Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (234)

Search Parameters:
Keywords = variable thermal resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10013 KiB  
Article
Addressing Challenges in Rds,on Measurement for Cloud-Connected Condition Monitoring in WBG Power Converter Applications
by Farzad Hosseinabadi, Sachin Kumar Bhoi, Hakan Polat, Sajib Chakraborty and Omar Hegazy
Electronics 2025, 14(15), 3093; https://doi.org/10.3390/electronics14153093 (registering DOI) - 2 Aug 2025
Abstract
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, [...] Read more.
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, addressing key limitations in current state-of-the-art (SOTA) methods. Traditional approaches rely on expensive data acquisition systems under controlled laboratory conditions, making them unsuitable for real-world applications due to component variability, time delay, and noise sensitivity. Furthermore, these methods lack cloud interfacing for real-time data analysis and fail to provide comprehensive reliability metrics such as Remaining Useful Life (RUL). Additionally, the proposed CM method benefits from noise mitigation during switching transitions by utilizing delay circuits to ensure stable and accurate data capture. Moreover, collected data are transmitted to the cloud for long-term health assessment and damage evaluation. In this paper, experimental validation follows a structured design involving signal acquisition, filtering, cloud transmission, and temperature and thermal degradation tracking. Experimental testing has been conducted at different temperatures and operating conditions, considering coolant temperature variations (40 °C to 80 °C), and an output power of 7 kW. Results have demonstrated a clear correlation between temperature rise and Rds,on variations, validating the ability of the proposed method to predict device degradation. Finally, by leveraging cloud computing, this work provides a practical solution for real-world Wide Band Gap (WBG)-based PEC reliability and lifetime assessment. Full article
(This article belongs to the Section Industrial Electronics)
25 pages, 2341 KiB  
Article
Lipid-Enriched Cooking Modulates Starch Digestibility and Satiety Hormone Responses in Traditional Nixtamalized Maize Tacos
by Julian de la Rosa-Millan
Foods 2025, 14(15), 2576; https://doi.org/10.3390/foods14152576 - 23 Jul 2025
Viewed by 559
Abstract
Traditional taco preparation methods, such as oil immersion and steaming, can significantly affect the nutritional and metabolic characteristics of the final product. This study evaluated tacos made with five commercial nixtamalized maize flours and four common fillings (chicharron, beef skirt, potato, and refried [...] Read more.
Traditional taco preparation methods, such as oil immersion and steaming, can significantly affect the nutritional and metabolic characteristics of the final product. This study evaluated tacos made with five commercial nixtamalized maize flours and four common fillings (chicharron, beef skirt, potato, and refried beans), processed using three different methods: Plain, Full-Fat, and Patted-Dry. We assessed their chemical composition, starch digestibility, and thermal properties, and measured satiety-related hormone responses in mice. Fillings had a stronger influence on protein, fat, and moisture content than tortilla type. Full-fat tacos exhibited increased amylose–lipid complex formation and a lower gelatinization enthalpy, whereas plain tacos retained more retrograded starch and a crystalline structure. In vitro digestion revealed that Plain tacos, especially those with plant-based fillings, had the highest resistant starch content and the lowest predicted glycemic index. Hierarchical clustering showed that resistant starch, moisture, and gelatinization onset temperature were closely linked in the Plain samples, whereas lipid-driven variables dominated in the Full-Fat tacos. In mice, tacos with a higher resistant starch content led to greater GLP-1 levels, lower ghrelin levels, and reduced insulin responses, suggesting improved satiety and glycemic control. Patted-Dry tacos showed intermediate hormonal effects, supporting their potential as a balanced, health-conscious alternative. These findings demonstrate how traditional preparation techniques can be leveraged to enhance the nutritional profile of culturally relevant foods, such as tacos. Full article
Show Figures

