Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = vanadium oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3837 KiB  
Review
Recent Advances in the Application of VO2 for Electrochemical Energy Storage
by Yuxin He, Xinyu Gao, Jiaming Liu, Junxin Zhou, Jiayu Wang, Dan Li, Sha Zhao and Wei Feng
Nanomaterials 2025, 15(15), 1167; https://doi.org/10.3390/nano15151167 - 28 Jul 2025
Viewed by 174
Abstract
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO [...] Read more.
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO2) is distinguished by its key advantages, including high theoretical capacity, low cost, and strong structural designability. The diverse crystalline structures and plentiful natural reserves of VO2 offer a favorable foundation for facilitating charge transfer and regulating storage behavior during energy storage processes. This mini review provides an overview of the latest progress in VO2-based materials for energy storage applications, specifically highlighting their roles in lithium-ion batteries, zinc-ion batteries, photoassisted batteries, and supercapacitors. Particular attention is given to their electrochemical properties, structural integrity, and prospects for development. Additionally, it explores future development directions to offer theoretical insights and strategic guidance for ongoing research and industrial application of VO2. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Storage)
Show Figures

Figure 1

20 pages, 3251 KiB  
Article
Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets
by Feng Chen, Hao Li, Shuai Wang, Mao Chen, Wenbo Tang, Yufeng Guo, Yuekai Wen and Lingzhi Yang
Metals 2025, 15(8), 823; https://doi.org/10.3390/met15080823 - 23 Jul 2025
Viewed by 222
Abstract
There are many advantages of the smelting of vanadium–titanium magnetite pellets by hydrogen-based shaft furnace pre-reduction and electric arc furnace process, including high reduction efficiency, low carbon dioxide emission and high recovery of titanium and so on. However, vanadium–titanium magnetite pellets are highly [...] Read more.
There are many advantages of the smelting of vanadium–titanium magnetite pellets by hydrogen-based shaft furnace pre-reduction and electric arc furnace process, including high reduction efficiency, low carbon dioxide emission and high recovery of titanium and so on. However, vanadium–titanium magnetite pellets are highly susceptible to severe reduction disintegration when reduced in the gas-based shaft furnaces. H2 and CO are the primary reducing gas components in the gas-based shaft furnace process, which significantly influences the reduction behavior of vanadium–titanium magnetite pellets. In this study, the reduction disintegration behavior and reduction kinetics of vanadium–titanium magnetite under mixed H2–CO atmospheres at low temperatures (450–600 °C) were investigated. The differences in the reduction capacities and rates of H2 and CO on iron oxides and titanium–iron oxides were revealed, along with their impact on the reduction disintegration behavior of the pellets at low temperatures. At lower temperatures, CO exhibited a greater reducing capability for vanadium–titanium magnetite. As the reduction temperature increased, the reduction capacities of both H2 and CO improved; however, the reduction capacity of H2 was more significantly influenced by the temperature. The disparity in the reduction capacities of H2 and CO for vanadium–titanium magnetite pellets caused an inconsistent expansion rate in different regions of the pellet, increasing internal stress, contributing to a more severe reduction disintegration of vanadium–titanium magnetite pellets in the mixed H2–CO atmospheres. Full article
(This article belongs to the Special Issue Innovation in Efficient and Sustainable Blast Furnace Ironmaking)
Show Figures

