Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = variational modal decomposition (VMD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 20436 KiB  
Article
An Adaptive Decomposition Method with Low Parameter Sensitivity for Non-Stationary Noise Suppression in Magnetotelluric Data
by Zhenyu Guo, Cheng Huang, Wen Jiang, Tao Hong and Jiangtao Han
Minerals 2025, 15(8), 808; https://doi.org/10.3390/min15080808 - 30 Jul 2025
Viewed by 136
Abstract
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In [...] Read more.
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In this study, we propose a novel, adaptive, and less parameter-dependent signal decomposition method for MT signal denoising, based on time–frequency domain analysis and the application of modal decomposition. The method uses Variational Mode Decomposition (VMD) to adaptively decompose the MT signal into several intrinsic mode functions (IMFs), obtaining the instantaneous time–frequency energy distribution of the signal. Subsequently, robust statistical methods are introduced to extract the independent components of each IMF, thereby identifying signal and noise components within the decomposition results. Synthetic data experiments show that our method accurately separates high-amplitude non-stationary interference. Furthermore, it maintains stable decomposition results under various parameter settings, exhibiting strong robustness and low parameter dependency. When applied to field MT data, the method effectively filters out non-stationary noise, leading to significant improvements in both apparent resistivity and phase curves, indicating its practical value in mineral exploration. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

30 pages, 8885 KiB  
Article
Seasonally Adaptive VMD-SSA-LSTM: A Hybrid Deep Learning Framework for High-Accuracy District Heating Load Forecasting
by Yu Zhang, Keyong Hu, Lei Lu, Qingqing Yang and Min Fang
Mathematics 2025, 13(15), 2406; https://doi.org/10.3390/math13152406 - 26 Jul 2025
Viewed by 233
Abstract
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through [...] Read more.
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through synergistic integration of the Sparrow Search Algorithm (SSA), Variational Mode Decomposition (VMD), and Long Short-Term Memory (LSTM) network. Specifically, VMD is first employed to decompose the historical heating load data from Arizona State University’s Tempe campus into multiple stationary modal components, aiming to reduce data complexity and suppress noise interference. Subsequently, the SSA is utilized to optimize the hyperparameters of the LSTM network, with targeted adjustments made according to the seasonal characteristics of the heating load, enabling the identification of optimal configurations for each season. Comprehensive experimental evaluations demonstrate that the proposed model achieves the lowest values across three key performance metrics—Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE)—under various seasonal conditions. Notably, the MAPE values are reduced to 1.3824%, 0.9549%, 6.4018%, and 1.3272%, with average error reductions of 9.4873%, 3.8451%, 6.6545%, and 6.5712% compared to alternative models. These results strongly confirm the superior predictive accuracy and fitting capability of the proposed model, highlighting its potential to support energy allocation optimization in district heating systems. Full article
Show Figures

Figure 1

24 pages, 4430 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Viewed by 321
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
Show Figures

Figure 1

43 pages, 6462 KiB  
Article
An Integrated Mechanical Fault Diagnosis Framework Using Improved GOOSE-VMD, RobustICA, and CYCBD
by Jingzong Yang and Xuefeng Li
Machines 2025, 13(7), 631; https://doi.org/10.3390/machines13070631 - 21 Jul 2025
Viewed by 267
Abstract
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak [...] Read more.
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak feature enhancement, this paper proposes an innovative diagnostic framework integrating Improved Goose optimized Variational Mode Decomposition (IGOOSE-VMD), RobustICA, and CYCBD. First, to mitigate modal aliasing issues caused by empirical parameter dependency in VMD, we fuse a refraction-guided reverse learning mechanism with a dynamic mutation strategy to develop the IGOOSE. By employing an energy-feature-driven fitness function, this approach achieves synergistic optimization of the mode number and penalty factor. Subsequently, a multi-channel observation model is constructed based on optimal component selection. Noise interference is suppressed through the robust separation capabilities of RobustICA, while CYCBD introduces cyclostationarity-based prior constraints to formulate a blind deconvolution operator with periodic impact enhancement properties. This significantly improves the temporal sparsity of fault-induced impact components. Experimental results demonstrate that, compared to traditional time–frequency analysis techniques (e.g., EMD, EEMD, LMD, ITD) and deconvolution methods (including MCKD, MED, OMEDA), the proposed approach exhibits superior noise immunity and higher fault feature extraction accuracy under high background noise conditions. Full article
Show Figures