Graphical abstract

26 pages, 8299 KiB  
Article
Experimental and Numerical Study on the Temperature Rise Characteristics of Multi-Layer Winding Non-Metallic Armored Optoelectronic Cable
by Shanying Lin, Xihong Kuang, Yujie Zhang, Gen Li, Wenhua Li and Weiwei Shen
J. Mar. Sci. Eng. 2025, 13(7), 1356; https://doi.org/10.3390/jmse13071356 - 16 Jul 2025
Viewed by 186
Abstract
The non-metallic armored optoelectronic cable (NAOC) serves as a critical component in deep-sea scientific winch systems. Due to its low density and excellent corrosion resistance, it has been widely adopted in marine exploration. However, as the operational water depth increases, the NAOC is [...] Read more.
The non-metallic armored optoelectronic cable (NAOC) serves as a critical component in deep-sea scientific winch systems. Due to its low density and excellent corrosion resistance, it has been widely adopted in marine exploration. However, as the operational water depth increases, the NAOC is subjected to multi-layer winding on the drum, resulting in a cumulative temperature rise that can severely impair insulation performance and compromise the safety of deep-sea operations. To address this issue, this paper conducts temperature rise experiments on NAOCs using a distributed temperature sensing test rig to investigate the effects of the number of winding layers and current amplitude on their temperature rise characteristics. Based on the experimental results, an electromagnetic thermal multi-physics field coupling simulation model is established to further examine the influence of these factors on the maximum operation time of the NAOC. Finally, a multi-variable predictive model for maximum operation time is developed, incorporating current amplitude, the number of winding layers, and ambient temperature, with a fitting accuracy of 97.92%. This research provides theoretical and technical support for ensuring the safety of deep-sea scientific operations and improving the reliability of deep-sea equipment. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 4704 KiB  
Article
Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water
by Ioana Maior, Gabriela Elena Badea, Oana Delia Stănășel, Mioara Sebeșan, Anca Cojocaru, Anda Ioana Graţiela Petrehele, Petru Creț and Cristian Felix Blidar
Energies 2025, 18(14), 3634; https://doi.org/10.3390/en18143634 - 9 Jul 2025
Viewed by 327
Abstract
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of [...] Read more.
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of geothermal waters and their effect on thermal installations. Geothermal waters from Bihor County, Romania, have a variable composition, depending on the crossed geological layers, but also on pressure and temperature. Obviously, water transport and heat transfer are involved in all applications of geothermal waters. This article aims to characterize certain geothermal waters from the point of view of composition and corrosion if used as a thermal agent. Atomic absorption spectroscopy (AAS) and UV–Vis spectroscopy were employed to analyze water specimens. Chemical composition includes calcite (CaCO3), chalcedony (SiO2), goethite (FeO(OH)), and magnetite (Fe3O4), which confirms the corrosion and scale potential of these waters. Corrosion resistance of mild carbon steel, commonly used as pipe material, was studied by the gravimetric method and through electrochemical methodologies, including chronoamperometry, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization method, and open circuit potential measurement (OCP). Statistical analysis shows that the medium corrosion rate of S235 steel, expressed as penetration rate, is between 0.136 mm/year to 0.615 mm/year. The OCP, EIS, and chronoamperometry experiments explain corrosion resistance through the formation of a passive layer on the surface of the metal. This study proposes an innovative methodology and a systematic algorithm for analyzing chemical processes and corrosion phenomena in geothermal installations, emphasizing the necessity of individualized assessments for each aquifer to optimize operational parameters and ensure sustainable resource utilization. Full article
(This article belongs to the Special Issue The Status and Development Trend of Geothermal Resources)
Show Figures

Graphical abstract

18 pages, 1143 KiB  
Article
A Similarity-Based Approach for Diagnosing the Aging of Lithium-Ion Batteries in Second Life Combining Time Series and Machine Learning
by Daniela Galatro and Cristina H. Amon
Appl. Sci. 2025, 15(13), 7378; https://doi.org/10.3390/app15137378 - 30 Jun 2025
Viewed by 224
Abstract
Modelling aging in the second life of lithium-ion batteries (LiBs) is challenging due to the complexity of degradation mechanisms that lead to capacity loss and internal resistance increase, as well as uncertainty and variability in the operational and environmental conditions to which the [...] Read more.
Modelling aging in the second life of lithium-ion batteries (LiBs) is challenging due to the complexity of degradation mechanisms that lead to capacity loss and internal resistance increase, as well as uncertainty and variability in the operational and environmental conditions to which the batteries are exposed. In this work, we propose a similarity-based approach for diagnosing the aging of LiBs in their second life, which combines time series analysis and machine learning to help identify trends and patterns in the aging process. This approach overcomes the intrinsic nonlinearity nature of the LiB aging trajectory in the second life while adapting to varying operational and environmental conditions. Knees or inflection points defining the first, second, and non-usable lives of the batteries are also identified, offering insights into degradation mechanisms and thus supporting thermal management and optimal user-pattern tasks to extend the LiBs’ lifetime. Full article
(This article belongs to the Special Issue Recycling and Second Life Applications of Lithium-Ion Batteries)
Show Figures