Figure 1

16 pages, 1713 KiB  
Article
Mass and Heat Balance Model and Its Engineering Application for the Oxygen Blast Furnace Smelting Process of Vanadium–Titanium Magnetite
by Yun Huang, Mansheng Chu, Xian Gan, Shushi Zhang, Zhenyang Wang and Jianliang Zhang
Metals 2025, 15(7), 805; https://doi.org/10.3390/met15070805 - 18 Jul 2025
Viewed by 289
Abstract
The oxygen blast furnace (OBF) process presents a promising low-carbon pathway for the smelting of vanadium–titanium magnetite (VTM). This study develops an innovative mathematical model based on mass and heat balance principles, specifically tailored to the OBF smelting of VTM. The model systematically [...] Read more.
The oxygen blast furnace (OBF) process presents a promising low-carbon pathway for the smelting of vanadium–titanium magnetite (VTM). This study develops an innovative mathematical model based on mass and heat balance principles, specifically tailored to the OBF smelting of VTM. The model systematically investigates the effects of key parameters—including pulverized coal injection ratio, recycling gas volume, hydrogen content in the recycling gas, and charge composition—on furnace productivity, hearth activity, and the tuyere raceway zone. The results show that increasing the pulverized coal injection ratio slightly reduces productivity and theoretical flame temperature: for every 25 kg/tHM increase in the coal ratio, the theoretical flame temperature decreases by 21.95 °C; moreover, indirect reduction is enhanced and the heat distribution within the furnace is significantly improved. A higher recycling gas volume markedly increases productivity and optimizes hearth thermal conditions, accompanied by enhanced blast kinetic energy and an expanded tuyere raceway zone, albeit with a notable drop in combustion temperature. Increased hydrogen content in the recycling gas promotes productivity, but may weaken blast kinetic energy and reduce the stability of the raceway zone. Furthermore, a higher titanium content in the charge increases the difficulty of iron oxide reduction, resulting in lower CO utilization and reduced productivity. Full article
(This article belongs to the Special Issue Innovation in Efficient and Sustainable Blast Furnace Ironmaking)
Show Figures

Figure 1

12 pages, 872 KiB  
Article
Assessment of Radiation Attenuation Properties in Dental Implants Using Monte Carlo Method
by Ali Rasat, Selmi Tunc, Yigit Ali Uncu and Hasan Ozdogan
Bioengineering 2025, 12(7), 762; https://doi.org/10.3390/bioengineering12070762 - 14 Jul 2025
Viewed by 278
Abstract
This study investigated the radiation attenuation characteristics of commonly used dental implant materials across an energy spectrum relevant to dental radiology. Two titanium implants were examined, with densities of 4.428 g/cm3 and 4.51 g/cm3, respectively. The first consisted of 90.39% [...] Read more.
This study investigated the radiation attenuation characteristics of commonly used dental implant materials across an energy spectrum relevant to dental radiology. Two titanium implants were examined, with densities of 4.428 g/cm3 and 4.51 g/cm3, respectively. The first consisted of 90.39% titanium, 5.40% aluminum, and 4.21% vanadium, while the second comprised 58% titanium, 33% oxygen, 7% iron, 1% carbon, and 1% nitrogen. The third material was a zirconia implant (5Y form) composed of 94.75% zirconium dioxide, 5.00% yttrium oxide, and 0.25% aluminum oxide, exhibiting a higher density of 6.05 g/cm3. Monte Carlo simulations (MCNP6) and XCOM data were utilized to estimate photon source parameters, geometric configuration, and interactions with biological materials to calculate the half-value layer, mean free path, and tenth-value layer at varying photon energies. The results indicated that titanium alloys are well suited for low-energy imaging modalities such as CBCT and panoramic radiography due to their reduced artifact production. While zirconia implants demonstrated superior attenuation at higher energies (e.g., CT), their higher density may induce beam-hardening artifacts in low-energy systems. Future research should validate these simulation results through in vitro and clinical imaging and further explore the correlation between material-specific attenuation and CBCT image artifacts. Full article
Show Figures

