of path smoothing. To balance the arc length and smoothness of UAV paths, this paper proposes to use energy-minimizing Bézier curves based on composite energy for smooth UAV path planning. In order to simplify the calculation, a kind of approximate stretching energy and bending energy are used to control the arc length and smoothness, respectively, of the path, by which the optimal path can be directly obtained by solving a linear system. Experimental validation in multiple scenarios demonstrates the methodology’s effectiveness and real-time computational viability, where the planned paths by this method have the characteristics of curvature continuity, good smoothness, and short arc length. What is more, in many cases, compared to path smoothing methods based solely on bending energy optimization, the proposed method can generate paths with a smaller maximum curvature, which is more conducive to the safe and stable flight of UAVs. Furthermore, the design of collision-free smooth path for UAVs based on the piecewise energy-minimizing Bézier curve is studied. The new method is simple and efficient, which can help to improve UAV path planning efficiency and thus improve UAV reaction speed and obstacle avoidance ability. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

28 pages, 3717 KiB  
Article
Comparison of Innovative Strategies for the Coverage Problem: Path Planning, Search Optimization, and Applications in Underwater Robotics
by Ahmed Ibrahim, Francisco F. C. Rego and Éric Busvelle
J. Mar. Sci. Eng. 2025, 13(7), 1369; https://doi.org/10.3390/jmse13071369 - 18 Jul 2025
Viewed by 302
Abstract
In many applications, including underwater robotics, the coverage problem requires an autonomous vehicle to systematically explore a defined area while minimizing redundancy and avoiding obstacles. This paper investigates coverage path-planning strategies to enhance the efficiency of underwater gliders particularly in maximizing the probability [...] Read more.
In many applications, including underwater robotics, the coverage problem requires an autonomous vehicle to systematically explore a defined area while minimizing redundancy and avoiding obstacles. This paper investigates coverage path-planning strategies to enhance the efficiency of underwater gliders particularly in maximizing the probability of detecting a radioactive source while ensuring safe navigation. We evaluate three path-planning approaches: the Traveling Salesman Problem (TSP), Minimum Spanning Tree (MST), and the Optimal Control Problem (OCP). Simulations were conducted in MATLAB R2020a, comparing processing time, uncovered areas, path length, and traversal time. Results indicate that the OCP is preferable when traversal time is constrained, although it incurs significantly higher computational costs. Conversely, MST-based approaches provide faster but fewer optimal solutions. These findings offer insights into selecting appropriate algorithms based on mission priorities, balancing efficiency and computational feasbility. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

23 pages, 15163 KiB  
Article
3D Dubins Curve-Based Path Planning for UUV in Unknown Environments Using an Improved RRT* Algorithm
by Feng Pan, Peng Cui, Bo Cui, Weisheng Yan and Shouxu Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1354; https://doi.org/10.3390/jmse13071354 - 16 Jul 2025
Viewed by 246
Abstract
The autonomous navigation of an Unmanned Underwater Vehicle (UUV) in unknown 3D underwater environments remains a challenging task due to the presence of complex terrain, uncertain obstacles, and strict kinematic constraints. This paper proposes a novel smooth path planning framework that integrates improved [...] Read more.
The autonomous navigation of an Unmanned Underwater Vehicle (UUV) in unknown 3D underwater environments remains a challenging task due to the presence of complex terrain, uncertain obstacles, and strict kinematic constraints. This paper proposes a novel smooth path planning framework that integrates improved Rapidly-exploring Random Tree* (RRT*) with 3D Dubins curves to efficiently generate feasible and collision-free trajectories for nonholonomic UUVs. A fast curve-length estimation approach based on a backpropagation neural network is introduced to reduce computational burden during path evaluation. Furthermore, the improved RRT* algorithm incorporates pseudorandom sampling, terminal node backtracking, and goal-biased exploration strategies to enhance convergence and path quality. Extensive simulation results in unknown underwater scenarios with static and moving obstacles demonstrate that the proposed method significantly outperforms state-of-the-art planning algorithms in terms of smoothness, path length, and computational efficiency. Full article
(This article belongs to the Special Issue Intelligent Measurement and Control System of Marine Robots)
Show Figures

