Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae
Abstract
1. Introduction
2. Autoantibodies and Their Role in COVID-19 Pathogenesis
2.1. Mechanisms of Autoantibody Production in COVID-19
2.2. Types of Autoantibodies in COVID-19
2.3. Autoantibodies and Immune Dysregulation
2.4. Proteomic Profiling of SARS-CoV-2-Induced Autoantibodies
2.5. Impact of COVID-19-Induced IgG on MAIT Cells and Immune Dysregulation
3. The Role of Autoantibodies in Modulating Disease Severity in COVID-19
3.1. Moderate COVID-19
3.2. Severe COVID-19
3.3. The Cytokine Storm and Autoantibodies
4. Long-COVID and Autoantibodies
4.1. Pathophysiology of Long-COVID
4.2. Autoantibodies as Predictive Biomarkers of Long-COVID
5. Therapeutic Implications
5.1. Targeting Autoantibodies in COVID-19 Treatment
5.2. Preventing Long-COVID Through Immune Modulation
5.3. Future Directions in Autoantibody-Targeted Therapy
6. Idiotypic Network Disruption and Immune Tolerance Breakdown in COVID-19
7. Pathogenic Relevance of Autoantibody Targets by Subcellular Localization
8. Autoantibodies in Neurological Complications of COVID-19
9. Autoantibody Transfer During Pregnancy: Maternal–Fetal Considerations
10. Impact of Autoantibodies in COVID-19 Patients with Autoimmunity and Cancer
11. COVID-19 in the Broader Context of Virus-Induced Autoimmunity
12. Future Directions: Integrating Autoantibody Profiling into COVID-19 Research and Clinical Practice
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- WHO. Coronavirus (COVID-19) Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 17 July 2025).
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Astroth, C.; Shah, K.S.; Agrawal, S.; Agrawal, A. Weathering the Storm: How Age and Biologics Influence the COVID-19 Cytokine Surge. Pathogens 2025, 14, 346. [Google Scholar] [CrossRef]
- Nie, J.; Zhou, L.; Tian, W.; Liu, X.; Yang, L.; Yang, X.; Zhang, Y.; Wei, S.; Wang, D.W.; Wei, J. Deep insight into cytokine storm: From pathogenesis to treatment. Signal Transduct. Target. Ther. 2025, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Eltayeb, A.; Redwan, E.M. T-cell immunobiology and cytokine storm of COVID-19. Prog. Mol. Biol. Transl. Sci. 2025, 213, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.; Gilby, N.B.; Wei, G.W. Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. J. Chem. Inf. Model. 2022, 62, 412–422. [Google Scholar] [CrossRef]
- Suomenrinne-Nordvik, A.; Leino, T.; Shubin, M.; Auranen, K.; Vänskä, S. Quantifying the direct and indirect components of COVID-19 vaccine effectiveness during the Delta variant era. Epidemiol. Infect. 2025, 153, e59. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Boechat, J.L.; Chora, I.; Morais, A.; Delgado, L. The immune response to SARS-CoV-2 and COVID-19 immunopathology—Current perspectives. Pulmonology 2021, 27, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Matin, M.A.; Sami, C.A.; Anjan, M.A.H.; Rashed, H.M.; Hoque, A.; Hasan, M.N.; Arafat, S.M.; Biswas, S.K.; Chowdhury, F.R. Dynamics of SARS-CoV-2 Immunoglobulin G Antibody Among Hospitalized Patients and Healthcare Workers During the Delta Wave in Bangladesh. Cureus 2025, 17, e82175. [Google Scholar] [CrossRef] [PubMed]
- Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D.R.; Bailey, M.J.; Mansour, M.; McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020, 370, 1227–1230. [Google Scholar] [CrossRef]
- Talamini, L.; Fonseca, D.L.M.; Kanduc, D.; Chaloin, O.; Verdot, C.; Galmiche, C.; Dotan, A.; Filgueiras, I.S.; Borghi, M.O.; Meroni, P.L.; et al. Long COVID-19 autoantibodies and their potential effect on fertility. Front. Immunol. 2025, 16, 1540341. [Google Scholar] [CrossRef]
- Garcia-Beltran, W.F.; Lam, E.C.; Astudillo, M.G.; Yang, D.; Miller, T.E.; Feldman, J.; Hauser, B.M.; Caradonna, T.M.; Clayton, K.L.; Nitido, A.D.; et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 2021, 184, 476–488.e11. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Jaycox, J.R.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef]