Figure 1

19 pages, 2810 KiB  
Article
Integrated Compositional Modeling and Machine Learning Analysis of REE-Bearing Coal Ash from a Weathered Dumpsite
by Rashid Nadirov, Kaster Kamunur, Lyazzat Mussapyrova, Aisulu Batkal, Olesya Tyumentseva and Ardak Karagulanova
Minerals 2025, 15(7), 734; https://doi.org/10.3390/min15070734 - 14 Jul 2025
Viewed by 262
Abstract
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power [...] Read more.
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power generation using coal from the Ekibastuz Basin. A multi-method approach—comprising bulk chemical characterization, unsupervised clustering, X-ray diffraction (XRD), scanning electron microscopy (SEM), and supervised machine learning (ML)—was applied to identify consistent indicators of REE enrichment. While conventional regression models failed to predict individual REE concentrations accurately, ML algorithms consistently highlighted vanadium (V) as the most robust predictor of ΣREE across Random Forest, XGBoost, and LASSO. This suggests that V may act as a geochemical proxy for REE-bearing phases, potentially due to co-retention in amorphous or ferruginous matrices. Despite compositional similarity among many samples, XRD and SEM revealed marked variability in phase structure and crystallinity, underscoring the limitations of bulk oxide data alone. These findings demonstrate that REE behavior in ash cannot be predicted deterministically, but ML can be used to screen for informative compositional signals. The proposed workflow may support the preliminary classification and valorization of heterogeneous ash materials in secondary resource strategies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 6898 KiB  
Article
The Impact of Aluminum Doping on the Performance of MgV2O4 Spinel Cathodes for High-Rate Zinc-Ion Energy Storage
by He Lin, Zhiwen Wang and Yu Zhang
Molecules 2025, 30(13), 2833; https://doi.org/10.3390/molecules30132833 - 1 Jul 2025
Viewed by 377
Abstract
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, [...] Read more.
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, which enhanced the material’s structural stability and electrical conductivity. The doping of Al3+ mitigates the electrostatic interactions between Zn2+ ions and the cathode, thereby improving ion diffusion and facilitating efficient charge/discharge processes. While pseudocapacitive behavior plays a dominant role in fast charge storage, the diffusion of Zn2+ within the bulk material remains crucial for long-term performance and stability. Our findings demonstrate that Al-MgV2O4 exhibits enhanced Zn2+ diffusion kinetics and robust structural integrity under high-rate cycling conditions, contributing to its high electrochemical performance. The Al-MgVO cathode retains a capacity of 254.3 mAh g−1 at a high current density of 10 A g−1 after 1000 cycles (93.6% retention), and 186.8 mAh g−1 at 20 A g−1 after 2000 cycles (90.2% retention). These improvements, driven by enhanced bulk diffusion and the stabilization of the crystal framework through Al3+ doping, make it a promising candidate for high-rate energy storage applications. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

15 pages, 5572 KiB  
Article
Enhancing the Performance of LLO Through Vanadium Doping and Abundant Exposed (010) Planes in Secondary Particles
by Shenghua Yuan, Chengwen Ren, Ziwei Liu, Yu Chen and Wenhui Wang
Nanomaterials 2025, 15(13), 1017; https://doi.org/10.3390/nano15131017 - 1 Jul 2025
Viewed by 310
Abstract
Lithium-rich layered oxide (LLO) has received extensive attention from researchers due to its high initial discharge capacity (≥250 mAh g−1). However, defects such as its high initial irreversible capacity, voltage decay, and poor rate performance have severely limited its commercialization. These [...] Read more.
Lithium-rich layered oxide (LLO) has received extensive attention from researchers due to its high initial discharge capacity (≥250 mAh g−1). However, defects such as its high initial irreversible capacity, voltage decay, and poor rate performance have severely limited its commercialization. These issues arise because the Li2MnO3 component in LLO is activated during the initial cycle, leading to the participation of lattice oxygen anions (O2−) in redox reactions. This results in irreversible oxygen loss (O2) and subsequent structural phase transitions. To address these challenges, this study focuses on Li1.2Ni0.13Co0.13Mn0.54O2 as the host material, utilizing abundant exposed (010) plane secondary particles and employing a vanadium (V) doping strategy to enhance electrochemical performance. The V forms strong V-O bonds with the lattice oxygen, effectively suppressing irreversible oxygen loss and improving structural stability. The results demonstrate that the LLO achieves the best electrochemical performance as the doping amount is 1 mol%, and the capacity retention improves from 74.5% (undoped) to 86% (V-doped) after 140 cycles at 0.5 C. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

