The Orthovanadate-Catalyzed Formation of a Thermally Inert and Low-Redox-Potential Melanin
Abstract
:1. Introduction
2. Results
2.1. Selenite Modifies Vanadate–DOPA Interactions and Polymerization Rates
2.2. Physical and Optical Characterization of the Novel Melanin Nanoaggregates
2.3. XPS Characterization of Purified Powder
2.4. Redox and Electronic Characterization
2.5. Thermal Characterization Indicates Enhanced Stability
2.6. Reduced Toxicity of Melanin Variants to Cells
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. DOPA–Metal Interactions and Analysis
4.3. Melanin Purification by Acid–Base Cycling
4.4. XPS Analysis and Curve Fitting
4.5. Characterization Assays
4.5.1. ABTS Reduction Assay
4.5.2. Hydrogen Peroxide Formation Assay
4.5.3. Ferric Reducing Antioxidant Power (FRAP) Assay
4.6. Electrochemical-Mediated Probing
4.7. Electron Paramagnetic Resonance (EPR) Analysis of Melanin Powders
4.8. Thermogravitometric Analysis (TGA) of Char Yield
4.9. HEK293 Mammalian Cell Toxicity Test
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
ANOVA | Analysis of variance |
DHI | 5,6-dihydroxyindole |
DHICA | 5,6-dihydroxyindole-2-carboxylic acid |
DLS | Dynamic light scattering |
DOPA | 3,4-dihydroxyphenylalanine |
DPBS | Dulbecco’s phosphate-buffered saline |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EPR | Electron paramagnetic resonance |
FC | Ferrocene dimethanol |
FRAP | Ferric reducing absorption power |
LB | Lysogeny broth (also known as Luria–Bertani broth) |
MM9v3 | Marine M9 medium version 3 |
MTS | 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt |
PCA | Phenazine-1-carboxylic acid |
SA:V | Surface area-to-volume |
TEM | Transmission electron microscopy |
UV-Vis | Ultraviolet-to-visible light spectrum |
XPS | X-ray photoelectron spectroscopy |
References
- d’Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Buehler, M. Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew. Chem. Int. Ed. 2020, 59, 11196–11205. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Pakdel, E.; Liang, Y.; Kim, Y.J.; Liu, D.; Sun, L.; Wang, X. Natural Eumelanin and Its Derivatives as Multifunctional Materials for Bioinspired Applications: A Review. Biomacromolecules 2019, 20, 4312–4331. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kang, M.; Tschirhart, T.; Malo, M.; Dadachova, E.; Cao, G.; Yin, J.-J.; Bentley, W.E.; Wang, Z.; Payne, G.F. Spectroelectrochemical reverse engineering DemonstratesThat Melanin’s redox and radical scavenging activities are linked. Biomacromolecules 2017, 18, 4084–4098. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Simon, J.D. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin. J. Phys. Chem. B 2007, 111, 7938–7947. [Google Scholar] [CrossRef]
- Xie, W.; Dhinojwala, A.; Gianneschi, N.C.; Shawkey, M.D. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem. Rev. 2024, 124, 7165–7213. [Google Scholar] [CrossRef]
- Xiao, M.; Shawkey, M.D.; Dhinojwala, A. Bioinspired melanin-based optically active materials. Adv. Opt. Mater. 2020, 8, 2000932. [Google Scholar] [CrossRef]
- Shawkey, M.D.; Hill, G.E. Significance of a basal melanin layer to production of non-iridescent structural plumage color: Evidence from an amelanotic Steller’s jay (Cyanocitta stelleri). J. Exp. Biol. 2006, 209, 1245–1250. [Google Scholar] [CrossRef]
- Le, L.; Sirés-Campos, J.; Raposo, G.; Delevoye, C.; Marks, M.S. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr. Comp. Biol. 2021, 61, 1517–1545. [Google Scholar] [CrossRef]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar] [CrossRef]
- Kang, M.; Kim, E.; Temoçin, Z.l.; Li, J.; Dadachova, E.; Wang, Z.; Panzella, L.; Napolitano, A.; Bentley, W.E.; Payne, G.F. Reverse engineering to characterize redox properties: Revealing melanin’s redox activity through mediated electrochemical probing. Chem. Mater. 2018, 30, 5814–5826. [Google Scholar] [CrossRef]
- Tran-Ly, A.N.; Reyes, C.; Schwarze, F.W.; Ribera, J. Microbial production of melanin and its various applications. World J. Microbiol. Biotechnol. 2020, 36, 170. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Tschirhart, T.; Compton, J.; Hennessa, T.M.; VanArsdale, E.; Wang, Z. Rapid, high-titer biosynthesis of melanin using the marine bacterium Vibrio natriegens. Front. Bioeng. Biotechnol. 2023, 11, 1239756. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tschirhart, T.; Schultzhaus, Z.; Kelly, E.E.; Chen, A.; Oh, E.; Nag, O.; Glaser, E.R.; Kim, E.; Lloyd, P.F.; et al. Melanin produced by the fast-growing marine bacterium Vibrio natriegens through heterologous biosynthesis: Characterization and application. Appl. Environ. Microbiol. 2020, 86, e02749-19. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, X.; McCallum, N.C.; Hu, Z.; Ni, Q.Z.; Kapoor, U.; Heil, C.M.; Cay, K.S.; Zand, T.; Mantanona, A.J.; et al. Unraveling the structure and function of melanin through synthesis. J. Am. Chem. Soc. 2021, 143, 2622–2637. [Google Scholar] [CrossRef]