Figure 1

24 pages, 11951 KiB  
Article
The Influence of Various Chemical Modifications of Sheep Wool Fibers on the Long-Term Mechanical Properties of Sheep Wool/PLA Biocomposites
by Piotr Szatkowski
Materials 2025, 18(13), 3056; https://doi.org/10.3390/ma18133056 - 27 Jun 2025
Viewed by 429
Abstract
Sheep wool is a natural fiber from various sheep breeds, mainly used in clothing for its insulation properties. It makes up a small share of global fiber production, which is declining as synthetic fibers replace wool and meat farming becomes more profitable. Wool [...] Read more.
Sheep wool is a natural fiber from various sheep breeds, mainly used in clothing for its insulation properties. It makes up a small share of global fiber production, which is declining as synthetic fibers replace wool and meat farming becomes more profitable. Wool from slaughter sheep, often unsuitable for textiles, is treated as biodegradable waste. The aim of the study was to develop a fully biodegradable composite of natural origin from a polylactide (PLA) matrix reinforced with sheep wool and to select the optimal modifications (chemical) of sheep wool fibers to obtain modified properties, including mechanical properties. The behavior of the composites after exposure to aging conditions simulating naturally occurring stimuli causing biodegradation and thus changes in the material’s performance over its lifespan was also examined. Dynamic thermal analysis was used to describe and parameterize the obtained data and their variables, and the mechanical properties were investigated. The research culminated in a microscopic analysis along with changes in surface properties. The study demonstrated that wool-reinforced composites exhibited significantly improved resistance to UV degradation compared to pure PLA, with samples containing 15% unmodified wool showing a 54% increase in storage modulus at 0 °C after aging. Chemical modifications using nitric acid, iron compounds, and tar were successfully implemented to enhance fiber–matrix compatibility, resulting in increased glass transition temperatures and modified mechanical properties. Although wool fiber is not a good choice for modifications to increase mechanical strength, adding wool fiber does not improve mechanical properties but also does not worsen them much. Wool fibers are a good filler that accelerates degradation and are also a waste, which reduces the potential costs of producing such a biocomposite. The research established that these biocomposites maintain sufficient mechanical properties for packaging applications while offering better environmental resistance than pure polylactide, contributing to the development of circular economy solutions for agricultural waste valorization. So far, no studies have been conducted in the literature on the influence of sheep wool and its modified versions on the mechanical properties and the influence of modification on the degradation rate of PLA/sheep wool biocomposites. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Figure 1