11 pages, 1091 KiB  
Article
Oxidation of 4-Methylpyridine on Vanadium-Based Catalysts Modified with Titanium and Manganese
by Kairat Kadirbekov, Nurdaulet Buzayev, Yersin Tussupkaliyev and Mels Oshakbayev
Catalysts 2025, 15(7), 625; https://doi.org/10.3390/catal15070625 - 25 Jun 2025
Viewed by 543
Abstract
Current research on the synthesis of isonicotinic acid (INA) has focused on the development of catalysts by mixing transition metal oxides such as vanadium, titanium and zirconium in the desired molar ratio. These materials have good catalytic activity (CA) but have drawbacks, including [...] Read more.
Current research on the synthesis of isonicotinic acid (INA) has focused on the development of catalysts by mixing transition metal oxides such as vanadium, titanium and zirconium in the desired molar ratio. These materials have good catalytic activity (CA) but have drawbacks, including low resistance to deactivation and limited ability to control reaction selectivity. In the present study, two- and three-component catalysts containing vanadium were successfully synthesized and their compositions and properties were studied. The experimental results showed that the efficiency of V-Ti-Mn-O catalyst was superior to V-Ti-O. Selectivity analysis showed that V-Ti-Mn-O was the most efficient catalyst, reaching a maximum value of 67.17% at 320 °C. Scanning electron microscope (SEM), Raman spectroscopy and X-ray diffraction (XRD) were used to characterize the catalysts. The corresponding experimental results showed that the superior performance of the V-Ti-Mn-O catalyst was attributed to both the smaller size of the catalyst particles and their more uniform distribution. In the oxidation of 4-methylpyridine (4-MP), the V-Ti-O catalyst showed lower CA and stability compared to the V-Ti-Mn-O catalyst, which can be attributed to its limited CA and potential deactivation at higher temperatures, probably due to excessive oxidation. Full article
Show Figures

Graphical abstract

15 pages, 5225 KiB  
Article
Reduction Disintegration Behavior and Mechanism of Vanadium–Titanium Magnetite Pellets During Hydrogen-Based Reduction
by Feng Chen, Hao Li, Shuai Wang, Mao Chen, Wenbo Tang, Yufeng Guo, Yuekai Wen and Lingzhi Yang
Metals 2025, 15(7), 700; https://doi.org/10.3390/met15070700 - 24 Jun 2025
Viewed by 304
Abstract
Hydrogen-based reduction followed by the electric furnace smelting of vanadium–titanium magnetite pellets offers notable advantages, including high reduction efficiency, reduced energy consumption, lower CO2 emissions, and improved titanium recovery. However, the disintegration of pellets during the reduction process presents a major barrier [...] Read more.
Hydrogen-based reduction followed by the electric furnace smelting of vanadium–titanium magnetite pellets offers notable advantages, including high reduction efficiency, reduced energy consumption, lower CO2 emissions, and improved titanium recovery. However, the disintegration of pellets during the reduction process presents a major barrier to industrial application. In this study, the reduction disintegration behavior and underlying mechanisms under hydrogen-based conditions were systematically investigated. The most severe disintegration was observed at 500 °C in an atmosphere of H2/(H2 + CO) = 0.25, where titano–magnetite [(Fe,Ti)3O4] was identified as the dominant phase. The complete transformation from titano–hematite [(Fe,Ti)2O3] to titano–magnetite occurred within 30 min of reduction. Extended reduction (60 min) further intensified disintegration (RDI−0.5mm = 81.75%) without the formation of metallic iron. Microstructural analysis revealed that the disintegration was primarily driven by volumetric expansion resulting from the significant increase in the titanium–iron oxide unit cell volume. Raising the reduction temperature facilitated the formation of metallic iron and suppressed disintegration. These findings provide essential guidance for optimizing reduction parameters to minimize structural degradation during the hydrogen-based reduction of vanadium–titanium magnetite pellets. Full article
(This article belongs to the Special Issue Recent Developments in Ironmaking)
Show Figures