- Kanduc, D. From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies 2020, 9, 33. [Google Scholar] [CrossRef]
- Woodruff, M.C.; Ramonell, R.P.; Nguyen, D.C.; Cashman, K.S.; Saini, A.S.; Haddad, N.S.; Ley, A.M.; Kyu, S.; Howell, J.C.; Ozturk, T.; et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 2020, 21, 1506–1516. [Google Scholar] [CrossRef]
- Vojdani, A.; Kharrazian, D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol. 2020, 217, 108480. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Kharrazian, D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front. Immunol. 2020, 11, 617089. [Google Scholar] [CrossRef]
- Van Regemorter, E.; Zorzi, G.; Scohy, A.; Gruson, D.; Morelle, J. Impact of the COVID-19 pandemic on temporal trends of biological indicators of autoimmunity. J. Transl. Autoimmun. 2023, 7, 100222. [Google Scholar] [CrossRef]
- Knight, J.S.; Caricchio, R.; Casanova, J.L.; Combes, A.J.; Diamond, B.; Fox, S.E.; Hanauer, D.A.; James, J.A.; Kanthi, Y.; Ladd, V.; et al. The intersection of COVID-19 and autoimmunity. J. Clin. Investig. 2021, 131, e154886. [Google Scholar] [CrossRef] [PubMed]
- Sgnotto, F.D.R.; de Oliveira, M.G.; Lira, A.A.L.; Inoue, A.H.S.; Titz, T.O.; Orfali, R.L.; Bento-de-Souza, L.; Sato, M.N.; Aoki, V.; Duarte, A.J.S.; et al. IgG from atopic dermatitis patients induces IL-17 and IL-10 production in infant intrathymic TCD4 and TCD8 cells. Int. J. Dermatol. 2018, 57, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.S.; Sgnotto, F.D.R.; Sousa, T.R.; Orfali, R.L.; Aoki, V.; Duarte, A.J.D.S.; Victor, J.R. IgG from atopic dermatitis patients induces non-atopic infant thymic invariant natural killer T (iNKT) cells to produce IL-4, IL-17, and IL-10. Int. J. Dermatol. 2019, 59, 359–364. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.R.; Fagundes, B.O.; Nascimento, A.; Fernandes, L.A.; Sgnotto, F.D.R.; Orfali, R.L.; Aoki, V.; Duarte, A.J.D.S.; Sanabani, S.S.; Victor, J.R. IgG from Adult Atopic Dermatitis (AD) Patients Induces Thymic IL-22 Production and CLA Expression on CD4+ T Cells: Possible Epigenetic Implications Mediated by miRNA. Int. J. Mol. Sci. 2022, 23, 6867. [Google Scholar] [CrossRef]
- Fagundes, B.O.; de Sousa, T.R.; Nascimento, A.; Fernandes, L.A.; Sgnotto, F.D.R.; Orfali, R.L.; Aoki, V.; Duarte, A.J.D.S.; Sanabani, S.S.; Victor, J.R. IgG from Adult Atopic Dermatitis (AD) Patients Induces Nonatopic Neonatal Thymic Gamma-Delta T Cells (γδT) to Acquire IL-22/IL-17 Secretion Profile with Skin-Homing Properties and Epigenetic Implications Mediated by miRNA. Int. J. Mol. Sci. 2022, 23, 6872. [Google Scholar] [CrossRef]
- Victor, J.; Fusaro, A.; Duarte, A.; Sato, M. Preconception maternal immunization to dust mite inhibits the type I hypersensitivity response of offspring. J. Allergy Clin. Immunol. 2003, 111, 269–277. [Google Scholar] [CrossRef]
- Sgnotto, F.D.R.; Oliveira, M.G.; Lira, A.A.L.; Bento-de-Souza, L.; Duarte, A.J.D.S.; Victor, J.R. Low doses of IgG from atopic individuals can modulate in vitro IFN-γ production by human intra-thymic TCD4 and TCD8 cells: An IVIg comparative approach. Hum. Vaccines Immunother. 2017, 13, 1563–1572. [Google Scholar] [CrossRef]
- Victor, J.R. Allergen-specific IgG as a mediator of allergy inhibition: Lessons from mother to child. Hum. Vaccines Immunother. 2017, 13, 507–513. [Google Scholar] [CrossRef]
- de Lima Lira, A.A.; de-Oliveira, M.G.; Sabo Inoue, A.H.; Beltrame, G.R.; da Silva Duarte, A.J.; Victor, J.R. Preconceptional allergen immunization can induce offspring IL-17 secreting B cells (B17): Do they share similarities with regulatory B10 cells? Allergol. Immunopathol. 2018, 46, 454–459. [Google Scholar] [CrossRef]
- de Oliveira, M.G.; de Lima Lira, A.A.; da Ressureição Sgnotto, F.; Inoue, A.H.S.; Santos, L.S.; Nakamatsu, B.Y.; Duarte, A.J.D.S.; Leite-de-Moraes, M.; Victor, J.R. Maternal IgG impairs the maturation of offspring intrathymic IL-17-producing γδT cells: Implications for murine and human allergies. Clin. Exp. Allergy 2019, 49, 1000–1012. [Google Scholar] [CrossRef]
