Cardiorenal Syndrome: Molecular Pathways Linking Cardiovascular Dysfunction and Chronic Kidney Disease Progression
Abstract
1. Introduction
2. Materials and Methods
3. Key Molecular Mechanisms in the Interrelation Between Cardiovascular Disease and Chronic Kidney Disease
3.1. Role Renin–Angiotensin–Aldosterone System in CVD and CKD
3.2. Oxidative Stress and Endothelial Dysfunction
3.3. Inflammatory Mechanisms Involved Between CVD and CKD
3.4. Overview of Mitochondrial Dysfunction in CKD and CVD
- 1.
- 2.
- 3.
- 4.
- 1.
- 2.
- Lipotoxicity and Metabolic Stress: The accumulation of toxic lipids and imbalances in cellular energy metabolism create a state of mitochondrial dysfunction that exacerbates oxidative stress, promotes inflammation, and contributes to progressive myocardial damage, negatively impacting cell viability and contractile function [71,72,73,74].
- 3.
- 4.
4. Risk Factors and Genetic Predisposition to Cardiorenal Syndrome
4.1. The Influence of Family History and Genetics on the Development of Cardiorenal Syndrome
4.2. Diabetes Mellitus and Hypertension as Key Risk Factors
4.3. Impact of Aging and Comorbidities on Cardiorenal Syndrome
5. Therapeutic Strategies for the Management of Cardiorenal Syndrome
5.1. The Modulation of the RAAS and Antihypertensive Therapies
5.2. Anti-Inflammatory and Antioxidant Therapies
5.3. Gene Therapies
5.4. Nutritional Approach
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC6 | Adenylyl Cyclase Type 6 |
ACE | Angiotensin-Converting Enzyme |
ACEIs | Angiotensin-Converting Enzyme Inhibitors |
ADPKD | Autosomal Dominant Polycystic Kidney Disease |
AGEs | Advanced Glycation End-Products |
Ang II | Angiotensin II |
Ang(1–7) | Angiotensin-(1–7) |
ARBs | Angiotensin II Receptor Blockers |
AT1R | Angiotensin Type 1 Receptors |
AVV | Adeno-Associated Viruses |
C3G | Cyanidin-3-O-Glucoside |
CKD | Chronic Kidney Disease |
COPD | Chronic Obstructive Pulmonary Disease |
COX-2 | Cyclooxygenase-2 |
CRP | C-Reactive Protein |
CRS | Cardiorenal Syndrome |
CTGF | Connective Tissue Growth Factor |
CVD | Cardiovascular Disease |
DASH | Dietary Approaches to Stop Hypertension |
DHA | Docosahexaenoic Acid |
DM | Diabetes Mellitus |
DOAJ | Directory of Open Access Journals |
eNOS | Endothelial Nitric Oxide Synthase |
EPA | Eicosapentaenoic Acid |
FGF | Fibroblast Growth Factor |
HLA-DR | Human Leukocyte Antigen—DR Isotype |
HTN | Hypertension |
IL-6 | Interleukin-6 |
LD | Linear Dichroism |
MDPI | Multidisciplinary Digital Publishing Institute |
MIS | Malnutrition Inflammation Score |
MNT | Medical Nutrition Therapy |
NF-κB | Nuclear Factor Kappa B |
NO | Nitric Oxide |
OXPHOS | Oxidative Phosphorylation |
PEW | Protein–Energy Wasting |
PUFAs | Polyunsaturated Fatty Acids |
RAAS | Renin–Angiotensin–Aldosterone System |
ROS | Reactive Oxygen Species |
S100A1 | S100 Calcium-Binding Protein A1 |
SERCA2a | Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a |
SGA | Subjective Global Assessment |
SGLT2i | Sodium–Glucose Co-Transporter 2 Inhibitor |
SOD | Superoxide Dismutase |
SPMs | Specialized Pro-Resolving Lipid Mediators |
TCA | Tricarboxylic Acid |
TGF-β | Transforming Growth Factor-Beta |
TLA | Three Letter Acronym |
TNF-α | Tumor Necrosis Factor-Alpha |
VEGF | Vascular Endothelial Growth Factor |
References
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal Syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Rangaswami, J.; Bhalla, V.; Blair, J.E.A.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e840–e878. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Iñiguez, J.S.; Sánchez-Villaseca, S.J.; García-Macías, L. ASíndrome cardiorrenal: Clasificación, fisiopatología, diagnóstico y tratamiento. Una revisión de las publicaciones médicas. Arch. Cardiol. Mex. 2022, 92, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.L. Inflammatory Mediators and the Failing Heart: Past, Present, and the Foreseeable Future. Circ. Res. 2002, 91, 988–998. [Google Scholar] [CrossRef]
