Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,423)

Search Parameters:
Keywords = vascular (endothelial) dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 616 KiB  
Article
Noninvasive Assessment of Arterial Wall and Soluble ST2 in Patients with Type 2 Diabetes and Coronary Artery Disease
by Edyta Radzik, Marcin Schulz, Brygida Przywara-Chowaniec and Andrzej Tomasik
Int. J. Mol. Sci. 2025, 26(15), 7561; https://doi.org/10.3390/ijms26157561 - 5 Aug 2025
Abstract
Diabetes-related pathophysiological processes contribute to endothelial dysfunction, arterial stiffening (AS), hypertension, vascular remodeling, and impaired myocardial perfusion. This study aimed to assess the relationship between arterial wall parameters and sST2 concentration as potential risk factors in type 2 diabetes (T2DM) and investigate sex-related [...] Read more.
Diabetes-related pathophysiological processes contribute to endothelial dysfunction, arterial stiffening (AS), hypertension, vascular remodeling, and impaired myocardial perfusion. This study aimed to assess the relationship between arterial wall parameters and sST2 concentration as potential risk factors in type 2 diabetes (T2DM) and investigate sex-related differences. To achieve this, we enrolled 100 patients with suspected or exacerbated coronary artery disease (CAD) and divided them into a T2DM group (n = 58) and a control group (n = 42). Endothelial reactivity (lnRHI), ABI, sST2 levels, and carotid–femoral (cfPWV) and carotid–radial pulse wave velocity (crPWV) were assessed. Coronary angiography was performed in every patient, and epicardial flow and myocardial perfusion were evaluated using QuBE and FLASH. Our results showed that the coronary angiographic findings were similar in both groups. However, T2DM patients had a significantly higher central AS (cfPWV 10.8 ± 2 vs. 9.9 ± 2.7 m/s, p < 0.05) and vascular age (70.0 ± 12.3 vs. 61.3 ± 15.4 years, p < 0.05), while peripheral AS, RHI, and ABI showed no differences. CfPWV correlated with renal function; higher HbA1c and sST2 levels were additionally associated with advanced vascular age. Notably, central AS and vascular age were higher in men with T2DM but not in women. These findings indicate that T2DM patients exhibit increased central AS and vascular aging, influenced by sST2 levels, suggesting fibrosis as a target for precision medicine in T2DM. Full article
Show Figures

Figure 1

16 pages, 875 KiB  
Review
Cardiorenal Syndrome in the Elderly: Challenges and Considerations
by Matthew Jarocki, Sophie Green, Henry H. L. Wu and Rajkumar Chinnadurai
Geriatrics 2025, 10(4), 104; https://doi.org/10.3390/geriatrics10040104 - 4 Aug 2025
Abstract
Cardiorenal syndrome (CRS) is a term used to describe the combined dysfunction of the heart and kidneys. This complex disorder is widely acknowledged to be challenging in both its diagnosis and management, and this is the case particularly in the elderly population, due [...] Read more.
Cardiorenal syndrome (CRS) is a term used to describe the combined dysfunction of the heart and kidneys. This complex disorder is widely acknowledged to be challenging in both its diagnosis and management, and this is the case particularly in the elderly population, due to multi-morbidity, polypharmacy, and age-related physiological changes. Given advancements in medicine and more prolonged cumulative exposure to risk factors in the elderly population, it is likely that the prevalence of chronic kidney disease (CKD) and heart failure (HF) will continue to rise going forward. Hence, understanding the mechanisms involved in the development of CRS is paramount. There are five different CRS types—they are categorised depending on the primary organ involved the acuity of disease. The pathophysiological process behind CRS is complex, involving the interplay of many processes including hemodynamic changes, neurohormonal activation, inflammation, oxidative stress, and endothelial dysfunction and vascular stiffness. The numerous diagnostic and management challenges associated with CRS are significantly further exacerbated in an elderly population. Biomarkers used to aid the diagnosis of CRS, such as serum creatinine and brain natriuretic peptide (BNP), can be challenging to interpret in the elderly population due to age-related renal senescence and multiple comorbidities. Polypharmacy can contribute to the development of CRS and therefore, before initiating treatment, coordinating a patient-centred, multi-speciality, holistic review to assess potential risks versus benefits of prescribed treatments is crucial. The overall prognosis of CRS in the elderly remains poor. Treatments are primarily directed at addressing the sequelae of the underlying aetiology, which often involves the removal of fluid through diuretics or ultrafiltration. Careful considerations when managing elderly patients with CRS is essential due to the high prevalence of frailty and functional decline. As such, in these patients, early discussions around advance care planning should be prioritised. Full article
Show Figures