Figure 1

13 pages, 1716 KiB  
Article
Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony
by Ibrahim Aslan Resitoglu, Ali Keskin, Bugra Karaman and Himmet Ozarslan
Processes 2025, 13(6), 1914; https://doi.org/10.3390/pr13061914 - 17 Jun 2025
Cited by 1 | Viewed by 377
Abstract
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, [...] Read more.
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, among which catalyst poisoning is a major concern. Toxic metals such as sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) can degrade catalyst activity and lead to deactivation. Poisoned catalysts suffer from reduced conversion rates and premature deactivation before reaching their intended operational lifespan. In particular, calcium poisoning results in the formation of CaO (calcium oxide), which reacts to produce a CaWO4 compound that severely impairs SCR performance. This study investigates the role of antimony (Sb) in mitigating Ca-induced deactivation in HC-SCR of NOx. Five catalysts with varying Sb loadings were prepared and tested to evaluate Sb’s effect on NOx conversion rate at a space velocity of 30,000 h−1. The results demonstrate that Sb effectively suppresses Ca deactivation, enhancing the conversion rate across all engine test conditions. The highest NOx conversion rate (95.88%) was achieved using a catalyst with 3% Sb. Full article
(This article belongs to the Special Issue Combustion Characteristics and Emission Control of Blended Fuels)
Show Figures

Figure 1

14 pages, 1413 KiB  
Review
Advances in the Exploration of Coordination Complexes of Vanadium in the Realm of Alzheimer’s Disease: A Mini Review
by Jesús Antonio Cruz-Navarro, Luis Humberto Delgado-Rangel, Ricardo Malpica-Calderón, Arturo T. Sánchez-Mora, Hugo Ponce-Bolaños, Andrés Felipe González-Oñate, Jorge Alí-Torres, Raúl Colorado-Peralta, Daniel Canseco-Gonzalez, Viviana Reyes-Márquez and David Morales-Morales
Molecules 2025, 30(12), 2547; https://doi.org/10.3390/molecules30122547 - 11 Jun 2025
Viewed by 582
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss and limited therapeutic options. Metal-based drugs have emerged as promising alternatives in the search for effective treatments, and vanadium coordination complexes have shown significant potential due to their neuroprotective [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss and limited therapeutic options. Metal-based drugs have emerged as promising alternatives in the search for effective treatments, and vanadium coordination complexes have shown significant potential due to their neuroprotective and anti-aggregant properties. This review explores the advances in the development of vanadium-based metallodrugs for AD, focusing on their ability to modulate amyloid-beta (Aβ) aggregation, oxidative stress, and neuroinflammation. Recent in vitro and in vivo studies highlight the efficacy of oxovanadium (IV) and peroxovanadium (V) complexes in inhibiting Aβ fibril formation and reducing neuronal toxicity. Additionally, the interaction of vanadium complexes with key biological targets, such as peroxisome proliferator-activated receptor gamma (PPARγ) and protein-tyrosine phosphatase 1B (PTP1B), suggests a multifaceted therapeutic approach. While these findings underscore the potential of vanadium compounds as innovative treatments for AD, further research is needed to optimize their bioavailability, selectivity, and safety for clinical applications. Full article
Show Figures