- Galvan, D.L.; Green, N.H.; Danesh, F.R. The Hallmarks of Mitochondrial Dysfunction in Chronic Kidney Disease. Kidney Int. 2017, 92, 1051–1057. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Norris, K. Lipid Disorders and Their Relevance to Outcomes in Chronic Kidney Disease. Blood Purif. 2011, 31, 189–196. [Google Scholar] [CrossRef]
- Boor, P.; Sebeková, K.; Ostendorf, T.; Floege, J. Treatment Targets in Renal Fibrosis. Nephrol. Dial. Transplant. 2007, 22, 3391–3407. [Google Scholar] [CrossRef]
- Förstermann, U.; Sessa, W.C. Nitric Oxide Synthases: Regulation and Function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef]
- Stocker, R.; Keaney, J.F., Jr. Role of Oxidative Modifications in Atherosclerosis. Physiol. Rev. 2004, 84, 1381–1478. [Google Scholar] [CrossRef]
- Chu, S.; Mao, X.-D.; Guo, H.; Wang, L.; Li, Z.; Zhang, Y.; Wang, Y.; Wang, H.; Zhang, X.; Peng, W. Indoxyl Sulfate Potentiates Endothelial Dysfunction via Reciprocal Role for Reactive Oxygen Species and RhoA/ROCK Signaling in 5/6 Nephrectomized Rats. Free Radic. Res. 2017, 51, 237–252. [Google Scholar] [CrossRef]
- Yu, M.; Kim, Y.J.; Kang, D.H. Indoxyl Sulfate-Induced Endothelial Dysfunction in Patients with Chronic Kidney Disease via an Induction of Oxidative Stress. Clin. J. Am. Soc. Nephrol. 2011, 6, 30–39. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Lindholm, B. C-Reactive Protein in End-Stage Renal Disease: Are There Reasons to Measure It? Blood Purif. 2005, 23, 72–78. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Srivastava, A.; Cruz-Gregorio, A.; Pedraza-Chaverri, J.; Mulay, S.R.; Scholze, A. Involvement of Inflammasome Components in Kidney Disease. Antioxidants 2022, 11, 246. [Google Scholar] [CrossRef]
- Bakris, G.L.; Williams, M.; Dworkin, L.; Elliott, W.J.; Epstein, M.; Toto, R.; Tuttle, K.; Douglas, J.; Hsueh, W.; Sowers, J. Preserving Renal Function in Adults with Hypertension and Diabetes: A Consensus Approach. Am. J. Kidney Dis. 2000, 36, 646–661. [Google Scholar] [CrossRef] [PubMed]
- Glassock, R.J.; Winearls, C. Ageing and the Glomerular Filtration Rate: Truths and Consequences. Trans. Am. Clin. Climatol. Assoc. 2009, 120, 419–428. [Google Scholar] [PubMed]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; Snauwaert, E.; Verbeke, F.; Glorieux, G. Future of Uremic Toxin Management. Toxins 2024, 16, 463. [Google Scholar] [CrossRef]
- Braunwald, E. Heart Failure. JACC Heart Fail. 2013, 1, 1–20. [Google Scholar] [CrossRef]
- Re, R.N. Mechanisms of Disease: Local Renin–Angiotensin–Aldosterone Systems and the Pathogenesis and Treatment of Cardiovascular Disease. Nat. Clin. Pract. Cardiovasc. Med. 2004, 1, 42–47. [Google Scholar] [CrossRef]
- Mann, J.F.; Schmieder, R.E.; McQueen, M.; Dyal, L.; Schumacher, H.; Pogue, J.; Wang, X.; Maggioni, A.; Budaj, A.; Chaithiraphan, S.; et al. Renal Outcomes with Telmisartan, Ramipril, or Both, in People at High Vascular Risk (the ONTARGET Study): A Multicentre, Randomised, Double-Blind, Controlled Trial. Lancet 2008, 372, 547–553. [Google Scholar] [CrossRef]
- Mochel, J.P. Renin–Angiotensin–Aldosterone System Modulation and Cardiovascular–Kidney–Metabolic Health. Preprints 2024. [Google Scholar] [CrossRef]
- Pacurari, M.; Kafoury, R.M.; Tchounwou, P.B.; Ndebele, K. The Renin–Angiotensin–Aldosterone System in Vascular Inflammation and Remodeling. Int. J. Inflamm. 2014, 2014, 689360. [Google Scholar] [CrossRef]
- Kim, S.; Iwao, H. Molecular and Cellular Mechanisms of Angiotensin II-Mediated Cardiovascular and Renal Diseases. Pharmacol. Rev. 2000, 52, 11–34. [Google Scholar] [CrossRef] [PubMed]
- Verhoeff, K.; Mitchell, J.R. Cardiopulmonary Physiology: Why the Heart and Lungs are Inextricably Linked. Adv. Physiol. Educ. 2017, 41, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Capric, V.; Chandrakumar, H.P.; Celenza-Salvatore, J.; Makaryus, A.N. The Role of the Renin–Angiotensin–Aldosterone System in Cardiovascular Disease: Pathogenetic Insights and Clinical Implications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Powell, J.R. Aldosterone and the Cardiovascular Complications of Chronic Kidney Disease. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2011. Available online: https://theses.gla.ac.uk/2306/ (accessed on 15 March 2025).
