Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (742)

Search Parameters:
Keywords = vascular endothelial markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6034 KiB  
Article
Pexidartinib and Nintedanib Combination Therapy Targets Macrophage Polarization to Reverse Pulmonary Fibrosis: A Preclinical Study
by Ji-Hee Kim, Jae-Kyung Nam, Min-Sik Park, Seungyoul Seo, Hyung Chul Ryu, Hae-June Lee, Jeeyong Lee and Yoon-Jin Lee
Int. J. Mol. Sci. 2025, 26(15), 7570; https://doi.org/10.3390/ijms26157570 - 5 Aug 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This study determined the efficacy of nintedanib and pexidartinib (PLX3397) combination therapy for treating IPF. Combination treatment effectively inhibited the progression of radiation-induced pulmonary fibrosis (RIPF) and prolonged survival in bleomycin-treated mice. Micro-CT analysis revealed a significant tissue repair efficacy. The therapy significantly normalized the abnormal vascular structure observed during RIPF and bleomycin-induced pulmonary fibrosis progression and was accompanied by a decrease in the M2 population. Polarized M1 macrophages enhanced normalized tube formation of irradiated endothelial cells (ECs) in vitro; M2 macrophages increased adhesion in irradiated ECs and abnormal tube formation. Single-cell RNA sequencing data from patients with IPF further supports colony stimulating factor (CSF) 1 upregulation in macrophages and downregulation of capillary EC markers. This study highlights a promising combination strategy to overcome the therapeutic limitations of monotherapy with nintedanib for the treatment of IPF. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 307 KiB  
Review
High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts
by Dejan Reljic
Antioxidants 2025, 14(8), 937; https://doi.org/10.3390/antiox14080937 - 30 Jul 2025
Viewed by 342
Abstract
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative [...] Read more.
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative review synthesizes current evidence on the effects of HIIT on oxidative stress and antioxidant capacity across diverse cardiometabolic disease cohorts. While findings are heterogeneous, the majority of studies demonstrate that HIIT intervention can reduce levels of oxidative stress markers and enhance antioxidant enzyme expression. These redox adaptations may underpin improvements in vascular endothelial function, inflammation, and metabolic regulation. Importantly, variations in intensity, duration, and health status influence these responses, highlighting the need for individualized exercise prescriptions. Safety considerations are emphasized, including the necessity for medical clearance, gradual progression, and individualized training prescriptions in higher-risk individuals. In conclusion, HIIT shows potential as a targeted strategy to restore redox homeostasis and improve cardiometabolic outcomes, although further research is needed to clarify optimal protocols and the underlying mechanisms. Full article
16 pages, 7401 KiB  
Article
Sitagliptin Mitigates Diabetic Cardiomyopathy Through Oxidative Stress Reduction and Suppression of VEGF and FLT-1 Expression in Rats
by Qamraa H. Alqahtani, Tahani A. ALMatrafi, Amira M. Badr, Sumayya A. Alturaif, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Biomolecules 2025, 15(8), 1104; https://doi.org/10.3390/biom15081104 - 30 Jul 2025
Viewed by 319
Abstract
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s [...] Read more.
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s potential as a therapeutic agent, functioning not only to control blood sugar levels but also to enhance vascular health and strengthen cardiac resilience in diabetes. The investigation focused on alterations in the vascular endothelial growth factor (VEGF) and its receptor-1 (FLT-1) signaling pathways, as well as its potential to suppress inflammation and oxidative stress. A number of rats received a single dose of streptozotocin (STZ) 55 mg/kg (i.p.) to induce DM. Sitagliptin was administered orally (100 mg/kg/90 days) to normal and diabetic rats, after which samples were collected for investigation. Sitagliptin significantly mitigated weight loss in diabetic rats. Its administration significantly reduced blood glucose levels and improved serum troponin I and CK-MB levels. Heart sections from diabetic rats showed a marked increase in mTOR, VEGF, and FLT-1 immune reaction, while sitagliptin-treated diabetic rats’ heart sections showed moderate immune reactions. Sitagliptin’s protective effect was also associated with reduced inflammation, and apoptotic markers. In conclusion, Sitagliptin is suggested to offer beneficial effects on the vascular health of cardiac blood vessels, thereby potentially reducing myocardial stress in diabetic patients. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Diseases)
Show Figures