Figure 1

28 pages, 7608 KiB  
Article
A Forecasting Method for COVID-19 Epidemic Trends Using VMD and TSMixer-BiKSA Network
by Yuhong Li, Guihong Bi, Taonan Tong and Shirui Li
Computers 2025, 14(7), 290; https://doi.org/10.3390/computers14070290 - 18 Jul 2025
Viewed by 198
Abstract
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely [...] Read more.
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely on one-dimensional case data struggle to capture the multi-dimensional features of the data and are limited in handling nonlinear and non-stationary characteristics. Their prediction accuracy and generalization capabilities remain insufficient, and most existing studies focus on single-step forecasting, with limited attention to multi-step prediction. To address these challenges, this paper proposes a multi-module fusion prediction model—TSMixer-BiKSA network—that integrates multi-feature inputs, Variational Mode Decomposition (VMD), and a dual-branch parallel architecture for 1- to 3-day-ahead multi-step forecasting of new COVID-19 cases. First, variables highly correlated with the target sequence are selected through correlation analysis to construct a feature matrix, which serves as one input branch. Simultaneously, the case sequence is decomposed using VMD to extract low-complexity, highly regular multi-scale modal components as the other input branch, enhancing the model’s ability to perceive and represent multi-source information. The two input branches are then processed in parallel by the TSMixer-BiKSA network model. Specifically, the TSMixer module employs a multilayer perceptron (MLP) structure to alternately model along the temporal and feature dimensions, capturing cross-time and cross-variable dependencies. The BiGRU module extracts bidirectional dynamic features of the sequence, improving long-term dependency modeling. The KAN module introduces hierarchical nonlinear transformations to enhance high-order feature interactions. Finally, the SA attention mechanism enables the adaptive weighted fusion of multi-source information, reinforcing inter-module synergy and enhancing the overall feature extraction and representation capability. Experimental results based on COVID-19 case data from Italy and the United States demonstrate that the proposed model significantly outperforms existing mainstream methods across various error metrics, achieving higher prediction accuracy and robustness. Full article
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 242
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

28 pages, 3966 KiB  
Article
Photovoltaic Power Forecasting Based on Variational Mode Decomposition and Long Short-Term Memory Neural Network
by Zhijian Hou, Yunhui Zhang, Xuemei Cheng and Xiaojiang Ye
Energies 2025, 18(13), 3572; https://doi.org/10.3390/en18133572 - 7 Jul 2025
Viewed by 331
Abstract
The accurate forecasting of photovoltaic (PV) power is vital for grid stability. This paper presents a hybrid forecasting model that combines Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM). The model uses VMD to decompose the PV power into modal components and [...] Read more.
The accurate forecasting of photovoltaic (PV) power is vital for grid stability. This paper presents a hybrid forecasting model that combines Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM). The model uses VMD to decompose the PV power into modal components and residuals. These components are combined with meteorological variables and their first-order differences, and feature extraction techniques are used to generate multiple sets of feature vectors. These vectors are utilized as inputs for LSTM sub-models, which predict the modal components and residuals. Finally, the aggregation of prediction results is used to achieve the PV power prediction. Validated on Australia’s 1.8 MW Yulara PV plant, the model surpasses 13 benchmark models, achieving an MAE of 63.480 kW, RMSE of 81.520 kW, and R2 of 92.3%. Additionally, the results of a paired t-test showed that the mean differences in the MAE and RMSE were negative, and the 95% confidence intervals for the difference did not include zero, indicating statistical significance. To further evaluate the model’s robustness, white noise with varying levels of signal-to-noise ratios was introduced to the photovoltaic power and global radiation signals. The results showed that the model exhibited higher prediction accuracy and better noise tolerance compared to other models. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