- Verma, S.; Pandey, A.; Pandey, A.K.; Butler, J.; Lee, J.S.; Teoh, H.; Mazer, C.D.; Kosiborod, M.; Cosentino, F.; Anker, S.D.; et al. Aldosterone and Aldosterone Synthase Inhibitors in Cardiorenal Disease. Am. J. Physiol. Heart Circ. Physiol. 2023, 326, H670–H688. [Google Scholar] [CrossRef] [PubMed]
- Tyrankiewicz, U.; Kij, A.; Mohaissen, T.; Olkowicz, M.; Smolenski, R.T.; Chlopicki, S. Renin–Angiotensin–Aldosterone System in Heart Failure: Focus on Nonclassical Angiotensin Pathways as Novel Upstream Targets Regulating Aldosterone. In Heart Failure Research; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Kanda, T.; Itoh, H. The ACE2/Ang(1–7)/Mas Receptor Axis in Cardiovascular and Renal Diseases. Nihon Rinsho 2012, 70, 1487–1491. [Google Scholar]
- Abbod, L.S. The Cardiovascular System’s Renin–Angiotensin–Aldosterone System (RAAS). J. Shifa Tameer-e-Millat Univ. 2023, 6, 45–50. [Google Scholar] [CrossRef]
- Lopes, M.E.; Le Corvoisier, P.; Tabet, J.Y.; Su, J.B.; Badoual, T.; Cachin, J.C.; Merlet, P.; Castaigne, A.; Hittinger, L. L’aldostérone et ses Antagonistes dans l’Insuffisance Cardiaque. Presse Med. 2003, 32, 79–87. [Google Scholar]
- Rüster, C.; Wolf, G. Renin–Angiotensin–Aldosterone System and Progression of Renal Disease. J. Am. Soc. Nephrol. 2006, 17, 2985–2991. [Google Scholar] [CrossRef]
- Ali, S.M.; Zhen, L.; Hassan, D.S.; Aslam, N. Correlation between Urinary Angiotensinogen (AGT) and Albuminuria in Chronic Kidney Disease (CKD). Int. J. Innov. Sci. Res. Technol. 2024, 9, 3024–3039. [Google Scholar] [CrossRef]
- Mennuni, S.; Rubattu, S.; Pierelli, G.; Tocci, G.; Fofi, C.; Volpe, M. Hypertension and Kidneys: Unraveling Complex Molecular Mechanisms Underlying Hypertensive Renal Damage. J. Hum. Hypertens. 2014, 28, 74–79. [Google Scholar] [CrossRef]
- Godo, S.; Shimokawa, H. Endothelial Functions. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e108–e114. [Google Scholar] [CrossRef]
- Sen, P.; Hamers, J.; Sittig, T.; Shashikadze, B.; d’Ambrosio, L.; Stöckl, J.B.; Bierschenk, S.; Zhang, H.; d’Alessio, C.; Zandbergen, L.M.; et al. Oxidative Stress Initiates Hemodynamic Change in CKD-Induced Heart Disease. Basic Res. Cardiol. 2024, 119, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Podkowińska, A.; Formanowicz, D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Garg, A.; Tomar, R.; Arora, M.K. Oxidative Stress: Meeting Multiple Targets in Pathogenesis of Vascular Endothelial Dysfunction. Curr. Drug Targets 2022, 23, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef]
- Düsing, P.; Zietzer, A.; Goody, P.R.; Hosen, M.R.; Kurts, C.; Nickenig, G.; Jansen, F. Vascular Pathologies in Chronic Kidney Disease: Pathophysiological Mechanisms and Novel Therapeutic Approaches. J. Mol. Med. 2021, 99, 335–348. [Google Scholar] [CrossRef]
- Ceriello, A.; Motz, E. Is Oxidative Stress the Pathogenic Mechanism Underlying Insulin Resistance, Diabetes and Cardiovascular Disease? The Common Soil Hypothesis Revisited. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 816–823. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and the Pathogenesis of Atherosclerosis. Vasc. Pharmacol. 2024, 154, 107255. [Google Scholar] [CrossRef]
- Cuenca, M.; Hordijk, P.L.; Vervloet, M.G. Most Exposed: The Endothelium in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2020, 35, 1478–1487. [Google Scholar] [CrossRef]