Graphical abstract

24 pages, 587 KiB  
Review
Uric Acid and Preeclampsia: Pathophysiological Interactions and the Emerging Role of Inflammasome Activation
by Celia Arias-Sánchez, Antonio Pérez-Olmos, Virginia Reverte, Isabel Hernández, Santiago Cuevas and María Teresa Llinás
Antioxidants 2025, 14(8), 928; https://doi.org/10.3390/antiox14080928 - 29 Jul 2025
Viewed by 477
Abstract
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal [...] Read more.
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal impairment, is increasingly recognized as an active contributor to the development of PE. Elevated UA levels are associated with oxidative stress, endothelial dysfunction, immune activation, and reduced renal clearance. Clinically, UA is measured in the second and third trimesters to assess disease severity and guide obstetric management, with higher levels correlating with early-onset PE and adverse perinatal outcomes. Its predictive accuracy improves when combined with other clinical and biochemical markers, particularly in low-resource settings. Mechanistically, UA and its monosodium urate crystals can activate the NLRP3 inflammasome, a cytosolic multiprotein complex of the innate immune system. This activation promotes the release of IL-1β and IL-18, exacerbating placental, vascular, and renal inflammation. NLRP3 inflammasome activation has been documented in placental tissues, immune cells, and kidneys of women with PE and is associated with hypertension, proteinuria, and endothelial injury. Experimental studies indicate that targeting UA metabolism or inhibiting NLRP3 activation, using agents such as allopurinol, metformin, or MCC950, can mitigate the clinical and histopathological features of PE. These findings support the dual role of UA as both a biomarker and a potential therapeutic target in the management of the disease. Full article
Show Figures

Graphical abstract

17 pages, 1525 KiB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 411
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

15 pages, 798 KiB  
Article
Associations Between Serum Gut-Derived Tryptophan Metabolites and Cardiovascular Health Markers in Adolescents with Obesity
by Jeny E. Rivera, Renny Lan, Mario G. Ferruzzi, Elisabet Børsheim, Emir Tas and Eva C. Diaz
Nutrients 2025, 17(15), 2430; https://doi.org/10.3390/nu17152430 - 25 Jul 2025
Viewed by 304
Abstract
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating [...] Read more.
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating gut-derived Trp metabolites and markers of cardiometabolic, vascular, and platelet health in adolescents with obesity. Methods: Data were analyzed from 28 adolescents (ages 13–18; mean BMI = 36 ± 6.4 kg/m2). Fasting blood was collected to assess lipid profiles using a clinical analyzer and insulin resistance using the homeostatic model assessment for insulin resistance (HOMA-IR). Gut-derived Trp metabolites were measured by UPLC–mass spectrometry, peak oxygen uptake (VO2 peak) by gas exchange during an incremental cycle ergometer test, and body composition by dual-energy X-ray absorptiometry. Platelet spare respiratory capacity (SRC), endothelial function, and liver fat were measured using high-resolution respirometry, flow-mediated dilation (FMD) of the brachial artery, and magnetic resonance imaging respectively. Results: Indole-3-propionic acid was inversely associated with diastolic blood pressure (rho = −0.39, p = 0.047), total cholesterol (rho = −0.55, p = 0.002), and LDL-C (rho = −0.57, p = 0.0014), independent of sex and obesity severity. Indoxyl sulfate was positively correlated with fasting glucose (rho = 0.47, p = 0.012), and adolescents with impaired fasting glucose had 1.6-fold higher IS levels. Indole-3-acetaldehyde declined with age (rho = −0.50, p = 0.007), and Indole-3-acetic acid and indole were higher in Hispanics vs. non-Hispanics. No significant associations were observed between Trp metabolites and FMD, VO2 peak, or SRC. Conclusions: Gut-derived Trp metabolites, particularly indole-3-propionic and indoxyl sulfate, are associated with markers of cardiometabolic risk in adolescents with obesity. These findings support their potential relevance in early-onset cardiovascular disease risk. Full article
Show Figures