- Santos, L.S.; Sgnotto, F.D.R.; Inoue, A.H.S.; Padreca, A.F.; Menghini, R.P.; Duarte, A.J.D.S.; Victor, J.R. IgG from Non-atopic Individuals Induces In Vitro IFN-γ and IL-10 Production by Human Intra-thymic γδT Cells: A Comparison with Atopic IgG and IVIg. Arch. Immunol. Ther. Exp. 2019, 67, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.H.S.; Lira, A.A.L.; de-Oliveira, M.G.; de Sousa, T.R.; Sgnotto, F.D.R.; Duarte, A.J.D.S.; Victor, J.R. The Potential of IgG to Induce Murine and Human Thymic Maturation of IL-10+ B Cells (B10) Revealed in a Pilot Study. Cells 2020, 9, 2239. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues de Sousa, T.; da Ressureição Sgnotto, F.; Oliveira Fagundes, B.; Souza Santos, L.; da Silva Duarte, A.J.; Victor, J.R. IgG from atopic individuals can mediate non-atopic infant thymic and adult peripheral CD8. Eur. Ann. Allergy Clin. Immunol. 2021, 53, 161–167. [Google Scholar] [CrossRef]
- de Sousa, T.R.; Sgnotto, F.D.R.; Fagundes, B.O.; Duarte, A.J.D.S.; Victor, J.R. Non-atopic Neonatal Thymic Innate Lymphoid Cell Subsets (ILC1, ILC2, and ILC3) Identification and the Modulatory Effect of IgG from Dermatophagoides Pteronyssinus (Derp)-Atopic Individuals. Front. Allergy 2021, 28, 650235. [Google Scholar] [CrossRef] [PubMed]
- Cunha, F.R.M.; Fagundes, B.O.; Machado, N.R.; França, C.N.; Victor, J.R. IgG from individuals without atopy arising as mediators of a nonatopic profile in human peripheral CD4+ T cells. Ann. Allergy Asthma Immunol. 2024, 132, 770–772. [Google Scholar] [CrossRef]
- de-Apoena Reche, D.T.; Machado, N.R.; Fagundes, B.O.; Bergamasco, I.S.; de Sousa, T.R.; do Nascimento, L.A.; Cunha, F.R.M.; de-Oliveira, M.G.; da-Ressureição Sgnotto, F.; França, C.N.; et al. IgG from Dermatophagoides pteronyssinus (Der p)-atopic individuals modulates non-atopic thymic B cell phenotype (alfa-4/beta-7) and cytokine production (IFN-γ, IL-9, and IL-10) with direct membrane interaction. Sci. Rep. 2024, 14, 7274. [Google Scholar] [CrossRef]
- Machado, N.R.; Fagundes, B.O.; Fernandes, L.A.; de Oliveira, A.C.P.; Nukui, Y.; Casseb, J.; Cunha, F.R.M.; Nali, L.H.D.S.; Sanabani, S.S.; Victor, J.R. Differential modulation of IL-4, IL-10, IL-17, and IFN-γ production mediated by IgG from Human T-lymphotropic virus-1 (HTLV-1) infected patients on healthy peripheral T (CD4+, CD8+, and γδ) and B cells. Front. Med. 2023, 10, 1239706. [Google Scholar] [CrossRef]
- da Ressureição Sgnotto, F.; Santos, L.S.; de Sousa, T.R.; de Lima, J.F.; da Silva Oliveira, L.M.; Sanabani, S.S.; da Silva Duarte, A.J.; Victor, J.R. IgG From HIV-1-Exposed Seronegative and HIV-1-Infected Subjects Differently Modulates IFN-γ Production by Thymic T and B Cells. JAIDS J. Acquir. Immune Defic. Syndr. 2019, 82, e56–e60. [Google Scholar] [CrossRef]
- Victor, J.R. Influence of maternal immunization with allergens on the thymic maturation of lymphocytes with regulatory potential in children: A broad field for further exploration. J. Immunol. Res. 2014, 2014, 780386. [Google Scholar] [CrossRef]
- Victor, J.R. Do different IgG repertoires play a role in B- and T-cell functional modulation during ontogeny? The “hooks without bait” theory. Immunol. Cell Biol. 2020, 98, 540–548. [Google Scholar] [CrossRef]
- Gomes, C.; Zuniga, M.; Crotty, K.A.; Qian, K.; Tovar, N.C.; Lin, L.H.; Argyropoulos, K.V.; Clancy, R.; Izmirly, P.; Buyon, J.; et al. Autoimmune anti-DNA and anti-phosphatidylserine antibodies predict development of severe COVID-19. Life Sci. Alliance 2021, 4, e202101180. [Google Scholar] [CrossRef]
- Dişli, F.; Yılmaz, Y.; Yıldız, S. The effects of SARS-CoV-2 vaccines on antinuclear autoantibody formation in individuals without prior COVID-19 infection. Hum. Immunol. 2025, 86, 111332. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Estes, S.K.; Ali, R.A.; Gandhi, A.A.; Yalavarthi, S.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.A.; Zuo, M.; et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020, 12, eabd3876. [Google Scholar] [CrossRef] [PubMed]