- Pedraza-Chaverri, J.; Sánchez-Lozada, L.G.; Osorio-Alonso, H.; Tapia, E.; Scholze, A. New Pathogenic Concepts and Therapeutic Approaches to Oxidative Stress in Chronic Kidney Disease. Oxidative Med. Cell. Longev. 2016, 2016, 6043601. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Neofytou, I.E.; Kantartzi, K.; Georgianos, P.I.; Liakopoulos, V. Supplementation of Antioxidants in Chronic Kidney Disease: Clinical Necessity or Wishful Thinking? A Bench to Bedside Translational Research. Curr. Med. Chem. 2024, 31. [Google Scholar] [CrossRef]
- Donato, A.J.; Black, A.D.; Jablonski, K.L.; Gano, L.B.; Seals, D.R. Aging Is Associated with Greater Nuclear NF-κB, Reduced IκBα, and Increased Expression of Proinflammatory Cytokines in Vascular Endothelial Cells of Healthy Humans. Aging Cell 2008, 7, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Santilli, F.; Davì, G.; Patrono, C. Homocysteine, Methylenetetrahydrofolate Reductase, Folate Status and Atherothrombosis: A Mechanistic and Clinical Perspective. Vasc. Pharmacol. 2016, 78, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Watral, J.; Formanowicz, D.; Perek, B.; Kostka-Jeziorny, K.; Podkowińska, A.; Tykarski, A.; Luczak, M. Comprehensive Proteomics of Monocytes Indicates Oxidative Imbalance Functionally Related to Inflammatory Response in Chronic Kidney Disease-Related Atherosclerosis. Front. Mol. Biosci. 2024, 11, 1229648. [Google Scholar] [CrossRef] [PubMed]
- Cormican, S.; Negi, N.; Naicker, S.D.; Islam, M.; Fazekas, B.; Power, R.; Griffin, T.P.; Dennedy, M.C.; MacNeill, B.D.; Malone, A.F.; et al. Chronic Kidney Disease Is Characterized by Expansion of a Distinct Proinflammatory Intermediate Monocyte Subtype and by Increased Monocyte Adhesion to Endothelial Cells. J. Am. Soc. Nephrol. 2023, 34, 793–808. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, H.; Zhang, Z.; Tan, F.; Qu, Y.; Lei, X.; Xu, Q.; Wang, J.; Shu, L.; Xiao, H.; et al. New insight into oxidative stress and inflammatory responses to kidney stones: Potential therapeutic strategies with natural active ingredients. Biomed. Pharmacother. 2024, 179, 117333. [Google Scholar] [CrossRef]
- Silverstein, D.M. Inflammation in Chronic Kidney Disease: Role in the Progression of Renal and Cardiovascular Disease. Pediatr. Nephrol. 2009, 24, 1445–1452. [Google Scholar] [CrossRef]
- Sarakpi, T.; Mesic, A.; Speer, T. Leukocyte–Endothelial Interaction in CKD. Clin. Kidney J. 2023, 16, 1845–1860. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, X.; Shao, Y.; Zhou, J.; Huang, Y. The Molecular Mechanism and Therapeutic Strategy of Cardiorenal Syndrome Type 3. Rev. Cardiovasc. Med. 2023, 24, 52. [Google Scholar] [CrossRef]
- Turner, C.M.; Arulkumaran, N.; Singer, M.; Unwin, R.J.; Tam, F.W. Is the inflammasome a potential therapeutic target in renal disease? BMC Nephrol. 2014, 15, 21. [Google Scholar] [CrossRef]
- Sharma, A.; Tate, M.; Mathew, G.; Vince, J.E.; Ritchie, R.H.; de Haan, J.B. Oxidative Stress and NLRP3-Inflammasome Activity as Significant Drivers of Diabetic Cardiovascular Complications: Therapeutic Implications. Front. Physiol. 2018, 9, 114. [Google Scholar] [CrossRef]
- Østergaard, J.A.; Jha, J.C.; Sharma, A.; Dai, A.; Choi, J.S.Y.; de Haan, J.B.; Cooper, M.E.; Jandeleit-Dahm, K. Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clin. Sci. 2022, 136, 167–180. [Google Scholar] [CrossRef]
- Gonzalez-Lafuente, L.; Mercado-Garcia, E.; Vazquez-Sanchez, S.; Gonzalez-Moreno, D.; Poveda, J.; Liano, F.; Pelegrin, P.; Fernandez-Velasco, M.; Ruiz-Hurtado, G. Role of NLRP3 inflammasome in cardiac damage in the setting of an acute cardiorenal syndrome. Cardiovasc. Res. 2024, 120 (Suppl. S1), cvae088.038. [Google Scholar] [CrossRef]