Figure 1

35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

18 pages, 634 KiB  
Review
Cardiorenal Syndrome: Molecular Pathways Linking Cardiovascular Dysfunction and Chronic Kidney Disease Progression
by Fabian Vasquez, Caterina Tiscornia, Enrique Lorca-Ponce, Valeria Aicardi and Sofia Vasquez
Int. J. Mol. Sci. 2025, 26(15), 7440; https://doi.org/10.3390/ijms26157440 - 1 Aug 2025
Viewed by 152
Abstract
Cardiorenal syndrome (CRS) is a multifactorial clinical condition characterized by the bidirectional deterioration of cardiac and renal function, driven by mechanisms such as renin–angiotensin–aldosterone system (RAAS) overactivation, systemic inflammation, oxidative stress, endothelial dysfunction, and fibrosis. The aim of this narrative review is to [...] Read more.
Cardiorenal syndrome (CRS) is a multifactorial clinical condition characterized by the bidirectional deterioration of cardiac and renal function, driven by mechanisms such as renin–angiotensin–aldosterone system (RAAS) overactivation, systemic inflammation, oxidative stress, endothelial dysfunction, and fibrosis. The aim of this narrative review is to explore the key molecular pathways involved in CRS and to highlight emerging therapeutic approaches, with a special emphasis on nutritional interventions. We examined recent evidence on the contribution of mitochondrial dysfunction, uremic toxins, and immune activation to CRS progression and assessed the role of dietary and micronutrient factors. Results indicate that a high dietary intake of sodium, phosphorus additives, and processed foods is associated with volume overload, vascular damage, and inflammation, whereas deficiencies in potassium, magnesium, and vitamin D correlate with worse clinical outcomes. Anti-inflammatory and antioxidant bioactives, such as omega-3 PUFAs, curcumin, and anthocyanins from maqui, demonstrate potential to modulate key CRS mechanisms, including the nuclear factor kappa B (NF-κB) pathway and the NLRP3 inflammasome. Gene therapy approaches targeting endothelial nitric oxide synthase (eNOS) and transforming growth factor-beta (TGF-β) signaling are also discussed. An integrative approach combining pharmacological RAAS modulation with personalized medical nutrition therapy and anti-inflammatory nutrients may offer a promising strategy to prevent or delay CRS progression and improve patient outcomes. Full article
Show Figures