33 pages, 2533 KiB  
Article
VBTCKN: A Time Series Forecasting Model Based on Variational Mode Decomposition with Two-Channel Cross-Attention Network
by Zhiguo Xiao, Changgen Li, Huihui Hao, Siwen Liang, Qi Shen and Dongni Li
Symmetry 2025, 17(7), 1063; https://doi.org/10.3390/sym17071063 - 4 Jul 2025
Viewed by 434
Abstract
Time series forecasting serves a critical function in domains such as energy, meteorology, and power systems by leveraging historical data to predict future trends. However, existing methods often prioritize long-term dependencies while neglecting the integration of local features and global patterns, resulting in [...] Read more.
Time series forecasting serves a critical function in domains such as energy, meteorology, and power systems by leveraging historical data to predict future trends. However, existing methods often prioritize long-term dependencies while neglecting the integration of local features and global patterns, resulting in limited accuracy for short-term predictions of non-stationary multivariate sequences. To address these challenges, this paper proposes a time series forecasting model named VBTCKN based on variational mode decomposition and a dual-channel cross-attention network. First, the model employs variational mode decomposition (VMD) to decompose the time series into multiple frequency-complementary modal components, thereby reducing sequence volatility. Subsequently, the BiLSTM channel extracts temporal dependencies between sequences, while the transformer channel captures dynamic correlations between local features and global patterns. The cross-attention mechanism dynamically fuses features from both channels, enhancing complementary information integration. Finally, prediction results are generated through Kolmogorov–Arnold networks (KAN). Experiments conducted on four public datasets demonstrated that VBTCKN outperformed other state-of-the-art methods in both accuracy and robustness. Compared with BiLSTM, VBTCKN reduced RMSE by 63.32%, 68.31%, 57.98%, and 90.76%, respectively. Full article
Show Figures

Graphical abstract

18 pages, 1483 KiB  
Article
Research on Space-Based Gravitational Wave Signal Denoising Based on Improved VMD with Parrot Algorithm
by Jingyi Xi, Xiaolong Li, Yunqing Liu, Dongpo Xu, Qiuping Shen and Hanyang Liu
Sensors 2025, 25(13), 4065; https://doi.org/10.3390/s25134065 - 30 Jun 2025
Viewed by 281
Abstract
Gravitational wave (GW) signals are often affected by noise interference in the detection system; in order to attenuate the impact of detector noise and enhance the waveform characteristics of the signal, this paper proposes a space-based GW signal denoising method that combines the [...] Read more.
Gravitational wave (GW) signals are often affected by noise interference in the detection system; in order to attenuate the impact of detector noise and enhance the waveform characteristics of the signal, this paper proposes a space-based GW signal denoising method that combines the Parrot algorithm (PO) with the improved wavelet threshold (IWT) to optimize the variational mode decomposition (VMD). To address the challenge of selecting the number of modes K and the penalty factor α in VMD, PO is introduced to select the optimal parameters, achieving a good balance between global search and local optimization. The components after modal decomposition are divided into preserved modal components and noise modal components, and the IWT is introduced to further denoise the noise modal components; finally, the signal is reconstructed to achieve the purpose of denoising the GW signal. The algorithm is verified by the GW simulation signal and the measured signal. The experimental results show that the algorithm is superior to other algorithms in the noise separation of GW signals, significantly improves the SNR, improves the detection accuracy of GW, and provides a new technical means for the extraction and analysis of GW signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