- Bowles, L.; Platton, S.; Yartey, N.; Dave, M.; Lee, K.; Hart, D.P.; MacDonald, V.; Green, L.; Sivapalaratnam, S.; Pasi, K.J.; et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with COVID-19. N. Engl. J. Med. 2020, 383, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Nazy, I.; Jevtic, S.D.; Moore, J.C.; Huynh, A.; Smith, J.W.; Kelton, J.G.; Arnold, D.M. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J. Thromb. Haemost. 2021, 19, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Sahu, S.K.; Cano, M.; Kuppuswamy, V.; Bajwa, J.; McPhatter, J.; Pine, A.; Meizlish, M.L.; Goshua, G.; Chang, C.H.; et al. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci. Immunol. 2021, 6, eabh2259. [Google Scholar] [CrossRef]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020, 370, eabd4585. [Google Scholar] [CrossRef]
- Bastard, P.; Gervais, A.; Taniguchi, M.; Saare, L.; Särekannu, K.; Le Voyer, T.; Philippot, Q.; Rosain, J.; Bizien, L.; Asano, T.; et al. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J. Exp. Med. 2024, 221, e20231353. [Google Scholar] [CrossRef]
- Le Voyer, T.; Parent, A.V.; Liu, X.; Cederholm, A.; Gervais, A.; Rosain, J.; Nguyen, T.; Perez Lorenzo, M.; Rackaityte, E.; Rinchai, D.; et al. Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency. Nature 2023, 623, 803–813. [Google Scholar] [CrossRef]
- Troya, J.; Bastard, P.; Planas-Serra, L.; Ryan, P.; Ruiz, M.; de Carranza, M.; Torres, J.; Martínez, A.; Abel, L.; Casanova, J.L.; et al. Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. J. Clin. Immunol. 2021, 41, 914–922. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020, 220, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.R.; Fagundes, B.O.; do Nascimento, L.A.; Bergamasco, I.S.; Sgnotto, F.D.R.; Fernandes, I.G.; Fernandes, J.R.; Pinto, T.N.C.; da Borges, J.V.S.; Benard, G.; et al. Deciphering the IgG Idiotype Network Through Proteomic Analysis of Potential Targets in SARS-CoV-2-Induced Immune Responses. Immunology 2025, 175, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, X.; Zhang, X.; Hou, X.; Liang, T.; Wang, D.; Teng, F.; Dai, J.; Duan, H.; Guo, S.; et al. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. ACS Cent. Sci. 2020, 6, 2238–2249. [Google Scholar] [CrossRef] [PubMed]
- Meggyes, M.; Nagy, D.U.; Toth, I.; Feik, T.; Polgar, B.; Deen, I.S.A.; Sipos, D.; Szereday, L.; Peterfalvi, A. Immune Checkpoint Receptor Expression Profiles of MAIT Cells in Moderate and Severe COVID-19. Scand. J. Immunol. 2025, 101, e70008. [Google Scholar] [CrossRef]
- Huang, X.; Kantonen, J.; Nowlan, K.; Nguyen, N.A.; Jokiranta, S.T.; Kuivanen, S.; Heikkilä, N.; Mahzabin, S.; Kantele, A.; Vapalahti, O.; et al. Mucosal-Associated Invariant T Cells are not susceptible in vitro to SARS-CoV-2 infection but accumulate into the lungs of COVID-19 patients. Virus Res. 2024, 341, 199315. [Google Scholar] [CrossRef]
- Kammann, T.; Gorin, J.B.; Parrot, T.; Gao, Y.; Ponzetta, A.; Emgård, J.; Maleki, K.T.; Sekine, T.; Rivera-Ballesteros, O.; Gredmark-Russ, S.; et al. Dynamic MAIT Cell Recovery after Severe COVID-19 Is Transient with Signs of Heterogeneous Functional Anomalies. J. Immunol. 2024, 212, 389–396. [Google Scholar] [CrossRef]
- Amini, A.; Klenerman, P.; Provine, N.M. Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity. Curr. Opin. Virol. 2024, 67, 101412. [Google Scholar] [CrossRef]
- Rakanidis Machado, N.; Fagundes, B.O.; Fernandes, I.G.; Terra De Apoena Reche, D.; Sato, M.N.; Victor, J.R. IgG from patients with mild or severe COVID-19 reduces the frequency and modulates the function of peripheral mucosal-associated invariant T cells in PBMCs from healthy individuals. Biomed. Rep. 2023, 19, 95. [Google Scholar] [CrossRef]
- Zhang, W.; Tao, Y.; Zhu, Y.; Zheng, Q.; Hu, F.; Zhu, W.; Wang, J.; Ning, M. Effect of serum autoantibodies on the COVID-19 patient’s prognosis. Front. Microbiol. 2023, 14, 1259960. [Google Scholar] [CrossRef] [PubMed]