Figure 1

20 pages, 307 KiB  
Review
High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts
by Dejan Reljic
Antioxidants 2025, 14(8), 937; https://doi.org/10.3390/antiox14080937 - 30 Jul 2025
Viewed by 320
Abstract
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative [...] Read more.
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative review synthesizes current evidence on the effects of HIIT on oxidative stress and antioxidant capacity across diverse cardiometabolic disease cohorts. While findings are heterogeneous, the majority of studies demonstrate that HIIT intervention can reduce levels of oxidative stress markers and enhance antioxidant enzyme expression. These redox adaptations may underpin improvements in vascular endothelial function, inflammation, and metabolic regulation. Importantly, variations in intensity, duration, and health status influence these responses, highlighting the need for individualized exercise prescriptions. Safety considerations are emphasized, including the necessity for medical clearance, gradual progression, and individualized training prescriptions in higher-risk individuals. In conclusion, HIIT shows potential as a targeted strategy to restore redox homeostasis and improve cardiometabolic outcomes, although further research is needed to clarify optimal protocols and the underlying mechanisms. Full article
21 pages, 604 KiB  
Review
Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae
by Lais Alves do-Nascimento, Nicolle Rakanidis Machado, Isabella Siuffi Bergamasco, João Vitor da Silva Borges, Fabio da Ressureição Sgnotto and Jefferson Russo Victor
COVID 2025, 5(8), 121; https://doi.org/10.3390/covid5080121 - 30 Jul 2025
Viewed by 268
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly known as long-COVID—can persist for months. Recent studies have identified the emergence of diverse autoantibodies in COVID-19, including those targeting nuclear antigens, phospholipids, type I interferons, cytokines, endothelial components, and G-protein-coupled receptors. These autoantibodies are more frequently detected in patients with moderate to severe disease and have been implicated in immune dysregulation, vascular injury, and persistent symptoms. This review examines the underlying immunological mechanisms driving autoantibody production during SARS-CoV-2 infection—including molecular mimicry, epitope spreading, and bystander activation—and discusses their functional roles in acute and post-acute disease. We further explore the relevance of autoantibodies in maternal–fetal immunity and comorbid conditions such as autoimmunity and cancer, and we summarize current and emerging therapeutic strategies. A comprehensive understanding of SARS-CoV-2-induced autoantibodies may improve risk stratification, inform clinical management, and guide the development of targeted immunomodulatory therapies. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
Show Figures

Figure 1

24 pages, 587 KiB  
Review
Uric Acid and Preeclampsia: Pathophysiological Interactions and the Emerging Role of Inflammasome Activation
by Celia Arias-Sánchez, Antonio Pérez-Olmos, Virginia Reverte, Isabel Hernández, Santiago Cuevas and María Teresa Llinás
Antioxidants 2025, 14(8), 928; https://doi.org/10.3390/antiox14080928 - 29 Jul 2025
Viewed by 468
Abstract
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal [...] Read more.
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal impairment, is increasingly recognized as an active contributor to the development of PE. Elevated UA levels are associated with oxidative stress, endothelial dysfunction, immune activation, and reduced renal clearance. Clinically, UA is measured in the second and third trimesters to assess disease severity and guide obstetric management, with higher levels correlating with early-onset PE and adverse perinatal outcomes. Its predictive accuracy improves when combined with other clinical and biochemical markers, particularly in low-resource settings. Mechanistically, UA and its monosodium urate crystals can activate the NLRP3 inflammasome, a cytosolic multiprotein complex of the innate immune system. This activation promotes the release of IL-1β and IL-18, exacerbating placental, vascular, and renal inflammation. NLRP3 inflammasome activation has been documented in placental tissues, immune cells, and kidneys of women with PE and is associated with hypertension, proteinuria, and endothelial injury. Experimental studies indicate that targeting UA metabolism or inhibiting NLRP3 activation, using agents such as allopurinol, metformin, or MCC950, can mitigate the clinical and histopathological features of PE. These findings support the dual role of UA as both a biomarker and a potential therapeutic target in the management of the disease. Full article
Show Figures

Graphical abstract

19 pages, 4707 KiB  
Article
Secondary Metabolites from Rehmannia glutinosa Protect Mitochondrial Function in LPS-Injured Endothelial Cells
by Liwen Zhong, Mengkai Lu, Huiqi Fang, Chao Li, Hua Qu and Gang Ding
Pharmaceuticals 2025, 18(8), 1125; https://doi.org/10.3390/ph18081125 - 27 Jul 2025
Viewed by 242
Abstract
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in [...] Read more.
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in endothelial cells, providing potential therapeutic insights into sepsis-related vascular complications. Methods: Phytochemical profiling of fresh R. glutinosa roots was conducted, and the structures of new secondary metabolites (1 and 2) were elucidated through comprehensive spectroscopic analysis and ECD calculations. UPLC-Q-TOF-MS/MS characterized phenylethanoid glycosides. Mitochondrial function was assessed by measuring the membrane potential, ROS levels, and TOM20/DRP1 expression in LPS-injured HUVECs. Results: Two novel eremophilane-type sesquiterpenes, remophilanetriols J (1) and K (2), along with five known phenylethanoid glycosides (37), were isolated from the fresh roots of R. glutinosa. UPLC-Q-TOF-MS/MS analysis revealed unique fragmentation pathways for phenylethanoid glycosides (37). In LPS-injured HUVECs, all compounds collectively restored the mitochondrial membrane potential, attenuated ROS accumulation, and modulated TOM20/DRP1 expression. In particular, remophilanetriol K (2) exhibited potent protective effects at a low concentration (1.5625 μM). Conclusions: This study identifies R. glutinosa metabolites as potential therapeutics for sepsis-associated vascular dysfunction by preserving mitochondrial homeostasis. This study provides a mechanistic basis for the traditional use of R. glutinosa and offers valuable insights into the development of novel therapeutics targeting mitochondrial dysfunction in sepsis. Full article
Show Figures