35 pages, 17292 KiB  
Article
VMD-SE-CEEMDAN-BO-CNNGRU: A Dual-Stage Mode Decomposition Hybrid Deep Learning Model for Microseismic Time Series Prediction
by Mingyi Cui, Enke Hou and Pengfei Hou
Mathematics 2025, 13(13), 2121; https://doi.org/10.3390/math13132121 - 28 Jun 2025
Cited by 1 | Viewed by 499
Abstract
Coal mine disaster safety monitoring often employs microseismic technology for its high sensitivity and real-time capability. However, nonlinear, non-stationary, and multi-scale signals limit traditional time series models (e.g., ARMA, ARIMA). This paper proposes a hybrid deep learning model—VMD-SE-CEEMDAN-BO-CNNGRU—integrating variational mode decomposition, sample entropy, [...] Read more.
Coal mine disaster safety monitoring often employs microseismic technology for its high sensitivity and real-time capability. However, nonlinear, non-stationary, and multi-scale signals limit traditional time series models (e.g., ARMA, ARIMA). This paper proposes a hybrid deep learning model—VMD-SE-CEEMDAN-BO-CNNGRU—integrating variational mode decomposition, sample entropy, CEEMDAN, Bayesian optimization, and a CNN-GRU architecture. Microseismic data from the 08 working face in D mine (Weibei mining area) were used to predict daily maximum energy, average energy, and frequency. The model achieved high predictive performance with R2 values of 0.93, 0.89, and 0.88, significantly outperforming baseline models lacking modal decomposition. Comparative experiments verified the superiority of the VMD-first, SE-reconstruction, and CEEMDAN-second decomposition strategy, yielding up to 13% greater accuracy than reverse-order schemes. The model maintained R2 above 0.80 on another dataset from the 03 working face in W mine (Binchang mining area), demonstrating robust generalization. Although performance declined during fault disturbances, accuracy for average energy and frequency rebounded post-disturbance, indicating strong adaptability. Overall, the VSCB-CNNGRU model enhances both accuracy and stability in microseismic prediction, supporting dynamic risk assessment and early warning in coal mining. Full article
Show Figures

Figure 1

16 pages, 3028 KiB  
Article
Multi-Modal Joint Pulsed Eddy Current Sensor Signal Denoising Method Integrating Inductive Disturbance Mechanism
by Yun Zuo, Gebiao Hu, Fan Gan, Zhiwu Zeng, Zhichi Lin, Xinxun Wang, Ruiqing Xu, Liang Wen, Shubing Hu, Haihong Le, Runze Wu and Jingang Wang
Sensors 2025, 25(12), 3830; https://doi.org/10.3390/s25123830 - 19 Jun 2025
Viewed by 450
Abstract
Pulsed eddy current (PEC) testing technology has been widely used in the field of non-destructive testing of metal grounding structures due to its wide-band excitation and response characteristics. However, multi-source noise in industrial environments can significantly degrade the performance of PEC sensors, thereby [...] Read more.
Pulsed eddy current (PEC) testing technology has been widely used in the field of non-destructive testing of metal grounding structures due to its wide-band excitation and response characteristics. However, multi-source noise in industrial environments can significantly degrade the performance of PEC sensors, thereby limiting their detection accuracy. This study proposes a multi-modal joint pulsed eddy current signal sensor denoising method that integrates the inductive disturbance mechanism. This method constructs the Improved Whale Optimization -Variational Mode Decomposition-Singular Value Decomposition-Wavelet Threshold Denoising (IWOA-VMD-SVD-WTD) fourth-order processing architecture: IWOA adaptively optimizes the VMD essential variables (K, α) and employs the optimized VMD to decompose the perception coefficient (IMF) of the PEC signal. It utilizes the correlation coefficient criterion to filter and identify the primary noise components within the signal, and the SVD-WTD joint denoising model is established to reconstruct each component to remove the noise signal received by the PEC sensor. To ascertain the efficacy of this approach, we compared the IWOA-VMD-SVD-WTD method with other denoising methods under three different noise levels through experiments. The test results show that compared with other VMD-based denoising techniques, the average signal-to-noise ratio (SNR) of the PEC signal received by the receiving coil for 200 noise signals in different noise environments is 24.31 dB, 29.72 dB and 29.64 dB, respectively. The average SNR of the other two denoising techniques in different noise environments is 15.48 dB, 18.87 dB, 18.46 dB and 19.32 dB, 27.13 dB, 26.78 dB, respectively, which is significantly better than other denoising methods. In addition, in practical applications, this method is better than other technologies in denoising PEC signals and successfully achieves noise reduction and signal feature extraction. This study provides a new technical solution for extracting pure and impurity-free PEC signals in complex electromagnetic environments. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