- Amador-Martínez, I.; Aparicio-Trejo, O.E.; Bernabe-Yepes, B.; Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Sánchez-Lozada, L.G.; Pedraza-Chaverri, J.; Tapia, E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int. J. Mol. Sci. 2023, 24, 15875. [Google Scholar] [CrossRef] [PubMed]
- Rayego-Mateos, S.; Marquez-Exposito, L.; Basantes, P.; Tejedor-Santamaria, L.; Sanz, A.B.; Nguyen, T.Q.; Goldschmeding, R.; Ortiz, A.; Ruiz-Ortega, M. CCN2 Activates RIPK3, NLRP3 Inflammasome, and NRF2/Oxidative Pathways Linked to Kidney Inflammation. Antioxidants 2023, 12, 1541. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, M.; Zhang, Y.; Guo, H.; Ding, W.; Sun, T. Nlrp3 Deficiency Alleviates Angiotensin II-Induced Cardiomyopathy by Inhibiting Mitochondrial Dysfunction. Oxidative Med. Cell. Longev. 2021, 2021, 6679100. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhu, L.; Zhu, Q.; Zhang, J. The Role of Mitochondrial Dysfunction in Kidney Injury and Disease. Autoimmun. Rev. 2024, 23, 103576. [Google Scholar] [CrossRef]
- Blagov, A.V.; Orekhova, V.A.; Zhuravlev, A.D.; Yakovlev, A.A.; Sukhorukov, V.N.; Orekhov, A.N. Development of Mitochondrial Dysfunction and Oxidative Stress in Chronic Kidney Disease. Eur. J. Inflamm. 2024, 22, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Zhang, Y.; Zhou, J. Focus on Mitochondrial Respiratory Chain: Potential Therapeutic Target for Chronic Renal Failure. Int. J. Mol. Sci. 2024, 25, 949. [Google Scholar] [CrossRef]
- Zhang, L.; Miao, M.; Xu, X.; Bai, M.; Wu, M.; Zhang, A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. Kidney Dis. 2023, 9, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.J.; Shirakawa, H. Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Che, R.; Wang, P.; Zhang, A. Mitochondrial Dysfunction in the Pathophysiology of Renal Diseases. Am. J. Physiol. Ren. Physiol. 2024, 326, F768–F779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Agborbesong, E.; Li, X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int. J. Mol. Sci. 2021, 22, 11253. [Google Scholar] [CrossRef]
- Bhatia, D.; Capili, A.; Choi, M.E. Mitochondrial Dysfunction in Kidney Injury, Inflammation, and Disease: Potential Therapeutic Approaches. Kidney Res. Clin. Pract. 2020, 39, 244–258. [Google Scholar] [CrossRef]
- Chalupsky, M.; Goodson, D.A.; Gamboa, J.L.; Roshanravan, B. New Insights into Muscle Function in Chronic Kidney Disease and Metabolic Acidosis. Curr. Opin. Nephrol. Hypertens. 2021, 30, 369–376. [Google Scholar] [CrossRef]
- Oller, J.; Sanz, A.B.; Ramos, A.M.; Ortiz, A.; Ruiz-Ortega, M.; Rayego-Mateos, S. Mitochondrial Dysfunction in the Cardio–Renal Axis. Int. J. Mol. Sci. 2023, 24, 8209. [Google Scholar]
- Ren, J.; Pulakat, L.; Whaley-Connell, A.; Sowers, J.R. Mitochondrial Biogenesis in the Metabolic Syndrome and Cardiovascular Disease. J. Mol. Med. 2010, 88, 993–1001. [Google Scholar] [CrossRef]
- Cojocaru, K.; Luchian, I.; Goriuc, A.; Antoci, L.; Ciobanu, C.; Popescu, R.; Vlad, C.; Blaj, M.; Foia, L. Mitochondrial Dysfunction, Oxidative Stress, and Therapeutic Strategies in Diabetes, Obesity, and Cardiovascular Disease. Antioxidants 2023, 12, 658. [Google Scholar] [CrossRef]
- Yousaf, Z.; Mustafa, M.; Mannan, A.; Rao, M.; Javaid, R.B.; Siddiqi, A.H. Role of Mitochondrial Dysfunction in Related Diseases—A Review. J. Health Rehabil. Res. 2024, 4, 1328–1333. [Google Scholar] [CrossRef]
- Ge, M.; Fontanesi, F.; Merscher, S.; Fornoni, A. The Vicious Cycle of Renal Lipotoxicity and Mitochondrial Dysfunction. Front. Physiol. 2020, 11, 732. [Google Scholar] [CrossRef]