Graphical abstract

17 pages, 1525 KiB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 405
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

15 pages, 798 KiB  
Article
Associations Between Serum Gut-Derived Tryptophan Metabolites and Cardiovascular Health Markers in Adolescents with Obesity
by Jeny E. Rivera, Renny Lan, Mario G. Ferruzzi, Elisabet Børsheim, Emir Tas and Eva C. Diaz
Nutrients 2025, 17(15), 2430; https://doi.org/10.3390/nu17152430 - 25 Jul 2025
Viewed by 296
Abstract
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating [...] Read more.
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating gut-derived Trp metabolites and markers of cardiometabolic, vascular, and platelet health in adolescents with obesity. Methods: Data were analyzed from 28 adolescents (ages 13–18; mean BMI = 36 ± 6.4 kg/m2). Fasting blood was collected to assess lipid profiles using a clinical analyzer and insulin resistance using the homeostatic model assessment for insulin resistance (HOMA-IR). Gut-derived Trp metabolites were measured by UPLC–mass spectrometry, peak oxygen uptake (VO2 peak) by gas exchange during an incremental cycle ergometer test, and body composition by dual-energy X-ray absorptiometry. Platelet spare respiratory capacity (SRC), endothelial function, and liver fat were measured using high-resolution respirometry, flow-mediated dilation (FMD) of the brachial artery, and magnetic resonance imaging respectively. Results: Indole-3-propionic acid was inversely associated with diastolic blood pressure (rho = −0.39, p = 0.047), total cholesterol (rho = −0.55, p = 0.002), and LDL-C (rho = −0.57, p = 0.0014), independent of sex and obesity severity. Indoxyl sulfate was positively correlated with fasting glucose (rho = 0.47, p = 0.012), and adolescents with impaired fasting glucose had 1.6-fold higher IS levels. Indole-3-acetaldehyde declined with age (rho = −0.50, p = 0.007), and Indole-3-acetic acid and indole were higher in Hispanics vs. non-Hispanics. No significant associations were observed between Trp metabolites and FMD, VO2 peak, or SRC. Conclusions: Gut-derived Trp metabolites, particularly indole-3-propionic and indoxyl sulfate, are associated with markers of cardiometabolic risk in adolescents with obesity. These findings support their potential relevance in early-onset cardiovascular disease risk. Full article
Show Figures