24 pages, 2987 KiB  
Article
Optimization of Engine Piston Performance Based on Multi-Method Coupling: Sensitivity Analysis, Response Surface Model, and Application of Genetic Algorithm
by Bin Zheng, Qintao Shui, Zhecheng Luo, Peihao Hu, Yunjin Yang, Jilin Lei and Guofu Yin
Materials 2025, 18(13), 3043; https://doi.org/10.3390/ma18133043 - 26 Jun 2025
Viewed by 387
Abstract
This paper focuses on the use of advanced optimization design strategies to improve the performance and service life of engine pistons, with emphasis on enhancing their stiffness, strength, and dynamic characteristics. As a core component of the engine, the structural design and optimization [...] Read more.
This paper focuses on the use of advanced optimization design strategies to improve the performance and service life of engine pistons, with emphasis on enhancing their stiffness, strength, and dynamic characteristics. As a core component of the engine, the structural design and optimization of the piston are of great significance to its efficiency and reliability. First, a three-dimensional (3D) model of the piston was constructed and imported into ANSYS Workbench for finite element modeling and high-quality meshing. Based on the empirical formula, the actual working environment temperature and heat transfer coefficient of the piston were accurately determined and used as boundary conditions for thermomechanical coupling analysis to accurately simulate the thermal and deformation state under complex working conditions. Dynamic characteristic analysis was used to obtain the displacement–frequency curve, providing key data support for predicting resonance behavior, evaluating structural strength, and optimizing the design. In the optimization stage, five geometric dimensions are selected as design variables. The deformation, mass, temperature, and the first to third natural frequencies are considered as optimization goals. The response surface model is constructed by means of the design of the experiments method, and the fitted model is evaluated in detail. The results show that the models are all significant. The adequacy of the model fitting is verified by the “Residuals vs. Run” plot, and potential data problems are identified. The “Predicted vs. Actual” plot is used to evaluate the fitting accuracy and prediction ability of the model for the experimental data, avoiding over-fitting or under-fitting problems, and guiding the optimization direction. Subsequently, the sensitivity analysis was carried out to reveal the variables that have a significant impact on the objective function, and in-depth analysis was conducted in combination with the response surface. The multi-objective genetic algorithm (MOGA), screening, and response surface methodology (RSM) were, respectively, used to comprehensively optimize the objective function. Through experiments and analysis, the optimal solution of the MOGA algorithm was selected for implementation. After optimization, the piston mass and deformation remained relatively stable, and the working temperature dropped from 312.75 °C to 308.07 °C, which is conducive to extending the component life and improving the thermal efficiency. The first to third natural frequencies increased from 1651.60 Hz to 1671.80 Hz, 1656.70 Hz to 1665.70 Hz, and 1752.90 Hz to 1776.50 Hz, respectively, significantly enhancing the dynamic stability and vibration resistance. This study integrates sensitivity analysis, response surface models, and genetic algorithms to solve multi-objective optimization problems, successfully improving piston performance. Full article
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Theoretical Performance of BaSnO3-Based Perovskite Solar Cell Designs Under Variable Light Intensities, Temperatures, and Donor and Defect Densities
by Nouf Alkathran, Shubhranshu Bhandari and Tapas K. Mallick
Designs 2025, 9(3), 76; https://doi.org/10.3390/designs9030076 - 18 Jun 2025
Viewed by 395
Abstract
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO [...] Read more.
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO2-based designs. This theoretical study presents a design-driven evaluation of BaSnO3-based perovskite solar cell architectures, incorporating MAPbI3 or FAMAPbI3 perovskite materials, Spiro-OMeTAD, or Cu2O hole transport materials as well as hole-free configurations, under varying light intensity. Using a systematic device modelling approach, we explore the influence of key design variables—such as layer thickness, donor density, and interface defect concentration—of BaSnO3 and operating temperature on the power conversion efficiency (PCE). Among the proposed designs, the FTO/BaSnO3/FAMAPbI3/Cu2O/Au heterostructure exhibits an exceptionally effective arrangement with PCE of 38.2% under concentrated light (10,000 W/m2, or 10 Sun). The structure also demonstrates strong thermal robustness up to 400 K, with a low temperature coefficient of −0.078% K−1. These results underscore the importance of material and structural optimisation in PSC design and highlight the role of high-mobility, thermally stable inorganic transport layers—BaSnO3 as the electron transport material (ETM) and Cu2O as the hole transport material (HTM)—in enabling efficient and stable photovoltaic performance under high irradiance. The study contributes valuable insights into the rational design of high-performance PSCs for emerging solar technologies. Full article
Show Figures

Graphical abstract

17 pages, 1848 KiB  
Article
Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers
by Alejandro J. Extremera-Jiménez, Pedro J. Casanova-Peláez, Charles Yousif and Fernando Cruz-Peragón
Sustainability 2025, 17(12), 5509; https://doi.org/10.3390/su17125509 - 15 Jun 2025
Viewed by 926
Abstract
The short-term performance of ground heat exchangers (GHEs) is crucial for the optimal design of ground-source heat pumps (GSHPs), enhancing their contribution to sustainable energy solutions. Local short-time thermal response functions, or short-time g-functions (STGFs) derived from thermal response tests (TRTs), are of [...] Read more.
The short-term performance of ground heat exchangers (GHEs) is crucial for the optimal design of ground-source heat pumps (GSHPs), enhancing their contribution to sustainable energy solutions. Local short-time thermal response functions, or short-time g-functions (STGFs) derived from thermal response tests (TRTs), are of great interest for predicting the heat exchange due to their fast and simple applicability. The aim of this work is to perform a sensitivity analysis to assess the impact of thermal parameter variability and TRT operating conditions on the accuracy of the average fluid temperature (Tf) predictions obtained through a local STGF. First, the uncertainties associated with the borehole thermal resistance (Rb), transmitted from the soil volumetric heat capacity (CS) or some models dependent on GHE characteristics, such as the Zeng model, were found to have a low impact in Tf resulting in long-term deviations of ±0.2 K. Second, several TRTs were carried out on the same borehole, changing input parameters such as the volumetric flow rate and heat injection rate, in order to obtain their corresponding STGF. Validation results showed that each Tf profile consistently aligned well with experimental data when applying intermittent heat rate pulses (being the most unfavorable scenario), implying deviations of ±0.2 K, despite the variabilities in soil conductivity (λS), soil volumetric heat capacity (CS), and borehole thermal resistance (Rb). Full article
(This article belongs to the Special Issue Ground Source Heat Pump and Renewable Energy Hybridization)
Show Figures