28 pages, 4916 KiB  
Article
Research on Bearing Fault Diagnosis Method for Varying Operating Conditions Based on Spatiotemporal Feature Fusion
by Jin Wang, Yan Wang, Junhui Yu, Qingping Li, Hailin Wang and Xinzhi Zhou
Sensors 2025, 25(12), 3789; https://doi.org/10.3390/s25123789 - 17 Jun 2025
Viewed by 428
Abstract
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) [...] Read more.
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) to another condition (target domain). Furthermore, the lack of sufficient labeled data in the target domain further complicates fault diagnosis under varying operating conditions. To address this issue, this paper proposes a spatiotemporal feature fusion domain-adaptive network (STFDAN) framework for bearing fault diagnosis under varying operating conditions. The framework constructs a feature extraction and domain adaptation network based on a parallel architecture, designed to capture the complex dynamic characteristics of vibration signals. First, the Fast Fourier Transform (FFT) and Variational Mode Decomposition (VMD) are used to extract the spectral and modal features of the signals, generating a joint representation with multi-level information. Then, a parallel processing mechanism of the Convolutional Neural Network (SECNN) based on the Squeeze-and-Excitation module and the Bidirectional Long Short-Term Memory network (BiLSTM) is employed to dynamically adjust weights, capturing high-dimensional spatiotemporal features. The cross-attention mechanism enables the interaction and fusion of spatial and temporal features, significantly enhancing the complementarity and coupling of the feature representations. Finally, a Multi-Kernel Maximum Mean Discrepancy (MKMMD) is introduced to align the feature distributions between the source and target domains, enabling efficient fault diagnosis under varying bearing conditions. The proposed STFDAN framework is evaluated using bearing datasets from Case Western Reserve University (CWRU), Jiangnan University (JNU), and Southeast University (SEU). Experimental results demonstrate that STFDAN achieves high diagnostic accuracy across different load conditions and effectively solves the bearing fault diagnosis problem under varying operating conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 8624 KiB  
Article
Bridge Damage Identification Based on Variational Modal Decomposition and Continuous Wavelet Transform Method
by Xiaobiao Jiang, Kun Ma, Jiaquan Wu and Zhengchun Li
Appl. Sci. 2025, 15(12), 6682; https://doi.org/10.3390/app15126682 - 13 Jun 2025
Viewed by 394
Abstract
The vehicle scanning method (VSM) is widely used for bridge damage identification (BDI) because it relies solely on vehicle dynamic responses. The recently introduced contact point response, which is derived from vehicle dynamics but devoid of vehicle-related natural frequencies, shows great potential for [...] Read more.
The vehicle scanning method (VSM) is widely used for bridge damage identification (BDI) because it relies solely on vehicle dynamic responses. The recently introduced contact point response, which is derived from vehicle dynamics but devoid of vehicle-related natural frequencies, shows great potential for application in the vehicle scanning method. However, its application in bridge damage detection remains understudied. The aim of this paper is to propose a new bridge damage identification method based on the contact point response. The method uses variational modal decomposition (VMD) to solve the problem of mode mixing and spurious frequencies in the signal. The continuous wavelet transform (CWT) is then utilized for damage identification. The introduction of variational modal decomposition makes the extracted signal more accurate, thus enabling more accurate damage identification. Numerical simulations validate the method’s robustness under varying conditions, including the vehicle speed, wavelet scale factors, the number of bridge spans, and pavement roughness. The results demonstrate that variational modal decomposition eliminates signal artifacts, producing smooth variational modal decomposition–continuous wavelet transform curves for accurate damage detection. In this study, we offer a robust and practical solution for bridge health monitoring using the vehicle scanning method. Full article
Show Figures