Graphical abstract

17 pages, 1888 KiB  
Article
The Orthovanadate-Catalyzed Formation of a Thermally Inert and Low-Redox-Potential Melanin
by Eric VanArsdale, Olufolasade Atoyebi, Okhil Nag, Matthew Laskoski, Evan Glaser, Eunkeu Oh, Gary J. Vora and Zheng Wang
Int. J. Mol. Sci. 2025, 26(12), 5537; https://doi.org/10.3390/ijms26125537 - 10 Jun 2025
Viewed by 385
Abstract
Catechol-like compounds are found throughout biology in the form of both redox-active and metal-binding functional groups. Within the marine environment, catechol groups are known to coordinate strongly with vanadate and ferric ions, and this binding is regulated through redox mechanisms. While investigating marine [...] Read more.
Catechol-like compounds are found throughout biology in the form of both redox-active and metal-binding functional groups. Within the marine environment, catechol groups are known to coordinate strongly with vanadate and ferric ions, and this binding is regulated through redox mechanisms. While investigating marine melanin formation in vitro, we found that DOPA, a catechol-containing amino acid, reacts with both metals differently when provided with sulfite, a weak reductant, and selenite, a weak oxidant. Both compounds interacted with the DOPA–vanadium complex, but only selenite, the more redox-labile chalcogenide, led to the creation of melanin particulates. When DOPA, vanadate, and selenite are present together, a metal-binding spectra shift and a melanin variant are rapidly observed. This variant was found to form large, elongated filaments with a low carboxylic acid content and a unique electron paramagnetic resonance signature. When compared to enzymatically produced melanin, this chemically synthesized variant was more thermally and biologically inert, exhibiting a lower redox activity. The results demonstrate that the regulation of the redox environment from metal–catechol interactions can help to control both the chemical and physical properties of melanin aggregates, suggesting a scalable and cell- and enzyme-free synthesis pathway for applications that may require inert materials of strict composition. Full article
(This article belongs to the Special Issue Melanin and Other Pigments: Function, Synthesis and Characterization)
Show Figures

Figure 1

17 pages, 3338 KiB  
Article
Multimode Switching Broadband Terahertz Metamaterial Absorbing Micro-Devices Based on Graphene and Vanadium Oxide
by Xin Ning, Qianju Song, Zao Yi, Jianguo Zhang and Yougen Yi
Nanomaterials 2025, 15(11), 867; https://doi.org/10.3390/nano15110867 - 4 Jun 2025
Viewed by 421
Abstract
In this paper, we propose a multi-mode switchable ultra-wideband terahertz absorber based on patterned graphene and VO2 by designing a graphene pattern composed of a large rectangle rotated 45° in the center and four identical small rectangles in the periphery, as well [...] Read more.
In this paper, we propose a multi-mode switchable ultra-wideband terahertz absorber based on patterned graphene and VO2 by designing a graphene pattern composed of a large rectangle rotated 45° in the center and four identical small rectangles in the periphery, as well as a VO2 layer pattern composed of four identical rectangular boxes and small rectangles embedded in the dielectric layer. VO2 can regulate conductivity via temperature, the Fermi level of graphene depends on the external voltage, and the graphene layer and VO2 layer produce resonance responses at different frequencies, resulting in high absorption. The proposed absorption microdevices have three modes: Mode 1 (2.52–4.52 THz), Mode 2 (3.91–9.66 THz), and Mode 3 (2.14–10 THz), which are low-band absorption, high-band absorption, and ultra-wideband absorption. At 2.96 THz in Mode 1, the absorption rate reaches 99.98%; at 8.04 THz in Mode 2, the absorption rate reaches 99.76%; at 5.04 THz in Mode 3, the absorption rate reaches 99.85%; and at 8.4 THz, the absorption rate reaches 99.76%. We explain the absorption mechanism by analyzing the electric field distribution and local plasma resonance, and reveal the high-performance absorption mechanism by using the relative impedance theory. In addition, absorption microdevices have the advantages of polarization insensitivity, incident angle insensitivity, multi-mode switching, ultra-wideband absorption, large manufacturing tolerance, etc., and have potential research and application value in electromagnetic stealth devices, filters and optical switches. Full article
Show Figures