- Borghi, M.O.; Beltagy, A.; Garrafa, E.; Curreli, D.; Cecchini, G.; Bodio, C.; Grossi, C.; Blengino, S.; Tincani, A.; Franceschini, F.; et al. Anti-Phospholipid Antibodies in COVID-19 Are Different from Those Detectable in the Anti-Phospholipid Syndrome. Front. Immunol. 2020, 11, 584241. [Google Scholar] [CrossRef] [PubMed]
- Pascolini, S.; Vannini, A.; Deleonardi, G.; Ciordinik, M.; Sensoli, A.; Carletti, I.; Veronesi, L.; Ricci, C.; Pronesti, A.; Mazzanti, L.; et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful? Clin. Transl. Sci. 2021, 14, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.E.; Feng, A.; Meng, W.; Apostolidis, S.A.; Mack, E.; Artandi, M.; Barman, L.; Bennett, K.; Chakraborty, S.; Chang, I.; et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 2021, 12, 5417. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Y.; Zhang, S.; Qin, X.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19. Arthritis Rheumatol. 2020, 72, 1998–2004. [Google Scholar] [CrossRef]
- van der Wijst, M.G.P.; Vazquez, S.E.; Hartoularos, G.C.; Bastard, P.; Grant, T.; Bueno, R.; Lee, D.S.; Greenland, J.R.; Sun, Y.; Perez, R.; et al. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 2021, 13, eabh2624. [Google Scholar] [CrossRef]
- Bastard, P.; Orlova, E.; Sozaeva, L.; Lévy, R.; James, A.; Schmitt, M.M.; Ochoa, S.; Kareva, M.; Rodina, Y.; Gervais, A.; et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 2021, 218, e20210554. [Google Scholar] [CrossRef]
- Wallukat, G.; Hohberger, B.; Wenzel, K.; Fürst, J.; Schulze-Rothe, S.; Wallukat, A.; Hönicke, A.S.; Müller, J. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021, 4, 100100. [Google Scholar] [CrossRef]
- Rojas, M.; Rodríguez, Y.; Acosta-Ampudia, Y.; Monsalve, D.M.; Zhu, C.; Li, Q.Z.; Ramírez-Santana, C.; Anaya, J.M. Autoimmunity is a hallmark of post-COVID syndrome. J. Transl. Med. 2022, 20, 129. [Google Scholar] [CrossRef]
- Guo, M.; Shang, S.; Li, M.; Cai, G.; Li, P.; Chen, X.; Li, Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. Med. Rev. 2024, 4, 367–383. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deitchman, A.N.; Torres, L.; Iyer, N.S.; Munter, S.E.; Nixon, C.C.; Donatelli, J.; Thanh, C.; Takahashi, S.; Hakim, J.; et al. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 2021, 36, 109518. [Google Scholar] [CrossRef]
- Wohlrab, F.; Eltity, M.; Ufer, F.; Paul, F.; Scheibenbogen, C.; Bellmann-Strobl, J. Autoantibody targeting therapies in post COVID syndrome and myalgic encephalomyelitis/chronic fatigue syndrome. Expert Opin. Biol. Ther. 2025, 25, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Mansoubi, M.; Richards, T.; Ainsworth-Wells, M.; Fleming, R.; Leveridge, P.; Shepherd, C.; Dawes, H. Understanding symptom clusters, diagnosis and healthcare experiences in myalgic encephalomyelitis/chronic fatigue syndrome and long COVID: A cross-sectional survey in the UK. BMJ Open 2025, 15, e094658. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Buonsenso, D.; Wood, J.; Mohandas, S.; Warburton, D. Mechanistic Insights Into Long COVID: Viral Persistence, Immune Dysregulation, and Multi-Organ Dysfunction. Compr. Physiol. 2025, 15, e70019. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Klein, J.; Wood, J.; Jaycox, J.R.; Dhodapkar, R.M.; Lu, P.; Gehlhausen, J.R.; Tabachnikova, A.; Greene, K.; Tabacof, L.; Malik, A.A.; et al. Distinguishing features of long COVID identified through immune profiling. Nature 2023, 623, 139–148. [Google Scholar] [CrossRef]
- Herczeg, V.; Muzslay, E.; Czipó, D.; Terkovics, L.; Takács, J.; Garai, R.; Kovács, F.; Luczay, A.; Körner, A.; Tóth-Heyn, P. Increasing prevalence of thyroid autoimmunity in childhood type 1 diabetes in the pre-COVID but not during the COVID era. Front. Endocrinol. 2024, 15, 1496155. [Google Scholar] [CrossRef]