- Lumpuy-Castillo, J.; Amador-Martínez, I.; Díaz-Rojas, M.; Lorenzo, O.; Pedraza-Chaverri, J.; Sánchez-Lozada, L.G.; Aparicio-Trejo, O.E. Role of Mitochondria in Reno-Cardiac Diseases: A Study of Bioenergetics, Biogenesis, and GSH Signaling in Disease Transition. Redox Biol. 2024, 76, 103340. [Google Scholar] [CrossRef]
- Fan, X.; Yang, M.; Lang, Y.; Lu, S.; Kong, Z.; Gao, Y.; Shen, N.; Zhang, M.; Lv, Z. Mitochondrial Metabolic Reprogramming in Diabetic Kidney Disease. Cell Death Dis. 2024, 15, 221. [Google Scholar] [CrossRef]
- Ars, E.; Bernis, C.; Fraga, G.; Furlano, M.; Martínez, V.; Martins, J.; Torra, R. Consensus Document on Autosomal Dominant Polycystic Kidney Disease from the Spanish Working Group on Inherited Kidney Diseases. Review 2020. Nefrología (Engl. Ed.) 2022, 42, 367–389. [Google Scholar]
- Freitas, C.; Lima, B.; Melo, N.; Mota, P.; Novais-Bastos, H.; Alves, H.; Sokhatska, O.; Delgado, L.; Morais, A. Distinct TNF-alpha and HLA polymorphisms associate with fibrotic and non-fibrotic subtypes of hypersensitivity pneumonitis. Pulmonology 2023, 29 (Suppl. S4), S63–S69. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Liang, Y.; Yan, X.; Zhang, L.; Li, Z.; Yin, A.; Wang, X.; Tian, P. Association between the ACYP2 Polymorphisms and IgAN Risk in the Chinese Han Population. Kidney Blood Press. Res. 2019, 44, 810–822. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Amin, A.; Pantalone, K.M.; Ronco, C. Cardiorenal Nexus: A Review With Focus on Combined Chronic Heart and Kidney Failure, and Insights From Recent Clinical Trials. J. Am. Heart Assoc. 2022, 11, e024139. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Sinha, A.D. Cardiovascular Protection with Antihypertensive Drugs in Dialysis Patients: Systematic Review and Meta-Analysis. Hypertension 2009, 53, 860–866. [Google Scholar] [CrossRef]
- Agarwal, R. Implications of Blood Pressure Measurement Technique for Implementation of Systolic Blood Pressure Intervention Trial (SPRINT). J. Am. Heart Assoc. 2017, 6, e004536. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Challa, H.J.; Ameer, M.A.; Uppaluri, K.R. DASH Diet to Stop Hypertension. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Lamon-Fava, S. Associations between Omega-3 Fatty Acid-Derived Lipid Mediators and Markers of Inflammation in Older Subjects with Low-Grade Chronic Inflammation. Prostaglandins Other Lipid Mediat. 2025, 176, 106948. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, Z.; Wang, P.; Zhang, B.; Chen, C.; Zhang, C.; Su, Y. EPA+DHA, but Not ALA, Improved Lipids and Inflammation Status in Hypercholesterolemic Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Mol. Nutr. Food Res. 2020, 64, e2070012. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.R.; Pieri, B.L.D.S.; Comim, V.H.; Marques, S.O.; Luciano, T.F.; Rodrigues, M.S.; De Souza, C.T. Fish Oil Reduces Subclinical Inflammation, Insulin Resistance, and Atherogenic Factors in Overweight/Obese Type 2 Diabetes Mellitus Patients: A Pre–Post Pilot Study. J. Diabetes Complicat. 2020, 34, 107553. [Google Scholar] [CrossRef] [PubMed]
- Lamantia, V.; Bissonnette, S.; Beaudry, M.; Cyr, Y.; Rosiers, C.D.; Baass, A.; Faraj, M. EPA and DHA Inhibit LDL-Induced Upregulation of Human Adipose Tissue NLRP3 Inflammasome/IL-1β Pathway and Its Association with Diabetes Risk Factors. Sci. Rep. 2024, 14, 27146. [Google Scholar] [CrossRef]