Figure 1

17 pages, 896 KiB  
Review
Analysis of Phosphodiesterase-5 (PDE5) Inhibitors in Modulating Inflammatory Markers in Humans: A Systematic Review and Meta-Analysis
by Cassandra Cianciarulo, Trang H. Nguyen, Anita Zacharias, Nick Standen, Joseph Tucci and Helen Irving
Int. J. Mol. Sci. 2025, 26(15), 7155; https://doi.org/10.3390/ijms26157155 - 24 Jul 2025
Viewed by 444
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. [...] Read more.
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. A systematic review and meta-analysis were conducted to evaluate the impact of PDE5 inhibitors on inflammatory and endothelial markers in adult humans. Randomized controlled trials comparing PDE5 inhibition to placebo were identified through electronic database searches. Outcomes included pro-inflammatory markers (TNF-α, IL-6, IL-8, CRP, VCAM-1, ICAM-1, P-selectin) and anti-inflammatory or signalling markers (IL-10, NO, cGMP), assessed at short-term (≤1 week), intermediate-term (4–6 weeks), or long-term (≥12 weeks) follow-up. Risk of bias was assessed using the Cochrane RoB 2 tool. A total of 20 studies comprising 1549 participants were included. Meta-analyses showed no significant short-term effects of PDE5 inhibition on TNF-α, IL-6, or CRP. Long-term treatment was associated with reduced IL-6 (SMD = −0.64, p = 0.002) and P-selectin (SMD = −0.57, p = 0.02), and increased cGMP (SMD = 0.87, p = 0.0003). Effects on IL-10 and nitric oxide were inconsistent across studies. Most trials had low risk of bias. PDE5 inhibitors may exert anti-inflammatory effects in long-term use by reducing vascular inflammation and enhancing cGMP signalling. These findings support further investigation of PDE5 in chronic inflammatory conditions. Full article
(This article belongs to the Special Issue cGMP Signaling: From Bench to Bedside)
Show Figures