- Lynch, S.; Ferrando, S.J.; Dornbush, R.; Shahar, S.; Smiley, A.; Klepacz, L. Screening for brain fog: Is the montreal cognitive assessment an effective screening tool for neurocognitive complaints post-COVID-19? Gen. Hosp. Psychiatry 2022, 78, 80–86. [Google Scholar] [CrossRef]
- de Prost, N.; Bastard, P.; Arrestier, R.; Fourati, S.; Mahévas, M.; Burrel, S.; Dorgham, K.; Gorochov, G.; Tandjaoui-Lambiotte, Y.; Azzaoui, I.; et al. Plasma Exchange to Rescue Patients with Autoantibodies Against Type I Interferons and Life-Threatening COVID-19 Pneumonia. J. Clin. Immunol. 2021, 41, 536–544. [Google Scholar] [CrossRef]
- Faqihi, F.; Alharthy, A.; Alodat, M.; Kutsogiannis, D.J.; Brindley, P.G.; Karakitsos, D. Therapeutic plasma exchange in adult critically ill patients with life-threatening SARS-CoV-2 disease: A pilot study. J. Crit. Care 2020, 60, 328–333. [Google Scholar] [CrossRef]
- Fernandez, J.; Gratacos-Ginès, J.; Olivas, P.; Costa, M.; Nieto, S.; Mateo, D.; Sánchez, M.B.; Aguilar, F.; Bassegoda, O.; Ruiz, P.; et al. Plasma Exchange: An Effective Rescue Therapy in Critically Ill Patients with Coronavirus Disease 2019 Infection. Crit. Care. Med. 2020, 48, e1350–e1355. [Google Scholar] [CrossRef]
- Gröning, R.; Walde, J.; Ahlm, C.; Forsell, M.N.E.; Normark, J.; Rasmuson, J. Intravenous immunoglobulin therapy for COVID-19 in immunocompromised patients: A retrospective cohort study. Int. J. Infect. Dis. 2024, 144, 107046. [Google Scholar] [CrossRef]
- Billi, B.; Cholley, P.; Grobost, V.; Clément, M.; Rieu, V.; Le Guenno, G.; Lobbes, H. Intravenous immunoglobulins for the treatment of prolonged COVID-19 in immunocompromised patients: A brief report. Front. Immunol. 2024, 15, 1399180. [Google Scholar] [CrossRef] [PubMed]
- Coloretti, I.; Berlot, G.; Busani, S.; De Rosa, F.G.; Donati, A.; Forfori, F.; Grasselli, G.; Mirabella, L.; Tascini, C.; Viale, P.; et al. Rationale for Polyclonal Intravenous Immunoglobulin Adjunctive Therapy in COVID-19 Patients: Report of a Structured Multidisciplinary Consensus. J. Clin. Med. 2021, 10, 3500. [Google Scholar] [CrossRef] [PubMed]
- Tomisti, L.; Angelotti, F.; Lenzi, M.; Amadori, F.; Sarteschi, G.; Porcu, A.; Capria, A.L.; Bertacca, G.; Lombardi, S.; Bianchini, G.; et al. Efficacy of Convalescent Plasma to Treat Long-Standing COVID-19 in Patients with B-Cell Depletion. Life 2023, 13, 1266. [Google Scholar] [CrossRef] [PubMed]
- Zhang-Sun, J.; Kirou, R.A.; Kirou, K.A. Low Peripheral B-Cell Counts in Patients With Systemic Rheumatic Diseases Due to Treatment with Belimumab and/or Rituximab Are Associated With Low Antibody Responses to Primary COVID-19 Vaccination. HSS J. 2023, 19, 180–186. [Google Scholar] [CrossRef]
- Fabris, M.; De Marchi, G.; Domenis, R.; Caponnetto, F.; Guella, S.; Dal Secco, C.; Cabas, N.; De Vita, S.; Beltrami, A.P.; Curcio, F.; et al. High T-cell response rate after COVID-19 vaccination in belimumab and rituximab recipients. J. Autoimmun. 2022, 129, 102827. [Google Scholar] [CrossRef]
- Sadeghi, S.; Naderi, Z.; Arezoomandi, N.; Saghaei, M.; Tavakoli, F.; Hajizadeh, M. Use of Immune Modulating Agents to Regulate Hyperinflammation in Severe COVID 19: Assessment of Tocilizumab Use in Combination with Steroids. J. Res. Pharm. Pract. 2024, 13, 111–118. [Google Scholar] [CrossRef]
- Derde, L.; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; Beasley, R.; et al. Tocilizumab, sarilumab and anakinra in critically ill patients with COVID-19: A randomised, controlled, open-label, adaptive platform trial. Thorax 2025, 80, 530–539. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Shi, L.; Geng, J.; Zhang, H.; Chen, H.; Zhao, P.; Xiao, Y.; Lu, J.; Li, Z.; et al. Mechanism and Efficacy of Etanercept in Treating Autoimmune-like Manifestations of Coronavirus Disease 2019 in elderly individuals. Immunobiology 2025, 230, 152898. [Google Scholar] [CrossRef]
- Fuchs, E.; Rudnik-Jansen, I.; Dinesen, A.; Selnihhin, D.; Mandrup, O.A.; Thiam, K.; Kjems, J.; Pedersen, F.S.; Howard, K.A. An albumin-angiotensin converting enzyme 2-based SARS-CoV-2 decoy with FcRn-driven half-life extension. Acta Biomater. 2022, 153, 411–418. [Google Scholar] [CrossRef]