Figure 1

18 pages, 2275 KiB  
Article
In Situ Phase Separation Strategy to Construct Zinc Oxide Dots-Modified Vanadium Nitride Flower-like Heterojunctions as an Efficient Sulfur Nanoreactor for Lithium-Sulfur Batteries
by Ningning Chen, Wei Zhou, Minzhe Chen, Ke Yuan, Haofeng Zuo, Aocheng Wang, Dengke Zhao, Nan Wang and Ligui Li
Materials 2025, 18(11), 2639; https://doi.org/10.3390/ma18112639 - 4 Jun 2025
Viewed by 400
Abstract
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower [...] Read more.
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower structure with high specific surface area and pores improves active site exposure and electron/mass transfer. In situ phase separation enriches the Zn-QDs-VN interface, addressing the issues of uneven distribution and interface reduction of Zn-QDs-VN. Further theoretical computations reveal that ZnO-QDs-VN with optimized intermediate spin states can constitute a stable LiS* bond sequence, which can conspicuously facilitate the adsorption and conversion of LiPSs and reduce the battery reaction energy barrier. Therefore, the ZnO-QDs-VN@S cathode shows a high initial specific capacity of 1109.6 mAh g−1 at 1.0 C and long cycle stability (maintaining 984.2 mAh g−1 after 500 cycles). Under high S loading (8.5 mg cm−2) and lean electrolyte conditions (E/S = 6.5 μL mg−1), it also exhibits a high initial area capacity (10.26 mAh cm−2) at 0.2 C. The interfacial synergistic effect accelerates the adsorption and conversion of LiPSs and reduces the energy barriers in cell reactions. The study provides a new method for designing heterojunctions to achieve high-performance LSBs. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Graphical abstract

19 pages, 5407 KiB  
Article
Prediction of Reduction Recovery of Iron and Vanadium Oxides in Low-Grade Vanadium–Titanium Magnetite Based on Response Surface Model
by Xueting Jiang, Hao Wu and Aijun Deng
Metals 2025, 15(6), 595; https://doi.org/10.3390/met15060595 - 27 May 2025
Viewed by 453
Abstract
In this study, the effects of reduction temperature and time on the reduction rates of iron and vanadium oxides in low-grade vanadium–titanium magnetite (VTM) were investigated. Based on the results of physical experiments, both the response surface method (RSM) and central composite design [...] Read more.
In this study, the effects of reduction temperature and time on the reduction rates of iron and vanadium oxides in low-grade vanadium–titanium magnetite (VTM) were investigated. Based on the results of physical experiments, both the response surface method (RSM) and central composite design (CCD) were used to fit the prediction model of the reduction rate of iron and vanadium oxides in low-grade VTM. The results of the RSM prediction model show that under the condition of a sufficient reducing medium, affected by the high-temperature products, such as silicates and magnesium aluminates, the reduction rate of iron and vanadium oxides in low-grade VTM will first increase and then decrease. This indicates that a single factor cannot maximize the reduction efficiency of metal oxides. The results of the RSM prediction model show that the correlation fitting coefficient and correction fitting coefficient of the model are greater than 99% and 98%, respectively. The F-value is 150.05 and 176.19, respectively, and the p-value is less than 0.0001. This indicates that the RSM prediction model has high accuracy and reliability. After parameter optimization of the RSM prediction model, when the reduction temperature is 1446 °C~1498 °C and the reduction time is 43 min~60 min, the maximum reduction rates of iron oxide and vanadium oxide in iron ore can reach 92.93% and 69.20%, respectively. The study of reaction kinetics shows that the reduction processes of iron and vanadium oxides in VTM are controlled by three-dimensional diffusion conditions. The apparent activation energies of the reactions are 86.76 kJ/mol and 90.30 kJ/mol, respectively. Full article
Show Figures

Figure 1

Back to TopTop