Figure 1

15 pages, 1896 KiB  
Case Report
Pathogenesis of Cardiac Valvular Hemangiomas: A Case Report and Literature Review
by Kimberly-Allisya Neeter, Catalin-Bogdan Satala, Daniela Mihalache, Alexandru-Stefan Neferu, Gabriela Patrichi, Carmen Elena Opris and Simona Gurzu
Int. J. Mol. Sci. 2025, 26(15), 7114; https://doi.org/10.3390/ijms26157114 - 23 Jul 2025
Viewed by 306
Abstract
Valvular hemangiomas are uncommon vascular anomalies that appear on the surface of heart valves. They can cause an array of non-specific symptoms and are consequently rarely diagnosed, with only 31 such cases (including the present one) reported to date in the literature; the [...] Read more.
Valvular hemangiomas are uncommon vascular anomalies that appear on the surface of heart valves. They can cause an array of non-specific symptoms and are consequently rarely diagnosed, with only 31 such cases (including the present one) reported to date in the literature; the present case is the first report of an arteriovenous hemangioma with a tricuspid localization. During the preoperative echocardiographic examination for a ventricular septal defect, a mass was incidentally discovered on the tricuspid valve of a 9-month-old infant. The involved leaflet was surgically removed and sent to the pathology department for analysis and subsequently diagnosed as an arteriovenous hemangioma. The patient recovered well, with no local tumor recurrence or other complications. The microscopic examination showed multiple blood vessels which stained positive for the endothelial markers CD31 and CD34 and which did not express D2-40, normally found in lymphatic endothelia. Surprisingly, endothelial cells lining the vessels also showed positivity for SMA, a mesenchymal cell marker, indicating a possible involvement of endothelial-to-mesenchymal transition and its opposite process, mesenchymal-to-endothelial transition, in the pathogenesis of these vascular anomalies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 2130 KiB  
Article
A Distinct miRNA Profile in Intimal Hyperplasia of Failed Arteriovenous Fistulas Reveals Key Pathogenic Pathways
by Carmen Ciavarella, Francesco Vasuri, Alessio Degiovanni, Lena Christ, Raffaella Mauro, Mauro Gargiulo and Gianandrea Pasquinelli
Biomolecules 2025, 15(8), 1064; https://doi.org/10.3390/biom15081064 - 23 Jul 2025
Viewed by 330
Abstract
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of [...] Read more.
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of core mechanisms in cardiovascular diseases and as potential markers of IH. This study was aimed at identifying a specific miRNA panel in failed AVFs and clarifying the miRNA involvement in IH. miRNA profiling performed in tissues from patients with IH (AVFs) and normal veins (NVs) highlighted a subset of four miRNAs significantly deregulated (hsa-miR-155-5p, hsa-miR-449a-5p, hsa-miR-29c-3p, hsa-miR-194-5p) between the two groups. These miRNAs were analyzed in tissue-derived cells (NVCs and AVFCs), human aortic smooth muscle cells (HAOSMCs) and human umbilical vein endothelial cells (HUVECs). The panel of hsa-miR-449a-5p, hsa-miR-155-5p, hsa-miR-29c-3p and hsa-miR-194-5p was up-regulated in AVFCs, HAOSMCs and HUVEC under inflammatory stimuli. Notably, overexpression of hsa-miR-449a-5p exacerbated the proliferative, migratory and inflammatory features of AVFCs. In vitro pharmacological modulation of these miRNAs with pioglitazone, particularly the down-regulation of hsa-miR-155-5p and hsa-miR-29c-3p, suggested their involvement in IH pathogenesis and a potential translational application. Overall, these findings provide new insights into the pathogenesis of AVF failure, reinforcing the miRNA contribution to IH detection and prevention. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

19 pages, 3827 KiB  
Article
A Refined Carbohydrate-Rich Diet Reduces Vascular Reactivity Through Endothelial Oxidative Stress and Increased Nitric Oxide: The Involvement of Inducible Nitric Oxide Synthase
by Karoline Neumann, Nina Bruna de Souza Mawandji, Ingridy Reinholz Grafites Schereider, Emanuelle Coutinho de Oliveira, Julia Martins Vieira, Andressa Bolsoni-Lopes, Jones Bernardes Graceli, Julia Antonietta Dantas, Lorena Silveira Cardoso, Dalton Valentim Vassallo and Karolini Zuqui Nunes
Nutrients 2025, 17(15), 2395; https://doi.org/10.3390/nu17152395 - 22 Jul 2025
Viewed by 321
Abstract
Background/Objectives: The consumption of refined carbohydrates has increased globally. It is associated with inflammation and oxidative stress, both recognized as risk factors for cardiovascular disease. This study investigated the effects of a refined carbohydrate-rich diet on the vascular reactivity of rat aorta. Methods: [...] Read more.
Background/Objectives: The consumption of refined carbohydrates has increased globally. It is associated with inflammation and oxidative stress, both recognized as risk factors for cardiovascular disease. This study investigated the effects of a refined carbohydrate-rich diet on the vascular reactivity of rat aorta. Methods: We acclimatized adult male Wistar rats for two weeks and then randomly assigned them to two experimental groups: a control (CT) group and a high-carbohydrate diet (HCD) group. The CT group received standard laboratory chow for 15 days, while the HCD group received a diet composed of 45% sweetened condensed milk, 10% refined sugar, and 45% standard chow. After the dietary exposure period, we evaluated the vascular reactivity of aortic rings, gene expression related to inflammation, superoxide dismutase activity, and biochemical parameters, including cholesterol, triglycerides, fasting glucose, and glucose and insulin tolerance. Results: The results demonstrate a reduction in vascular reactivity caused by endothelial alterations, including increased NO production, which was observed as higher vasoconstriction in the presence of L-NAME and aminoguanidine and upregulation of iNOS gene expression. In addition, increased production of free radicals, such as O2-, was observed, as well as immune markers like MCP-1 and CD86 in the HCD group. Additionally, the HCD group showed an increase in the TyG index, suggesting early metabolic impairment. GTT and ITT results revealed higher glycemic levels, indicating early signs of insulin resistance. Conclusions: These findings indicate that short-term consumption of a refined carbohydrate-rich diet may trigger oxidative stress and endothelial dysfunction, thereby increasing the risk of cardiovascular complications. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