- Wu, M.Z.; Teng, T.K.; Tay, W.T.; Ren, Q.W.; Tromp, J.; Ouwerkerk, W.; Chandramouli, C.; Huang, J.Y.; Chan, Y.H.; Teramoto, K.; et al. Chronic kidney disease begets heart failure and vice versa: Temporal associations between heart failure events in relation to incident chronic kidney disease in type 2 diabetes. Diabetes Obes. Metab. 2023, 25, 707–715. [Google Scholar] [CrossRef]
- Chan, J.; Eide, I.A.; Tannæs, T.M.; Waldum-Grevbo, B.; Jenssen, T.; Svensson, M. Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Med. 2021, 3, 1041–1049. [Google Scholar] [CrossRef]
- Tiscornia, C.; Tapia, V.; Águila, D.; Lorca-Ponce, E.; Aicardi, V.; Vásquez, F. Maqui and Chronic Kidney Disease: A Narrative Review on the Potential Nephroprotective Role of Anthocyanins. Nutrients 2025, 17, 1058. [Google Scholar] [CrossRef]
- Davinelli, S.; Bertoglio, J.C.; Zarrelli, A.; Pina, R.; Scapagnini, G. A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin–Maqui Berry Extract (Delphinol®) on Oxidative Stress Biomarkers. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 28–33. [Google Scholar] [CrossRef]
- Alvarado, J.L.; Leschot, A.; Olivera-Nappa, Á.; Salgado, A.M.; Rioseco, H.; Lyon, C.; Vigil, P. Delphinidin-Rich Maqui Berry Extract (Delphinol®) Lowers Fasting and Postprandial Glycemia and Insulinemia in Prediabetic Individuals During Oral Glucose Tolerance Tests. Biomed. Res. Int. 2016, 2016, 9070537. [Google Scholar] [CrossRef]
- D’andurain, J.; López, V.; Arazo-Rusindo, M.; Tiscornia, C.; Aicardi, V.; Simón, L.; Arazo-Rusindo, M.S. Effect of Curcumin Consumption on Inflammation and Oxidative Stress in Patients on Hemodialysis: A Literature Review. Nutrients 2023, 15, 2239. [Google Scholar] [CrossRef]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef] [PubMed]
- Samadian, F.; Dalili, N.; Poor-Reza Gholi, F.; Fattah, M.; Malih, N.; Nafar, M.; Firoozan, A.; Ahmadpoor, P.; Samavat, S.; Ziaie, S. Evaluation of Curcumin’s Effect on Inflammation in Hemodialysis Patients. Clin. Nutr. ESPEN 2017, 22, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Rittiner, J.; Cumaran, M.; Malhotra, S.; Kantor, B. Therapeutic Modulation of Gene Expression in the Disease State: Treatment Strategies and Approaches for the Development of Next-Generation of the Epigenetic Drugs. Front. Bioeng. Biotechnol. 2022, 10, 1035543. [Google Scholar] [CrossRef] [PubMed]
- Tavakolidakhrabadi, N.; Ding, W.Y.; Saleem, M.A.; Welsh, G.I.; May, C. Gene Therapy and Kidney Diseases. Mol. Ther. Methods Clin. Dev. 2024, 32, 101333. [Google Scholar] [CrossRef]
- Huang, C.-K.; Bär, C.; Thum, T. miR-21, Mediator, and Potential Therapeutic Target in the Cardiorenal Syndrome. Front. Pharmacol. 2020, 11, 726. [Google Scholar] [CrossRef]
- Hajjar, R.J. Potential of gene therapy as a treatment for heart failure. J. Clin. Investig. 2013, 123, 53–61. [Google Scholar] [CrossRef]
- Rincon, M.Y.; VandenDriessche, T.; Chuah, M.K. Gene therapy for cardiovascular disease: Advances in vector development, targeting, and delivery for clinical translation. Cardiovasc. Res. 2015, 108, 4–20. [Google Scholar] [CrossRef]
- Laham-Karam, N.; Laakkonen, J.P.; Ylä-Herttuala, S.; Aroor, A.; Jia, G.; Whaley-Connell, A. Cell-Specific Targeting of the Endothelium in the Cardiorenal Syndrome. Cardiorenal Med. 2024, 14, 129–135. [Google Scholar] [CrossRef]
- Buliga-Finis, O.N.; Ouatu, A.; Badescu, M.C.; Dima, N.; Tanase, D.M.; Richter, P.; Rezus, C. Beyond the Cardiorenal Syndrome: Pathophysiological Approaches and Biomarkers for Renal and Cardiac Crosstalk. Diagnostics 2022, 12, 773. [Google Scholar] [CrossRef]