Figure 1

23 pages, 5972 KiB  
Article
Forecasting Significant Wave Height Intervals Along China’s Coast Based on Hybrid Modal Decomposition and CNN-BiLSTM
by Kairong Xie and Tong Zhang
J. Mar. Sci. Eng. 2025, 13(6), 1163; https://doi.org/10.3390/jmse13061163 - 12 Jun 2025
Viewed by 594
Abstract
As a renewable and clean energy source with abundant reserves, the development of wave energy relies on accurate predictions of significant wave height (Hs). The fluctuation of Hs is a non-stationary process influenced by seasonal variations in marine climate conditions, which poses significant [...] Read more.
As a renewable and clean energy source with abundant reserves, the development of wave energy relies on accurate predictions of significant wave height (Hs). The fluctuation of Hs is a non-stationary process influenced by seasonal variations in marine climate conditions, which poses significant challenges for accurate predictions. This study proposes a deep learning method based on buoy datasets collected from four research locations in China’s offshore waters over three years (2021–2023, 3-hourly). The hybrid modal decomposition CEEMDAN-VMD is employed for reducing non-stationarity of the Hs sequence, with peak information incorporated as a data augmentation strategy to enhance the performance of deep learning. A probabilistic deep learning model, QRCNN-BiLSTM, was developed using quantile regression, achieving 12-, 24-, and 36-h interval predictions of Hs based on 12 days of historical data with three input features (Hs and wave velocities only). Furthermore, an optimization algorithm that integrates the proposed innovative enhancement strategies is used to automatically adjust the network parameters, making the model more lightweight. Results demonstrate that under a 0.95 prediction interval nominal confidence (PINC), the prediction interval coverage probability (PICP) reaches 100% for at least 6 days across all datasets, indicating that the developed system exhibits superior performance in short-term wave forecasting. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2874 KiB  
Article
Prediction of Water Quality in Agricultural Watersheds Based on VMD-GA-LSTM Model
by Yuxuan Luo, Xianglan Meng, Yutong Zhai, Dongqing Zhang and Kaiping Ma
Mathematics 2025, 13(12), 1951; https://doi.org/10.3390/math13121951 - 12 Jun 2025
Viewed by 413
Abstract
As agricultural non-point source pollution becomes increasingly severe and constitutes the primary source of water quality degradation, accurately predicting water quality in agricultural watersheds has become critical for environmental protection. In order to solve the nonlinear and non-stationary characteristics of water quality data, [...] Read more.
As agricultural non-point source pollution becomes increasingly severe and constitutes the primary source of water quality degradation, accurately predicting water quality in agricultural watersheds has become critical for environmental protection. In order to solve the nonlinear and non-stationary characteristics of water quality data, this paper proposes a combined model based on variational modal decomposition and genetic algorithm optimization of long short-term memory networks (VMD-GA-LSTM) for agricultural watershed water quality prediction. The VMD-GA-LSTM model utilizes the variational mode decomposition technique to decompose the time series data into multiple intrinsic mode functions and then uses the optimized LSTM network to predict each component to improve the accuracy of water quality prediction. The analysis of water quality data from the Baima River in China demonstrated that the VMD-GA-LSTM model significantly reduced prediction errors compared to other similar models. The VMD-GA-LSTM predictive model proposed in this paper effectively addresses the volatility characterizing water quality in agricultural watersheds, improves prediction accuracy, and it reveals valuable trends in water quality dynamics, providing practical solutions for sustainable agricultural practices and environmental governance. Full article
(This article belongs to the Special Issue New Advances and Challenges in Neural Networks and Applications)
Show Figures

Figure 1

Back to TopTop