17 pages, 78354 KiB  
Article
Three-Dimensional Visualization of the Cardiac Stroma
by Florian Kleefeldt, Peter Michelbach, Uwe Rueckschloss, Süleyman Ergün and Nicole Wagner
Cells 2025, 14(14), 1119; https://doi.org/10.3390/cells14141119 - 21 Jul 2025
Viewed by 318
Abstract
Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial [...] Read more.
Cardiac tissue engineering is a promising strategy to restore cardiac function in heart failure patients. Understanding the cardiac tissue architecture including the cardiac stroma is essential for developing not only advanced cardiac tissue engineering but also novel therapeutic strategies. One of the crucial components of the cardiac stroma is the myocardial vasculature. To enhance the spatial visualization of the cardiac stromal cytoarchitecture with a particular focus on myocardial vasculature, we performed 3D reconstructions of the murine cardiac micro vessels using Serial Block-Face Scanning Electron Microscopy (SBF-SEM). These analyses revealed that pericyte cell bodies were primarily oriented lengthwise and extended several cellular protrusions towards the endothelium. At capillary branching points, some pericytes made contact with both capillaries emerging from branching. In addition to pericytes that are completely encapsulated by the common basal lamina together with capillary endothelial cells, we identified other vascular-associated cells located outside this sheath. Based on marker expression, these cells were distinguished from fibroblasts and suggested to be telocytes. The vascular-associated cells formed electron-dense contact zones with endothelial cells, suggesting functional coupling between these both cell types. In conclusion, this study provides detailed three-dimensional visualizations of the cardiac stroma with a particular focus on cardiac microvasculature, offering enhanced insight into the cardiac stromal cytoarchitecture. Full article
(This article belongs to the Special Issue Advanced Technology for Cellular Imaging)
Show Figures