Figure 1

17 pages, 896 KiB  
Review
Analysis of Phosphodiesterase-5 (PDE5) Inhibitors in Modulating Inflammatory Markers in Humans: A Systematic Review and Meta-Analysis
by Cassandra Cianciarulo, Trang H. Nguyen, Anita Zacharias, Nick Standen, Joseph Tucci and Helen Irving
Int. J. Mol. Sci. 2025, 26(15), 7155; https://doi.org/10.3390/ijms26157155 - 24 Jul 2025
Viewed by 415
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. [...] Read more.
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. A systematic review and meta-analysis were conducted to evaluate the impact of PDE5 inhibitors on inflammatory and endothelial markers in adult humans. Randomized controlled trials comparing PDE5 inhibition to placebo were identified through electronic database searches. Outcomes included pro-inflammatory markers (TNF-α, IL-6, IL-8, CRP, VCAM-1, ICAM-1, P-selectin) and anti-inflammatory or signalling markers (IL-10, NO, cGMP), assessed at short-term (≤1 week), intermediate-term (4–6 weeks), or long-term (≥12 weeks) follow-up. Risk of bias was assessed using the Cochrane RoB 2 tool. A total of 20 studies comprising 1549 participants were included. Meta-analyses showed no significant short-term effects of PDE5 inhibition on TNF-α, IL-6, or CRP. Long-term treatment was associated with reduced IL-6 (SMD = −0.64, p = 0.002) and P-selectin (SMD = −0.57, p = 0.02), and increased cGMP (SMD = 0.87, p = 0.0003). Effects on IL-10 and nitric oxide were inconsistent across studies. Most trials had low risk of bias. PDE5 inhibitors may exert anti-inflammatory effects in long-term use by reducing vascular inflammation and enhancing cGMP signalling. These findings support further investigation of PDE5 in chronic inflammatory conditions. Full article
(This article belongs to the Special Issue cGMP Signaling: From Bench to Bedside)
Show Figures

Figure 1

24 pages, 1055 KiB  
Review
Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes
by Przemysław Niziński, Anna Hawrył, Paweł Polak, Adrianna Kondracka, Tomasz Oniszczuk, Jakub Soja, Mirosław Hawrył and Anna Oniszczuk
Molecules 2025, 30(15), 3096; https://doi.org/10.3390/molecules30153096 - 24 Jul 2025
Viewed by 499
Abstract
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of [...] Read more.
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of diabetes mellitus. QE improves glycemic control by enhancing insulin sensitivity, stimulating glucose uptake, and preserving pancreatic beta cell function. These effects are mediated by the modulation of key molecular pathways, including AMPK, PI3K/Akt, and Nrf2/ARE, as well as by the suppression of oxidative stress and pro-inflammatory cytokines, such as TNF-α and IL-6. Furthermore, QE mitigates the progression of diabetic complications such as nephropathy, retinopathy, and vascular dysfunction, reducing lipid peroxidation and protecting endothelial function. However, the clinical application of quercetin is limited by its low water solubility, poor bioavailability, and extensive phase II metabolism. Advances in formulation strategies, including the use of nanocarriers, co-crystals, and phospholipid complexes, have shown promise in improving its pharmacokinetics. This review elucidates the mechanistic basis of QE quercetin antidiabetic action and discusses strategies to enhance its therapeutic potential in clinical settings. Full article
Show Figures

Figure 1

19 pages, 967 KiB  
Review
Hematologic and Immunologic Overlap Between COVID-19 and Idiopathic Pulmonary Fibrosis
by Gabriela Mara, Gheorghe Nini, Stefan Marian Frenț and Coralia Cotoraci
J. Clin. Med. 2025, 14(15), 5229; https://doi.org/10.3390/jcm14155229 - 24 Jul 2025
Viewed by 361
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral infections and chronic lung disease, this review offers a focused analysis of the shared hematologic and immunologic mechanisms between COVID-19 and IPF. Our aim is to better understand how SARS-CoV-2 infection may worsen disease progression in IPF and identify converging pathophysiological pathways that may inform clinical management. We conducted a narrative synthesis of the peer-reviewed literature from PubMed, Scopus, and Web of Science, focusing on clinical, experimental, and pathological studies addressing immune and coagulation abnormalities in both COVID-19 and IPF. Both diseases exhibit significant overlap in inflammatory and fibrotic signaling, particularly via the TGF-β, IL-6, and TNF-α pathways. COVID-19 amplifies coagulation disturbances and endothelial dysfunction already present in IPF, promoting microvascular thrombosis and acute exacerbations. Myeloid cell overactivation, impaired lymphocyte responses, and fibroblast proliferation are central to this shared pathophysiology. These synergistic mechanisms may accelerate fibrosis and increase mortality risk in IPF patients infected with SARS-CoV-2. This review proposes an integrative framework for understanding the hematologic and immunologic convergence of COVID-19 and IPF. Such insights are essential for refining therapeutic targets, improving prognostic stratification, and guiding early interventions in this high-risk population. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

