Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Coupling ILS-FLS Models. Determining a Local STGF (STGFM)
2.3. Uncertainties Associated with the Thermal Parameters of the GHE
2.3.1. Uncertainty Associated with Rb0 Determination
2.3.2. Uncertainty Associated with the TRT-ILS Method for a Local STGF (STGFM)
3. Results
3.1. Reliability in Modeling Tf for Different Property Values from the Same TRT
3.2. Reliability in Modeling Tf Across Multiple Tests in a Single Borehole
3.3. Discussion of Results
4. Conclusions
- -
- The consistency of this approach is supported by the agreement between STGFM and LTGF curves across various experimental conditions.
- -
- The error introduced in the determination of the steady borehole thermal resistance (Rb0) due to uncertainties in volumetric heat capacity (CS), or by estimation methods such as Zeng’s model, was found to be negligible in the estimated Tf profile. Parameter variations within realistic ranges implied deviations in Tf modeling lower than 0.01 at the end of the test period (3 days), and 1 at 50 years (with LTGF).
- -
- Parameters must be derived from the specific test. In particular, the same Rb0 value must be employed in conjunction with its corresponding STGFM. Otherwise, deviations up to 2 in the generated Tf profile can lead to discrepancies in the predicted thermal behavior, especially in intermittent heating (and subsequently, cooling) scenarios.
- -
- The calculated STGFM effectively captured the transient thermal behavior of the borehole heat exchanger, even under intermittent operational conditions. STGFM determined from different cyclic heat injection experiments on the same borehole were used to generate the Tf profile, with observed deviations around ±0.2 at the end of each pulse.
- -
- Numerical models are not required, which makes the method highly suitable for practical applications. Thus, the proposed method offers a simplified and efficient alternative without compromising accuracy.
- -
- The three selected TRT conditions reflect a representative operational range found in real-world geothermal applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union. 2018, 61, 75–91. [Google Scholar]
- Gamage, K.J.; Fahrioglu, M. The current technological status of ground source heat pump systems and their potential use in Northern Cyprus. Int. J. Wind. Renew. Energy 2014, 3, 39–48. [Google Scholar]
- Bayer, P.; Saner, D.; Bolay, S.; Rybach, L.; Blum, P. Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renew. Sustain. Energy Rev. 2012, 16, 1256–1267. [Google Scholar] [CrossRef]
- Self, S.J.; Reddy, B.V.; Rosen, M.A. Geothermal heat pump systems: Status review and comparison with other heating options. Appl. Energy 2013, 101, 341–348. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build. 2014, 70, 441–454. [Google Scholar] [CrossRef]
- Robert, F.; Gosselin, L. New methodology to design ground coupled heat pump systems based on total cost minimization. Appl. Therm. Eng. 2014, 62, 481–491. [Google Scholar] [CrossRef]
- Kavanaugh, S.P. Field tests for ground thermal properties--methods and impact on ground-source heat pump design. In Proceedings of the Conference: ASHRAE Winter Meeting, Dallas, TX, USA, 5–9 February 2000. [Google Scholar]
- Gehlin, S. Thermal Response Test: Method Development and Evaluation. Doctoral Dissertation, Luleå Tekniska Universitet, Luleå, Sweden, 2002. [Google Scholar]
- Li, M.; Lai, A.C. Parameter estimation of in-situ thermal response tests for borehole ground heat exchangers. Int. J. Heat. Mass. Transf. 2012, 55, 2615–2624. [Google Scholar] [CrossRef]
- Wagner, R.; Clauser, C. Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity. J. Geophys. Eng. 2005, 2, 349–356. [Google Scholar] [CrossRef]
- Pahud, D. Geothermal energy and heat storage. In SUPSI-DCT-LEEE; Laboratorio di Energia, Ecologia ed Economia: Canobbio, Italy, 2002. [Google Scholar]
- Li, M.; Lai, A.C. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Appl. Energy 2015, 151, 178–191. [Google Scholar] [CrossRef]
- Javed, S.; Claesson, J. New analytical and numerical solutions for the short-term analysis of vertical ground heat exchangers. ASHRAE Trans. 2011, 117, 3–12. [Google Scholar]
- Yavuzturk, C.; Spitler, J.D. A short time step response factor model for vertical ground loop heat exchangers. ASHRAE Trans. 1999, 105, 475–485. [Google Scholar]
- Eskilson, P. Thermal Analysis of Heat Extraction Boreholes. Ph.D. Thesis, Department of Mathematical Physics, Lund University, Lund, Sweden, 1987. [Google Scholar]
- Kerme, E.D.; Fung, A.S. Transient heat transfer simulation, analysis and thermal performance study of double U-tube borehole heat exchanger based on numerical heat transfer model. Appl. Therm. Eng. 2020, 173, 115189. [Google Scholar] [CrossRef]
- Miyara, A. Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode. Appl. Therm. Eng. 2012, 33, 167–174. [Google Scholar]
- Cimmino, M.; Bernier, M.; Adams, F. A contribution towards the determination of g-functions using the finite line source. Appl. Therm. Eng. 2013, 51, 401–412. [Google Scholar] [CrossRef]