Figure 1

21 pages, 3721 KiB  
Article
Analysis of the Mechanical Properties of Polymer Composites Reinforced with Charcoal Particulate
by Josinaldo O. Dias, Rayara Davel Siqueira, Bruno Fonseca Coelho and Amanda O. Conceição
Materials 2025, 18(12), 2746; https://doi.org/10.3390/ma18122746 - 11 Jun 2025
Viewed by 374
Abstract
Naturally reinforced polymer composites have emerged as a promising sustainable alternative to conventional polymers due to their biodegradability. This study aimed to develop a composite by incorporating charcoal particulate into a recycled high-density polyethylene (HDPE) matrix and evaluating its mechanical properties. Two manufacturing [...] Read more.
Naturally reinforced polymer composites have emerged as a promising sustainable alternative to conventional polymers due to their biodegradability. This study aimed to develop a composite by incorporating charcoal particulate into a recycled high-density polyethylene (HDPE) matrix and evaluating its mechanical properties. Two manufacturing methods (compression molding and extrusion) and four charcoal concentrations (0, 5, 10, and 15%) were investigated. Characterization involved tensile tests and non-destructive evaluation using wave propagation and ultrasound techniques. The experiment followed a completely randomized design with a 4 × 2 factorial arrangement, comprising eight treatments. Statistical analysis was conducted using Tukey’s test for multiple comparisons. The tensile test results indicated that the manufacturing methods of compression molding and extrusion led to significant differences in the elastic modulus (MOE) variable, in contrast to the results observed for the maximum stress variable. However, the addition of charcoal particulate caused a notable reduction in maximum tensile strength (approximately 50%), from 20.17 to 11.19 MPa, and a 22% decrease in the MOE, from 310.93 to 242.88 MPa, compared to unreinforced HDPE. Non-destructive testing confirmed the tensile test findings, also indicating a reduction in MOE. Despite the decline in mechanical properties, these composites remain viable for applications prioritizing lightweight structures, thermal insulation, or chemical resistance. Furthermore, their use enhances the valorization of waste and increases sustainability by reducing environmental impact. Full article
Show Figures

Figure 1

16 pages, 719 KiB  
Article
The Issue of Hydrodynamic Friction in the Context of the Operational Properties of Ring-Shaped Torsional Vibration Dampers
by Aleksander Mazurkow, Andrzej Chmielowiec and Wojciech Homik
Appl. Sci. 2025, 15(12), 6528; https://doi.org/10.3390/app15126528 - 10 Jun 2025
Cited by 1 | Viewed by 315
Abstract
Improving the reliability and durability of internal combustion engines in marine vessels is a complex issue. The vibrations generated in these engines significantly affect their proper operation. One of the current research challenges is identifying effective methods to reduce, among other things, torsional [...] Read more.
Improving the reliability and durability of internal combustion engines in marine vessels is a complex issue. The vibrations generated in these engines significantly affect their proper operation. One of the current research challenges is identifying effective methods to reduce, among other things, torsional vibrations generated within the crank–piston system. To mitigate these vibrations, viscous dampers are commonly used. The selection of a viscous damper for a high-power multi-cylinder engine, such as those in marine power plants, requires a thorough understanding of the thermo-hydrodynamic properties of oil films formed in the spaces between the damper housing and the inertial mass. The description of the phenomena involved is complicated by the variable positioning of the inertial mass center relative to the housing during operation. Most previous studies assume a concentric alignment between these components. The main novelty of this work lies in highlighting the combined effect of the eccentric motion of the inertial ring on both hydrodynamic resistance and thermal characteristics, which has not been fully addressed in existing studies. This article defines the oil flow resistance coefficients and develops static characteristics of the dampers. Additionally, it evaluates the impact of the size of the frontal and cylindrical surfaces of the damper on its heat dissipation capacity. The presented characteristics can be utilized to assess the performance parameters of this type of damper. Full article
(This article belongs to the Special Issue Modern Internal Combustion Engines: Design, Testing, and Application)
Show Figures