- Warang, P.; Singh, G.; Moshir, M.; Binazon, O.; Laghlali, G.; Chang, L.A.; Wouters, H.; Vanhoenacker, P.; Notebaert, M.; Elhemdaoui, N.; et al. Impact of FcRn antagonism on vaccine-induced protective immune responses against viral challenge in COVID-19 and influenza mouse vaccination models. Hum. Vaccines Immunother. 2025, 21, 2470542. [Google Scholar] [CrossRef]
- You, S.H.; Baek, M.S.; Kim, T.W.; Jung, S.Y.; Kim, W.Y. Influence of SARS-CoV-2 variants and corticosteroid use on the effectiveness of baricitinib therapy in critical COVID-19. Crit. Care 2025, 29, 131. [Google Scholar] [CrossRef] [PubMed]
- Bittle, E.; Arnold, S.; Hijano, D.R.; Landman, B.M.; Morton, T.; Hines, M. Safety Data for Baricitinib Use in Children with Severe SARS-CoV-2 Infection. Hosp. Pediatr. 2025, 15, e203–e208. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.; Jagan, N.; Lorthridge-Jackson, S.; Hamer-Maansson, J.E.; Squier, P. Ruxolitinib for Emergency Treatment of COVID-19-Associated Cytokine Storm: Findings from an Expanded Access Study. Clin. Respir. J. 2025, 19, e70050. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, A.; Schandelmaier, S.; Ewald, H.; Speich, B.; Schwenke, J.M.; Schönenberger, C.M.; Schobinger, S.; Agoritsas, T.; Tomashek, K.M.; Nayak, S.; et al. Effects of Janus kinase inhibitors in adults admitted to hospital due to COVID-19: A systematic review and individual participant data meta-analysis of randomised clinical trials. Lancet Respir. Med. 2025, 13, 530–544. [Google Scholar] [CrossRef]
- Nakagami, H.; Hayashi, H.; Shimamura, M.; Rakugi, H.; Morishita, R. Therapeutic vaccine for chronic diseases after the COVID-19 Era. Hypertens. Res. 2021, 44, 1047–1053. [Google Scholar] [CrossRef]
- Harville, T.O.; Arthur, J.M. Anti-idiotype Antibodies in SARS-CoV-2 Infection and Vaccination. N. Engl. J. Med. 2022, 386, 898. [Google Scholar] [CrossRef]
- Arthur, J.M.; Forrest, J.C.; Boehme, K.W.; Kennedy, J.L.; Owens, S.; Herzog, C.; Liu, J.; Harville, T.O. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS ONE 2021, 16, e0257016. [Google Scholar] [CrossRef]
- Wong, A.W.; Shah, A.S.; Johnston, J.C.; Carlsten, C.; Ryerson, C.J. Patient-reported outcome measures after COVID-19: A prospective cohort study. Eur. Respir. J. 2020, 56, 2003276. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Pitcher, M.R.; Bressler, J.; Hessabi, M.; Loveland, K.A.; Christian, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2016, 13, 1095. [Google Scholar] [CrossRef]
- Jarius, S.; Pache, F.; Körtvelyessy, P.; Jelčić, I.; Stettner, M.; Franciotta, D.; Keller, E.; Neumann, B.; Ringelstein, M.; Senel, M.; et al. Cerebrospinal fluid findings in COVID-19: A multicenter study of 150 lumbar punctures in 127 patients. J. Neuroinflammation 2022, 19, 19. [Google Scholar] [CrossRef]
- Seibert, F.S.; Stervbo, U.; Wiemers, L.; Skrzypczyk, S.; Hogeweg, M.; Bertram, S.; Kurek, J.; Anft, M.; Westhoff, T.H.; Babel, N. Severity of neurological Long-COVID symptoms correlates with increased level of autoantibodies targeting vasoregulatory and autonomic nervous system receptors. Autoimmun. Rev. 2023, 22, 103445. [Google Scholar] [CrossRef] [PubMed]
- Lesseur, C.; Jessel, R.H.; Ohrn, S.; Ma, Y.; Li, Q.; Dekio, F.; Brody, R.I.; Wetmur, J.G.; Gigase, F.A.J.; Lieber, M.; et al. Gestational SARS-CoV-2 infection is associated with placental expression of immune and trophoblast genes. Placenta 2022, 126, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.V.; Fonseca, E.B.; Ribeiro, E.M.; Ventura, L.O.; Neto, N.N.; Arena, J.F.; et al. Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatr. 2017, 171, 288–295. [Google Scholar] [CrossRef]
- Barksdale, C.; Kipper, F.C.; Tripathy, S.; Subbian, S.; Serhan, C.N.; Panigrahy, D. COVID-19 and cancer: Start the resolution! Cancer Metastasis Rev. 2022, 41, 1–15. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Okwan-Duodu, D.; Basho, R.; Cui, X. COVID-19 in cancer patients: Risk, clinical features, and management. Cancer Biol. Med. 2020, 17, 519–527. [Google Scholar] [CrossRef]