Figure 1

24 pages, 3474 KiB  
Article
Improved Hybrid A* Algorithm Based on Lemming Optimization for Path Planning of Autonomous Vehicles
by Yong Chen, Yuan Liu and Wei Xu
Appl. Sci. 2025, 15(14), 7734; https://doi.org/10.3390/app15147734 - 10 Jul 2025
Viewed by 310
Abstract
Path planning for autonomous vehicles is a core component of intelligent transportation systems, playing a key role in ensuring driving safety, improving driving efficiency, and optimizing the user experience. To address the challenges of safety, smoothness, and search efficiency in path planning for [...] Read more.
Path planning for autonomous vehicles is a core component of intelligent transportation systems, playing a key role in ensuring driving safety, improving driving efficiency, and optimizing the user experience. To address the challenges of safety, smoothness, and search efficiency in path planning for autonomous vehicles, this study proposes an improved hybrid A* algorithm based on the lemming optimization algorithm (LOA). Firstly, this study introduces a penalized graph search method, improves the distance heuristic function, and incorporates the Reeds–Shepp algorithm in order to overcome the insufficient safety and smoothness in path planning originating from the hybrid A* algorithm. The penalized graph search method guides the search away from dangerous areas through penalty terms in the cost function. Secondly, the distance heuristic function improves the distance function to reflect the actual distance, which makes the search target clearer and reduces the computational overhead. Finally, the Reeds–Shepp algorithm generates a path that meets the minimum turning radius requirement. By prioritizing paths with fewer reversals during movement, it effectively reduces the number of unnecessary reversals, thereby optimizing the quality of the path. Additionally, the lemming optimization algorithm (LOA) is combined with a two-layer nested optimization framework to dynamically adjust the key parameters of the hybrid A* algorithm (minimum turning radius, step length, and angle change penalty coefficient). Leveraging the LOA’s global search capabilities avoids local optima in the hybrid A* algorithm. By combining the improved hybrid A* algorithm with kinematic constraints within a local range, smooth paths that align with the actual movement capabilities are generated, ultimately enhancing the path search capabilities of the hybrid A* algorithm. Finally, simulation experiments are conducted in two scenarios to validate the algorithm’s feasibility. The simulation results demonstrate that the proposed method can efficiently avoid obstacles, and its performance is better than that of the traditional hybrid A* algorithm in terms of the computational time and average path length. In a simple scenario, the search time is shortened by 33.2% and the path length is reduced by 11.1%; at the same time, in a complex scenario, the search time is shortened by 23.5% and the path length is reduced by 13.6%. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

18 pages, 3657 KiB  
Article
Vehicle Trajectory Data Augmentation Using Data Features and Road Map
by Jianfeng Hou, Wei Song, Yu Zhang and Shengmou Yang
Electronics 2025, 14(14), 2755; https://doi.org/10.3390/electronics14142755 - 9 Jul 2025
Viewed by 331
Abstract
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection [...] Read more.
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection costs. The lack of data creates challenges for training machine learning models and optimizing algorithms. To address this, we propose a new method for generating synthetic vehicle trajectory data, leveraging traffic flow characteristics and road maps. The approach begins by estimating hourly traffic volumes, then it uses the Poisson distribution modeling to assign departure times to synthetic trajectories. Origin and destination (OD) distributions are determined by analyzing historical data, allowing for the assignment of OD pairs to each synthetic trajectory. Path planning is then applied using a road map to generate a travel route. Finally, trajectory points, including positions and timestamps, are calculated based on road segment lengths and recommended speeds, with noise added to enhance realism. This method offers flexibility to incorporate additional information based on specific application needs, providing valuable opportunities for machine learning in intelligent transportation systems. Full article
(This article belongs to the Special Issue Big Data and AI Applications)
Show Figures