Figure 1

17 pages, 3660 KiB  
Article
Improving the Thermal Stability of Xylanase XynASP from Aspergillus Saccharolyticus JOP 1030-1 Through Modular Assembly
by Jinjin Zhu, Qing Zhang, Jiaxin Zhao, Xueting Fu, Mingzhu Wang, Yan Liu, Hui Wang, Hongli Xi and Tongbiao Li
Catalysts 2025, 15(6), 563; https://doi.org/10.3390/catal15060563 - 5 Jun 2025
Viewed by 589
Abstract
Xylanases, important enzymes in the food industry, have severely limited use in industrial applications due to insufficient thermal stability. This study focused on improving the thermostability of XynASP, a glycoside hydrolase family 11 (GH11) xylanase from Aspergillus saccharolyticus JOP 1030-1, through modular assembly [...] Read more.
Xylanases, important enzymes in the food industry, have severely limited use in industrial applications due to insufficient thermal stability. This study focused on improving the thermostability of XynASP, a glycoside hydrolase family 11 (GH11) xylanase from Aspergillus saccharolyticus JOP 1030-1, through modular assembly and rational mutagenesis. By aligning XynASP with nine thermostable GH11 homologs, six variable structural modules (β1, β3, β6, β7, α1, β14) and eight non-conserved residues were identified. Six chimeras (Z1, Z2, Z3, Z4, Z5, Z6) and eight single mutants (S131T, Y133T, A137G, A144T, T147Y, A156R, V198M, and Y204Q) were constructed. Among these, the β3-module-substituted chimera Z2 exhibited a 15.4-fold extended half-life at 45 °C compared to wild-type XynASP. Single-point mutagenesis revealed that V198M showed the highest residual activity after thermal treatment. To further optimize stability, combinatorial mutagenesis was performed: the double mutant A144T/V198M demonstrated a 4.3-fold longer half-life at 50 °C. Combining Z2 with the A144T/V198M mutations yielded the chimeric ZM, which demonstrated a 26.5-fold increase in half-life at 50 °C and a 5.5-fold improvement in catalytic efficiency (197.4 U/mg) compared to wild-type XynASP. Structural analysis and molecular dynamics simulations showed that increased hydrophobic interactions at both the N- and C-termini improved the structural stability of chimeric ZM, while increasing the flexibility of the thumb can offset the negative impact on catalytic activity during thermal stability modification of GH11 xylanase. This study further confirmed that modular assembly is an effective approach for obtaining high-activity, heat-resistant xylanases. This study also notably deepened our understanding of the thermal stability mechanisms of xylanases. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