- Diao, N.R.; Zeng, H.Y.; Fang, Z.H. Improvement in modeling of heat transfer in vertical ground heat exchangers. HVACR Res. 2004, 10, 459–470. [Google Scholar] [CrossRef]
- Wei, J.; Wang, L.; Jia, L.; Cai, W. A new method for calculation of short time-step g-functions of vertical ground heat exchangers. Appl. Therm. Eng. 2016, 99, 776–783. [Google Scholar] [CrossRef]
- Ozudogru, T.Y.; Olgun, C.G.; Senol, A. 3D numerical modeling of vertical geothermal heat exchangers. Geothermics 2014, 51, 312–324. [Google Scholar] [CrossRef]
- Bauer, D.; Heidemann, W.; Diersch, H. Transient 3D analysis of borehole heat exchanger modeling. Geothermics 2011, 40, 250–260. [Google Scholar] [CrossRef]
- Zarrella, A.; Scarpa, M.; De Carli, M. Short time step analysis of vertical ground-coupled heat exchangers: The approach of CaRM. Renew. Energy 2011, 36, 2357–2367. [Google Scholar] [CrossRef]
- Shoji, Y.; Katsura, T.; Nagano, K. MICS-ANN model: An artificial neural network model for fast computation of G-function in moving infinite cylindrical source model. Geothermics 2022, 100, 102315. [Google Scholar] [CrossRef]
- Pasquier, P.; Zarrella, A.; Labib, R. Application of artificial neural networks to near-instant construction of short-term g-functions. Appl. Therm. Eng. 2018, 143, 910–921. [Google Scholar] [CrossRef]
- Cruz-Peragon, F.; Casanova-Pelaez, P.J.; Lopez-Garcia, R.; Palomar-Carnicero, J.M. Extending capabilities of Thermal Response Tests in vertical ground heat exchangers: An experiment-based local short-time temperature response factor. Appl. Therm. Eng. 2020, 178, 115606. [Google Scholar] [CrossRef]
- Extremera-Jiménez, A.J.; Yousif, C.; Casanova-Peláez, P.J.; Cruz-Peragón, F. Fast segregation of thermal response functions in short-term for vertical ground heat exchangers. Appl. Therm. Eng. 2024, 246, 122849. [Google Scholar] [CrossRef]
- Casanova-Peláez, P.; Palomar-Carnicero, J.M.; López-García, R.; Cruz-Peragón, F. Desarrollo de equipo para la realización de test de respuesta térmica del terreno (TRT) en instalaciones geotérmicas [Development of equipment for conducting ground thermal response tests (TRT) in geothermal facilities]. Dyna 2014, 89, 316–324. [Google Scholar] [CrossRef]
- Cruz-Peragón, F.; la Cruz, G.-D.; Francisco, J.; Palomar-Carnicero, J.M.; López-García, R. Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger. Renew. Energy 2022, 195, 381–394. [Google Scholar] [CrossRef]
- Gehlin, S.; Nordell, B. Determining undisturbed ground temperature for thermal response test. ASHRAE Trans. 2003, 109, 151–156. [Google Scholar]
- Witte, H.J.; Van Gelder, G.J.; Spitier, J.D. In situ measurement of ground thermal conductivity: A Dutch perspective. ASHRAE Trans 2002, 108, 263. [Google Scholar]
- Claesson, J.; Eskilson, P. Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules. Energy 1988, 13, 509–527. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J. Conduction of Heat in Solids; Oxford University Press: Oxford, UK, 1947. [Google Scholar]
- Abramovich, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Applied Mathematics Series 55; National Bureau of Standarts: Washington, DC, USA, 1964. [Google Scholar]
- Lamarche, L.; Kajl, S.; Beauchamp, B. A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems. Geothermics 2010, 39, 187–200. [Google Scholar] [CrossRef]
- Javed, S.; Spitler, J.D. Calculation of borehole thermal resistance. In Advances in Ground-Source Heat Pump Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 63–95. [Google Scholar]
- Cimmino, M. The effects of borehole thermal resistances and fluid flow rate on the g-functions of geothermal bore fields. Int. J. Heat. Mass. Transf. 2015, 91, 1119–1127. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, S.; Go, G. A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers. Energy 2014, 71, 547–555. [Google Scholar] [CrossRef]
- Fisher, D.E.; Rees, S.J.; Padhmanabhan, S.K.; Murugappan, A. Implementation and validation of ground-source heat pump system models in an integrated building and system simulation environment. HVACR Res. 2006, 12 (Suppl. S1), 693–710. [Google Scholar] [CrossRef]
- Jacques, L.; Pasquier, P. Obtaining the hydraulic and thermal properties of the main hydrostratigraphic units surrounding a standing column well using a thermal response test. J. Hydrol. 2023, 623, 129823. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, R.; Ooka, R. Development of chiller-attached apparatus for accurate initial ground temperature measurement: Insights from global sensitivity analysis of thermal response tests. Energy Build. 2021, 238, 110841. [Google Scholar] [CrossRef]
- Pasquier, P.; Marcotte, D. Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals. Appl. Energy 2020, 261, 114394. [Google Scholar] [CrossRef]
- Witte, H.J. Error analysis of thermal response tests. Appl. Energy 2013, 109, 302–311. [Google Scholar] [CrossRef]
- ISO 8302; Thermal Insulation-Determination of Steady State Thermal Resistance and Related Properties-Guarded Hot Plate Apparatus. International and Standards Organization: Geneva, Switzerland, 1991.