Figure 1

22 pages, 4682 KiB  
Article
Transformer-Based Vehicle-Trajectory Prediction at Urban Low-Speed T-Intersection
by Jae Kwan Lee
Sensors 2025, 25(14), 4256; https://doi.org/10.3390/s25144256 - 8 Jul 2025
Viewed by 489
Abstract
Transformer-based models have demonstrated outstanding performance in trajectory prediction; however, their complex architecture demands substantial computing power, and their performance degrades significantly in long-term prediction. A transformer model was developed to predict vehicle trajectory in urban low-speed T-intersections. Microscopic traffic simulation data were [...] Read more.
Transformer-based models have demonstrated outstanding performance in trajectory prediction; however, their complex architecture demands substantial computing power, and their performance degrades significantly in long-term prediction. A transformer model was developed to predict vehicle trajectory in urban low-speed T-intersections. Microscopic traffic simulation data were generated to train the trajectory-prediction model; furthermore, validation data focusing on atypical scenarios were also produced. The appropriate loss function to improve prediction accuracy was explored, and the optimal input/output sequence length for efficient data management was examined. Various driving-characteristics data were employed to evaluate the model’s generalization performance. Consequently, the smooth L1 loss function showed outstanding performance. The optimal length for the input and output sequences was found to be 1 and 3 s, respectively, for trajectory prediction. Additionally, improving the model structure—rather than diversifying the training data—is necessary to enhance generalization performance in atypical driving situations. Finally, this study confirmed that the additional features such as vehicle position and speed variation extracted from the original trajectory data decreased the model accuracy by about 21%. These findings contribute to the development of applicable lightweight models in edge computing infrastructure to be installed at intersections, as well as the development of a trajectory prediction and accident analysis system for various scenarios. Full article
Show Figures

Figure 1

28 pages, 9666 KiB  
Article
An Efficient Path Planning Algorithm Based on Delaunay Triangular NavMesh for Off-Road Vehicle Navigation
by Ting Tian, Huijing Wu, Haitao Wei, Fang Wu and Jiandong Shang
World Electr. Veh. J. 2025, 16(7), 382; https://doi.org/10.3390/wevj16070382 - 7 Jul 2025
Viewed by 330
Abstract
Off-road path planning involves navigating vehicles through areas lacking established road networks, which is critical for emergency response in disaster events, but is limited by the complex geographical environments in natural conditions. How to model the vehicle’s off-road mobility effectively and represent environments [...] Read more.
Off-road path planning involves navigating vehicles through areas lacking established road networks, which is critical for emergency response in disaster events, but is limited by the complex geographical environments in natural conditions. How to model the vehicle’s off-road mobility effectively and represent environments is critical for efficient path planning in off-road environments. This paper proposed an improved A* path planning algorithm based on a Delaunay triangular NavMesh model with off-road environment representation. Firstly, a land cover off-road mobility model is constructed to determine the navigable regions by quantifying the mobility of different geographical factors. This model maps passable areas by considering factors such as slope, elevation, and vegetation density and utilizes morphological operations to minimize mapping noise. Secondly, a Delaunay triangular NavMesh model is established to represent off-road environments. This mesh leverages Delaunay triangulation’s empty circle and maximum-minimum angle properties, which accurately represent irregular obstacles without compromising computational efficiency. Finally, an improved A* path planning algorithm is developed to find the optimal off-road mobility path from a start point to an end point, and identify a path triangle chain with which to calculate the shortest path. The improved road-off path planning A* algorithm proposed in this paper, based on the Delaunay triangulation navigation mesh, uses the Euclidean distance between the midpoint of the input edge and the midpoint of the output edge as the cost function g(n), and the Euclidean distance between the centroids of the current triangle and the goal as the heuristic function h(n). Considering that the improved road-off path planning A* algorithm could identify a chain of path triangles for calculating the shortest path, the funnel algorithm was then introduced to transform the path planning problem into a dynamic geometric problem, iteratively approximating the optimal path by maintaining an evolving funnel region, obtaining a shortest path closer to the Euclidean shortest path. Research results indicate that the proposed algorithms yield optimal path-planning results in terms of both time and distance. The navigation mesh-based path planning algorithm saves 5~20% of path length than hexagonal and 8-directional grid algorithms used widely in previous research by using only 1~60% of the original data loading. In general, the path planning algorithm is based on a national-level navigation mesh model, validated at the national scale through four cases representing typical natural and social landscapes in China. Although the algorithms are currently constrained by the limited data accessibility reflecting real-time transportation status, these findings highlight the generalizability and efficiency of the proposed off-road path-planning algorithm, which is useful for path-planning solutions for emergency operations, wilderness adventures, and mineral exploration. Full article
Show Figures

Figure 1

Back to TopTop