15 pages, 2090 KiB  
Article
A Simple Setup for Thermoelectric Power Factor of Thermoelectric Coatings
by Mingda Lv, Chunzhu Jiang and Guangjun Zhang
Coatings 2025, 15(6), 679; https://doi.org/10.3390/coatings15060679 - 5 Jun 2025
Viewed by 477
Abstract
Thermal spraying technique has potential in manufacturing economic, profitable thermoelectric coatings. In order to characterize the electrical performance of thermoelectric coatings more conveniently, a simple setup for thermoelectric power factor of thermoelectric coatings is designed and developed. The indigenously designed setup is simple [...] Read more.
Thermal spraying technique has potential in manufacturing economic, profitable thermoelectric coatings. In order to characterize the electrical performance of thermoelectric coatings more conveniently, a simple setup for thermoelectric power factor of thermoelectric coatings is designed and developed. The indigenously designed setup is simple and low-cost. The compact structure makes it easy to cooperate with existing heating furnace, allowing a fast measurement in a variable temperature range. The differential method and the off-axis four-point geometry are used in Seebeck coefficient and electrical resistivity measurement, respectively. The Spring-load unit and other details of construction of the setup are described specifically. The Seebeck coefficient of the plasma-sprayed higher manganese silicide (HMS) coating was measured to be approximately 132.35 μV/K at 150 °C, with measurements showing high linearity (R2 > 0.99). The setup demonstrated reliable electrical resistivity results for Cr20Ni80 alloy, closely matching published values (1.16 × 10−6 Ω·m vs. 1.10 × 10−6 Ω·m). HMS coating was also characterized from 50 °C to 500 °C to validate the setup on thermoelectric performance characterization across a wide temperature range. These results confirm the reliability of the developed setup. Full article
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Numerical Investigation and Optimization of Transpiration Cooling Plate Structures with Combined Particle Diameter
by Dan Wang, Yaxin Liu, Xiang Zhang, Mingliang Kong and Hanchao Liu
Energies 2025, 18(11), 2950; https://doi.org/10.3390/en18112950 - 4 Jun 2025
Viewed by 383
Abstract
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection [...] Read more.
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection pressure (p). To enhance the overall cooling effect and reduce the maximum surface temperature and coolant injection pressure, the combined particle diameter plate structure (CPD−PS) is proposed. Numerical simulations show that compared with the single-particle diameter plate structure (SPD−PS), the CPD−PS with a larger upstream particle diameter (dp) than that of the downstream (dpA > dpB) can effectively reduce the upstream temperature and improve average cooling efficiency (ηave). Meanwhile, gradually increasing dp will increase the permeability of porous media, reduce coolant flow resistance, and thus lower coolant injection pressure. An optimization analysis of CPD−PS is conducted using response surface methodology (RSM), and the influence of design variables on the objective function (ηave and p) is analyzed. Further optimization with the multi-objective genetic algorithm (MOGA) determines the optimal structural parameters. The results suggest that porosity (ε) and dp are the most crucial parameters affecting ηave and p of CPD−PS. After optimization, the maximum temperature of the porous plate is significantly reduced by 8.40%, and the average temperature of the hot end surface is also reduced. The overall cooling performance is effectively improved, ηave is increased by 6.02%, and p is significantly reduced. Additionally, the upstream surface velocity of the optimized structure changes and the boundary layer thickens, which enhances the thermal insulation effect. Full article
Show Figures

Figure 1

18 pages, 2054 KiB  
Article
Phenotypic Variability of Local Latvian Common Bean (Phaseolus vulgaris L.) and Its Position Within European Germplasm
by Gunārs Lācis, Shreya Jagtap, Laila Dubova, Tetiana Harbovska, Daniels Udalovs, Liene Ziediņa and Ina Alsiņa
Int. J. Plant Biol. 2025, 16(2), 59; https://doi.org/10.3390/ijpb16020059 - 30 May 2025
Viewed by 288
Abstract
Common beans (Phaseolus vulgaris L.) are considered a socially and economically important crop, with the biggest growers in India, Myanmar, and Brazil. Traditionally, common beans are also grown in most parts of Europe, including Latvia, where cultivation areas have remained relatively constant [...] Read more.
Common beans (Phaseolus vulgaris L.) are considered a socially and economically important crop, with the biggest growers in India, Myanmar, and Brazil. Traditionally, common beans are also grown in most parts of Europe, including Latvia, where cultivation areas have remained relatively constant since the middle of the last century. This is explained by the plant’s higher thermal requirements compared to peas and faba beans more widely grown here. Despite this, landraces adapted to local conditions have been developed, whose origin and potential relationship with another European common bean germplasm is very limited. Therefore, the study aimed to characterise the morphology of the common bean germplasm collected and grown in Latvia to identify the most valuable material for further crop development and evaluate the local landraces in the European common bean germplasm context. The 28 genotypes representing Latvian landraces and European reference genotypes were phenotyped using 26 traits of bean seeds, pods, leaves, flowers, and stems, which were evaluated according to an internationally applied methodology. Latvian varieties showed phenotypical variability and characteristics that were different from those found in other European regions, showing the significance of the germplasm under study and highlighting the need for conservation. Local varieties (landraces) are reservoirs of unique genetic traits. Their adaptability to local environmental conditions, resistance to pests and diseases, and their potential to enhance nutritional quality make them invaluable resources for in situ conservation efforts and targeted genetic improvement programmes. Emphasising the utilisation of these landraces can contribute to sustainable agriculture, climate resilience, and food security. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

Back to TopTop