- ASTM D4611; Standard Test Method for Specific Heat of Rock and Soil. ASTM and International: West Conshohocken, PA, USA, 2016.
- Albers, A.; Huttenloch, P.; Zorn, R.; Steger, H.; Blum, P. Determination of thermal properties of grouting materials for borehole heat exchangers (BHE). Geotherm. Energy 2024, 12, 36. [Google Scholar] [CrossRef]
- Extremera-Jiménez, A.J.; Eliche-Quesada, D.; Gutiérrez-Montes, C.; Cruz-Peragón, F. Experimental work over borehole filling material to reinforce characterization and model validation of ground heat exchangers. Renew. Energy Power Qual. J. (REPQJ) 2021, 19, 109–114. [Google Scholar] [CrossRef]
- Zeng, H.; Diao, N.; Fang, Z. Heat transfer analysis of boreholes in vertical ground heat exchangers. Int. J. Heat. Mass. Transf. 2003, 46, 4467–4481. [Google Scholar] [CrossRef]
- Extremera-Jiménez, A.J.; Gutiérrez-Montes, C.; Casanova-Peláez, P.J.; Cruz-Peragón, F. Vertical ground heat exchanger parameter characterization through a compound design of experiments. Renew. Energy 2022, 199, 1361–1371. [Google Scholar] [CrossRef]
- Shin, E.; Kim, Y.; Kim, Y.; Lee, S.; Choi, W. Dynamic management of ground thermal response uncertainty through temporal analysis of parameter sensitivity. Appl. Energy 2024, 376, 124267. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Z.; Ji, Q.; Zhang, H.; Li, X. Thermal response tests for the identification of soil thermal parameters: A review. Renew. Energy 2021, 173, 1123–1135. [Google Scholar] [CrossRef]
- Choi, W.; Ooka, R. Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis. Renew. Energy 2016, 85, 306–318. [Google Scholar] [CrossRef]
- Bandos, T.V.; Montero, Á.; De Córdoba, P.F.; Urchueguía, J.F. Improving parameter estimates obtained from thermal response tests: Effect of ambient air temperature variations. Geothermics 2011, 40, 136–143. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, L.; Wang, S. Determination and analysis of parameters for an in-situ thermal response test. Energy Build. 2017, 149, 151–159. [Google Scholar] [CrossRef]
Vf (L/min) | Q (W) | λS (W/(m·K)) | CS (J/(m3·K))10−6 | Rb0 (m·K/W) | τloop (s) | εend (K)·10−2 | dT1 (K/W) 10−3 | dT2 (K/W) ·10−3 |
---|---|---|---|---|---|---|---|---|
15 (ref) | 4000 | 1.84 | 1.39 | 0.1115 | 873 | 7.02 | 2.4925 | 2.963 |
10 | 3510 | 1.93 (+5%) | 1.45 | 0.1129(+1.3%) | 1308 | 6.096 | 2.4227 | 2.822 |
20 | 4750 | 1.87 (+1.5%) | 1.4 | 0.1018(−10%) | 655 | 5.98 | 2.3906 | 2.905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Extremera-Jiménez, A.J.; Casanova-Peláez, P.J.; Yousif, C.; Cruz-Peragón, F. Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers. Sustainability 2025, 17, 5509. https://doi.org/10.3390/su17125509
Extremera-Jiménez AJ, Casanova-Peláez PJ, Yousif C, Cruz-Peragón F. Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers. Sustainability. 2025; 17(12):5509. https://doi.org/10.3390/su17125509
Chicago/Turabian StyleExtremera-Jiménez, Alejandro J., Pedro J. Casanova-Peláez, Charles Yousif, and Fernando Cruz-Peragón. 2025. "Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers" Sustainability 17, no. 12: 5509. https://doi.org/10.3390/su17125509
APA StyleExtremera-Jiménez, A. J., Casanova-Peláez, P. J., Yousif, C., & Cruz-Peragón, F. (2025). Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers. Sustainability, 17(12), 5509. https://doi.org/10.3390/su17125509