- Gallo, G.; Lanza, O.; Savoia, C. New Insight in Cardiorenal Syndrome: From Biomarkers to Therapy. Int. J. Mol. Sci. 2023, 24, 5089. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, D.; Rusu, C.; Potra, A.; Tirinescu, D.; Ticala, M.; Kacso, I. Food to Prevent Vascular Calcification in Chronic Kidney Disease. Nutrients 2024, 16, 617. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Uribarri, J. Industrial use of phosphate food additives: A mechanism linking ultra-processed food consumption with cardio-renal disease. Nutrients 2023, 15, 3510. [Google Scholar] [CrossRef] [PubMed]
- Panta, R.; Regmi, S. Role of Magnesium, Effects of Hypomagnesemia, and Benefits of Magnesium Supplements in Cardiovascular and Chronic Kidney Diseases. Cureus 2024, 16, e64404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. S1), S1–S107. [Google Scholar] [CrossRef]
- Xiong, J.; He, T.; Wang, M.; Nie, L.; Zhang, Y.; Wang, Y.; Huang, Y.; Feng, B.; Zhang, J.; Zhao, J. Serum Magnesium, Mortality, and Cardiovascular Disease in Chronic Kidney Disease and End-Stage Renal Disease Patients: A Systematic Review and Meta-Analysis. J. Nephrol. 2019, 32, 791–802. [Google Scholar] [CrossRef]
- Picard, K.; Barreto Silva, M.I.; Mager, D.; Richard, C. Dietary Potassium Intake and Risk of Chronic Kidney Disease Progression in Predialysis Patients with Chronic Kidney Disease: A Systematic Review. Adv. Nutr. 2020, 11, 1002–1015. [Google Scholar] [CrossRef]
- de Boer, I.H.; Sachs, M.C.; Cleary, P.A.; Hoofnagle, A.N.; Lachin, J.M.; Molitch, M.E.; Steffes, M.W.; Sun, W.; Zinman, B.; Brunzell, J.D. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Circulating Vitamin D Metabolites and Kidney Disease in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2012, 97, 4780–4788. [Google Scholar] [CrossRef]
- Raffaitin, C.; Lasseur, C.; Chauveau, P.; Barthe, N.; Gin, H.; Combe, C.; Rigalleau, V. Nutritional Status in Patients with Diabetes and Chronic Kidney Disease: A Prospective Study. Am. J. Clin. Nutr. 2007, 85, 96–101. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Viney, A.; Picard, E.; Barnel, C.; Fouque, D.; Koppe, L. Dietary Intake and Nutritional Status in Diabetic and Nondiabetic Patients with Chronic Kidney Disease Stage 4–5 (NutriDiab Study). J. Ren. Nutr. 2024, 34, 19–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasquez, F.; Tiscornia, C.; Lorca-Ponce, E.; Aicardi, V.; Vasquez, S. Cardiorenal Syndrome: Molecular Pathways Linking Cardiovascular Dysfunction and Chronic Kidney Disease Progression. Int. J. Mol. Sci. 2025, 26, 7440. https://doi.org/10.3390/ijms26157440
Vasquez F, Tiscornia C, Lorca-Ponce E, Aicardi V, Vasquez S. Cardiorenal Syndrome: Molecular Pathways Linking Cardiovascular Dysfunction and Chronic Kidney Disease Progression. International Journal of Molecular Sciences. 2025; 26(15):7440. https://doi.org/10.3390/ijms26157440
Chicago/Turabian StyleVasquez, Fabian, Caterina Tiscornia, Enrique Lorca-Ponce, Valeria Aicardi, and Sofia Vasquez. 2025. "Cardiorenal Syndrome: Molecular Pathways Linking Cardiovascular Dysfunction and Chronic Kidney Disease Progression" International Journal of Molecular Sciences 26, no. 15: 7440. https://doi.org/10.3390/ijms26157440
APA StyleVasquez, F., Tiscornia, C., Lorca-Ponce, E., Aicardi, V., & Vasquez, S. (2025). Cardiorenal Syndrome: Molecular Pathways Linking Cardiovascular Dysfunction and Chronic Kidney Disease Progression. International Journal of Molecular Sciences, 26(15), 7440. https://doi.org/10.3390/ijms26157440