Graphical abstract

20 pages, 311 KiB  
Article
Serum Concentrations of Vascular Endothelial Growth Factor in Polish Patients with Systemic Lupus Erythematosus Are Associated with Cardiovascular Risk and Autoantibody Profiles
by Katarzyna Fischer, Hanna Przepiera-Będzak, Marcin Sawicki, Maciej Brzosko and Marek Brzosko
J. Clin. Med. 2025, 14(14), 5133; https://doi.org/10.3390/jcm14145133 - 19 Jul 2025
Viewed by 426
Abstract
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals [...] Read more.
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals suffering from SLE, with 20 healthy individuals as controls. The serum levels of VEGF were determined through the ELISA method using R&D Systems tests. Laboratory markers, autoantibody profiles, traditional atherosclerotic risk factors, and organ manifestations were evaluated. Atherosclerotic changes were determined based on several indices including carotid intima-media thickness, ankle-brachial index and high resistance index assessments. Results: The reference range of serum VEGF concentrations was established based on the 25th and 75th percentiles obtained in the controls. High VEGF levels were significantly correlated with the presence of selected anti-phospholipid antibodies such as anti-prothrombin (OR = 10.7; 95%CI: 2.1–53.4) and anti-beta2 glycoprotein I (OR = 3.5; 95%CI: 1.1–10.8), as well as cardiac disorders (OR = 8.0; 95%CI: 1.6–39.5). On the other hand, low concentrations of VEGF were significantly related to lower frequencies of anti-double-stranded DNA antibodies (OR = 0.31; 95%CI: 0.11–0.91) and anti-endothelial cell antibodies (OR = 0.30; 95%CI: 0.11–0.85). Patients with low VEGF levels showed significantly reduced risks of atherosclerotic lesions (OR = 0.24; 95%CI: 0.04–0.99) and vasculitis development (OR = 0.17; 95%CI = 0.03–0.91). Conclusions: In conclusion, VEGF’s pathogenetic role in SLE and SLE-related atherothrombosis is manifested in close correlation with aPLs which may enhance their direct impact on endothelium. High VEGF levels are helpful for identifying cardiovascular risk in patients, while low concentrations indicate lower disease activity, as well as a lower risk of organ involvement. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
15 pages, 3945 KiB  
Article
Modeling Aberrant Angiogenesis in Arteriovenous Malformations Using Endothelial Cells and Organoids for Pharmacological Treatment
by Eun Jung Oh, Hyun Mi Kim, Suin Kwak and Ho Yun Chung
Cells 2025, 14(14), 1081; https://doi.org/10.3390/cells14141081 - 15 Jul 2025
Viewed by 385
Abstract
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism [...] Read more.
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism involved in AVM regulation. In this study, we examined 30 human tissue samples, comprising 10 vascular samples, 10 human fibroblasts derived from AVM tissue, and 10 vascular samples derived from healthy individuals. The pharmacological agents thalidomide, U0126, and rapamycin were applied to the isolated endothelial cells (ECs). The pharmacological treatments reduced the proliferation of AVM ECs and downregulated miR-135b-5p, a biomarker associated with AVMs. The expression levels of angiogenesis-related genes, including VEGF, ANG2, FSTL1, and MARCKS, decreased; in comparison, CSPG4, a gene related to capillary networks, was upregulated. Following analysis of these findings, skin samples from 10 AVM patients were reprogrammed into induced pluripotent stem cells (iPSCs) to generate AVM blood vessel organoids. Treatment of these AVM blood vessel organoids with thalidomide, U0126, and rapamycin resulted in a reduction in the expression of the EC markers CD31 and α-SMA. The establishment of AVM blood vessel organoids offers a physiologically relevant in vitro model for disease characterization and drug screening. The authors of future studies should aim to refine this model using advanced techniques, such as microfluidic systems, to more efficiently replicate AVMs’ pathology and support the development of personalized therapies. Full article
Show Figures