- Rahimmanesh, I.; Shariati, L.; Dana, N.; Esmaeili, Y.; Vaseghi, G.; Haghjooy Javanmard, S. Cancer Occurrence as the Upcoming Complications of COVID-19. Front. Mol. Biosci. 2021, 8, 813175. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Sansonno, D.; Dammacco, F. Hepatitis C virus, cryoglobulinaemia, and vasculitis: Immune complex relations. Lancet Infect. Dis. 2005, 5, 227–236. [Google Scholar] [CrossRef]
Autoantibody Type | Target/Mechanism of Action | Clinical Manifestations | Prevalence by Disease Severity | Refs. |
---|---|---|---|---|
Antinuclear antibodies (ANA) | Target nuclear components (e.g., DNA, histones); reflect loss of immune tolerance | Vascular injury, hyperinflammation, and prolonged symptoms in moderate to severe cases | More common in severe cases | [43,44,65] |
Anti-phospholipid antibodies (aPL) | Target β2-glycoprotein I and other phospholipid-binding proteins; prothrombotic | Thromboembolic events, subclinical coagulopathy | Moderate and severe cases | [45,46,63,67] |
Anti-platelet antibodies | Bind platelet glycoproteins, promoting activation and aggregation | Thrombocytopenia, microvascular thrombosis | More common in severe cases | [47,48] |
Anti-interferon (type I) antibodies | Neutralize IFN-α and IFN-ω, impairing antiviral defense | Poor viral control, prolonged infection, higher mortality | Up to 10–15% in severe cases | [49,50,51,52] |
Anti-endothelial cell antibodies (AECAs) | Bind endothelial antigens; increase vascular permeability and leukocyte adhesion | Endothelial activation, vascular inflammation, and microvascular injury | Moderate and severe cases | [64,80,81] |
Anti-cytokine antibodies (e.g., IL-6, IL-1, TNF-α) | Interfere with cytokine signaling; may stabilize or neutralize immune complexes | Exacerbation of cytokine storm, systemic inflammation, multi-organ failure | Primarily severe cases | [3,17,53,65,69] |
Anti-GPCR and muscarinic receptor antibodies | Target G-protein-coupled and cholinergic receptors involved in autonomic regulation | Fatigue, dysautonomia, cardiovascular symptoms; overlap with chronic fatigue syndrome and long-COVID | Predominantly long-COVID | [70,73,74,75,76] |
Anti-CD4/CD8 antibodies | Target T-cell surface markers, possibly leading to depletion or dysfunction | Lymphopenia, immune exhaustion, impaired antiviral immunity | Severe COVID-19 | [55] |
Anti-thyroid antibodies (e.g., anti-TPO) | Target thyroid peroxidase; associated with autoimmune thyroiditis | Fatigue, endocrine imbalance; potential contributor to long-COVID symptoms | Long-COVID | [70,80] |
Anti-C1q, C3, and factor H antibodies | Target complement components; lead to overactivation or impaired clearance | Endothelial damage, complement-mediated microvascular thrombosis | Severe COVID-19 | [48,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do-Nascimento, L.A.; Machado, N.R.; Bergamasco, I.S.; Borges, J.V.d.S.; Sgnotto, F.d.R.; Victor, J.R. Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae. COVID 2025, 5, 121. https://doi.org/10.3390/covid5080121
do-Nascimento LA, Machado NR, Bergamasco IS, Borges JVdS, Sgnotto FdR, Victor JR. Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae. COVID. 2025; 5(8):121. https://doi.org/10.3390/covid5080121
Chicago/Turabian Styledo-Nascimento, Lais Alves, Nicolle Rakanidis Machado, Isabella Siuffi Bergamasco, João Vitor da Silva Borges, Fabio da Ressureição Sgnotto, and Jefferson Russo Victor. 2025. "Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae" COVID 5, no. 8: 121. https://doi.org/10.3390/covid5080121
APA Styledo-Nascimento, L. A., Machado, N. R., Bergamasco, I. S., Borges, J. V. d. S., Sgnotto, F. d. R., & Victor, J. R. (2025). Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae. COVID, 5(8), 121. https://doi.org/10.3390/covid5080121