21 pages, 1397 KiB  
Review
Advancements in Beta-Adrenergic Therapy and Novel Personalised Approach for Portal Hypertension: A Narrative Review
by Raluca-Ioana Avram, Horia Octav Minea, Laura Huiban, Ioana-Roxana Damian, Mihaela-Cornelia Muset, Simona Juncu, Cristina Maria Muzica, Sebastian Zenovia, Ana Maria Singeap, Irina Girleanu, Carol Stanciu and Anca Trifan
Life 2025, 15(8), 1173; https://doi.org/10.3390/life15081173 - 24 Jul 2025
Viewed by 388
Abstract
Liver cirrhosis is a chronic progressive disease marked by the transition from a compensated to a decompensated stage, associated with severe complications. Central to this progression is portal hypertension, which results from increased intrahepatic vascular resistance and endothelial dysfunction, as well as splanchnic [...] Read more.
Liver cirrhosis is a chronic progressive disease marked by the transition from a compensated to a decompensated stage, associated with severe complications. Central to this progression is portal hypertension, which results from increased intrahepatic vascular resistance and endothelial dysfunction, as well as splanchnic vasodilation and an augmented circulatory state. Non-selective beta-blockers (NSBBs) remain the standard of care for portal hypertension, reducing portal pressure by lowering cardiac output via beta-1 receptor blockade and decreasing splanchnic blood flow through beta-2 receptor antagonism. However, clinical application of NSBBs is often hindered by adverse effects such as bradycardia, hypotension, and fatigue, alongside inconsistent efficacy in certain patient populations. Such limitations have driven the search for alternative therapeutic strategies and effective biomarkers for identifying non-responders. Beta-3 adrenergic receptor agonists have emerged as promising candidates, acting through distinct mechanisms, different from NSBBs. By stimulating nitric oxide release from endothelial cells, beta-3 agonists induce selective vasodilation without negatively impacting cardiac function, potentially overcoming the limitations of traditional therapies. This review discusses the molecular pathways of NSBBs, their clinical role and limitations, introduces potential novel biomarkers, and highlights the growing evidence supporting beta-3 receptor agonists as novel and targeted treatments for portal hypertension. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

9 pages, 418 KiB  
Review
The Occult Cascade That Leads to CTEPH
by Charli Fox and Lavannya M. Pandit
BioChem 2025, 5(3), 22; https://doi.org/10.3390/biochem5030022 - 23 Jul 2025
Viewed by 191
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, [...] Read more.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, CTEPH remains underdiagnosed due to nonspecific symptoms and overlapping features with other forms of pulmonary hypertension. Basic Methodology: This review synthesizes data from large international registries, epidemiologic studies, translational research, and multicenter clinical trials. Key methodologies include analysis of registry data to assess incidence and risk factors, histopathological examination of lung specimens, and molecular studies investigating endothelial dysfunction and inflammatory pathways. Diagnostic modalities and treatment outcomes are evaluated through observational studies and randomized controlled trials. Recent Advances and Affected Population: Research has elucidated that CTEPH arises from incomplete resolution of pulmonary emboli, with subsequent fibrotic transformation mediated by dysregulated TGF-β/TGFBI signaling, endothelial dysfunction, and chronic inflammation. Affected populations are typically older adults, often with prior venous thromboembolism, splenectomy, or prothrombotic conditions, though up to 25% have no history of acute PE. The disease burden is substantial, with delayed diagnosis contributing to worse outcomes and higher societal costs. Microvascular arteriopathy and PAH-like lesions in non-occluded vessels further complicate the clinical picture. Conclusions: CTEPH is now recognized as a treatable disease, with multimodal therapies—surgical endarterectomy, balloon pulmonary angioplasty, and targeted pharmacotherapy—significantly improving survival and quality of life. Ongoing research into molecular mechanisms and biomarker-driven diagnostics promises earlier identification and more personalized management. Multidisciplinary care and continued translational investigation are essential to further reduce mortality and optimize outcomes for this complex patient population. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

Back to TopTop