Figure 1

16 pages, 2268 KiB  
Article
Hydnocarpin, a Natural Flavonolignan, Induces the ROS-Mediated Apoptosis of Ovarian Cancer Cells and Reprograms Tumor-Associated Immune Cells
by Jae-Yoon Kim, Yejin Kim, Soo-Yeon Woo, Jin-Ok Kim, Hyunsoo Kim, So-Ri Son, Dae Sik Jang and Jung-Hye Choi
Antioxidants 2025, 14(7), 846; https://doi.org/10.3390/antiox14070846 - 10 Jul 2025
Viewed by 497
Abstract
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, [...] Read more.
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, focusing on its effects on ovarian cancer and tumor-associated immune cells, including ovarian cancer-stimulated macrophages (MQs) and T cells. Hydnocarpin exhibited potent cytotoxicity against multiple ovarian cancer cell lines but only minimal toxicity against normal ovarian surface epithelial cells. Mechanistically, hydnocarpin triggered caspase-dependent apoptosis, as evidenced by the activation of caspase-9 and -3, with limited involvement of caspase-8, indicating the activation of the intrinsic apoptotic pathway. Experimental data implicated reactive oxygen species generation as a key mediator of hydnocarpin cytotoxicity, and reactive oxygen species inhibition significantly inhibited this cytotoxicity. In addition to its direct tumoricidal effects, hydnocarpin reprogrammed the tumor-associated immune cells, ovarian cancer-stimulated macrophages and T cells, by downregulating the levels of M2 MQ markers and pro-tumoral factors (matrix metalloproteinase-2/9, C–C motif chemokine ligand 5, transforming growth factor-β, and vascular endothelial growth factor) and enhancing MQ phagocytosis. Additionally, hydnocarpin promoted T-cell activation (interferon-γ and interleukin-2) and reduced the expression levels of immune evasion markers (CD80, CD86, and VISTA). Overall, this study demonstrated the dual anti-tumor effects of hydnocarpin on both ovarian cancer cells and immunosuppressive immune components in the tumor microenvironment, highlighting its potential as a novel therapeutic candidate for ovarian cancer. Full article
Show Figures

Graphical abstract

13 pages, 1218 KiB  
Article
Endothelial Protein Changes Indicative of Endometriosis in Unexplained Infertility, an Exploratory Study
by Heba Malik, Sirine Zamouri, Samir Akkawi, Siddh Mehra, Rana Mouaki, Thozhukat Sathyapalan, Manjula Nandakumar, Alexandra E. Butler and Stephen L. Atkin
Int. J. Mol. Sci. 2025, 26(13), 6485; https://doi.org/10.3390/ijms26136485 - 5 Jul 2025
Viewed by 481
Abstract
Previous research has linked both endothelial protein changes and vitamin D with infertility. This study was undertaken to investigate the association of proteins associated with endothelial function and vitamin D status in the luteal phase at day 21 in a group of non-obese [...] Read more.
Previous research has linked both endothelial protein changes and vitamin D with infertility. This study was undertaken to investigate the association of proteins associated with endothelial function and vitamin D status in the luteal phase at day 21 in a group of non-obese women prior to in vitro fertilization (IVF) with either unexplained infertility (UI) or male factor infertility (MFI). Twenty-five non-obese Caucasian women from a UK academic center with MFI (n = 14) and UI (n = 11) were recruited. Blood was withdrawn at day 21 of the menstrual cycle at the time of mock embryo transfer. Vitamin D parameters were measured by tandem mass spectroscopy. Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for 20 protein markers of endothelial dysfunction. Baseline demographics did not differ between groups and parameters of response following IVF did not differ. Vitamins D2 and D3, and 1,25 Vitamin D3 did not differ between groups. In UI, markers of endothelial activation/dysfunction were investigated; vascular cell adhesion molecule 1 (VCAM-1) decreased and this is associated with endothelial stress; vascular endothelial growth factor (VEGF) decreased and this may suggest impaired endometrial angiogenesis; while intercellular adhesion molecule 1 (ICAM-3) increased (p < 0.05) and is associated with increased immunological activity. A marker of vascular integrity, angiopoietin-1, increased while soluble angiopoietin-1 receptor (sTie-2) decreased (p < 0.05), suggesting increased vascular development. Endothelial markers of inflammation, coagulation, and endothelial progenitor cells were unchanged. Vitamin D and its metabolites show no relationship to UI, but endothelial activation/dysfunction and vascular integrity changes in VCAM-1, VEGF, sICAM-3, angiopoietin-1, and sTie-2 may contribute to UI, though the mechanisms through which they work require further evaluation; however, these protein changes have been associated with endometriosis, raising the suggestion that subclinical/undiagnosed endometriosis may have contributed to UI in these subjects. Full article
Show Figures

Figure 1

Back to TopTop