- Harrington, M.J.; Masic, A.; Holten-Andersen, N.; Waite, J.H.; Fratzl, P. Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings. Science 2010, 328, 216–220. [Google Scholar] [CrossRef]
- Mesko, M.; Xiang, L.; Bohle, S.; Hwang, D.S.; Zeng, H.; Harrington, M.J. Catechol-Vanadium Binding Enhances Cross-Linking and Mechanics of a Mussel Byssus Coating Protein. Chem. Mater. 2021, 33, 6530–6540. [Google Scholar] [CrossRef]
- Yu, J.; Wei, W.; Danner, E.; Ashley, R.K.; Israelachvili, J.N.; Waite, J.H. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 2011, 7, 588–590. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Hong, Y.; Lim, C.; Lee, D.W.; Oh, D.X.; Waite, J.H.; Hwang, D.S. Essential Role of Thiols in Maintaining Stable Catecholato-Iron Complexes in Condensed Materials. Chem. Mater. 2022, 34, 5074–5083. [Google Scholar] [CrossRef]
- Hirata, J.; Michibata, H. Valency of vanadium in the vanadocytes of Ascidia gemmata separated by density-gradient centrifugation. J. Exp. Zool. 1991, 257, 160–165. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lin, D.-J.; Pan, H.-R.; Wu, J.; Liu, H.-K.; Hsu, H.-F. Reversible Conversion of Disulfide/Dithiolate Occurring at a Vanadium(IV) Center: A Biomimetic System for Redox Exchange in Vanabin. Inorg. Chem. 2022, 61, 19882–19889. [Google Scholar] [CrossRef]
- Nicolai, M.; Gonçalves, G.; Natalio, F.; Humanes, M. Biocatalytic formation of synthetic melanin: The role of vanadium haloperoxidases, L-DOPA and iodide. J. Inorg. Biochem. 2011, 105, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H.; Klein, E.M.; Vengosh, A. Global biogeochemical cycle of vanadium. Proc. Natl. Acad. Sci. USA 2017, 114, E11092–E11100. [Google Scholar] [CrossRef] [PubMed]
- Sever, M.J.; Wilker, J.J. Visible absorption spectra of metal–catecholate and metal–tironate complexes. Dalton Trans. 2004, 7, 1061–1072. [Google Scholar] [CrossRef]
- Wang, D.; Wilhelmy, S.A.S. Vanadium speciation and cycling in coastal waters. Mar. Chem. 2009, 117, 52–58. [Google Scholar] [CrossRef]
- Bura-Nakić, E.; Knežević, L.; Mandić, J. Chromatographic and spectrophometric studies of vanadate (+V) reduction by 3–mercaptopropionic acid. J. Inorg. Biochem. 2022, 230, 111747. [Google Scholar] [CrossRef]
- Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016, 11, 821–841. [Google Scholar] [CrossRef]
- Micillo, R.; Panzella, L.; Iacomino, M.; Prampolini, G.; Cacelli, I.; Ferretti, A.; Crescenzi, O.; Koike, K.; Napolitano, A.; d’Ischia, M. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Sci. Rep. 2017, 7, 41532. [Google Scholar] [CrossRef]
- Natalio, F.; André, R.; Pihan, S.A.; Humanes, M.; Wever, R.; Tremel, W. V2O5 nanowires with an intrinsic iodination activity leading to the formation of self-assembled melanin-like biopolymers. J. Mater. Chem. 2011, 21, 11923–11929. [Google Scholar] [CrossRef]
- Canossa, S.; Predieri, G.; Graiff, C. Mild Synthesis and Structural Characterization of a Novel Vanadyl Selenite-Hydrogen Selenite Phase, Na[VO(SeO3)(HSeO3)]·1,5H2O. Crystals 2018, 8, 215. [Google Scholar] [CrossRef]
- Paulin, J.V.; McGettrick, J.D.; Graeff, C.F.O.; Mostert, A.B. Melanin system composition analyzed by XPS depth profiling. Surf. Interfaces 2021, 24, 101053. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.P.; Zong, G.; Kim, E.; Tsao, C.Y.; VanArsdale, E.; Wang, L.X.; Bentley, W.E.; Payne, G.F. Interactive materials for bidirectional redox-based communication. Adv. Mater. 2021, 33, 2007758. [Google Scholar] [CrossRef] [PubMed]
- Manini, P.; Lino, V.; Franchi, P.; Gentile, G.; Sibillano, T.; Giannini, C.; Picardi, E.; Napolitano, A.; Valgimigli, L.; Chiappe, C.; et al. A Robust Fungal Allomelanin Mimic: An Antioxidant and Potent π-Electron Donor with Free-Radical Properties that can be Tuned by Ionic Liquids. ChemPlusChem 2019, 84, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Dysart, J.L.; Wolfgang, J.D.; Smith, A.; Atoyebi, O.F.; Wallace, J.M.; Maza, W.A.; Wang, Z.; Laskoski, M. Characterization of Eumelanin as an Additive in High-Temperature Phthalonitrile-Based Resin Blends. Macromol. Chem. Phys. 2023, 224, 2300074. [Google Scholar] [CrossRef]
- HILL, H.Z.; LI, W.; XIN, P.; MITCHELL, D.L. Melanin: A Two Edged Sword? Pigment. Cell Res. 1997, 10, 158–161. [Google Scholar] [CrossRef]
- Korytowski, W.; Pilas, B.; Sarna, T.; Kalyanaraman, B. Photoinduced generation of hydrogen peroxide and hydroxyl radicals in melanins. Photochem. Photobiol. 1987, 45, 185–190. [Google Scholar] [CrossRef]
- Takeuchi, S.; Zhang, W.; Wakamatsu, K.; Ito, S.; Hearing, V.J.; Kraemer, K.H.; Brash, D.E. Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin. Proc. Natl. Acad. Sci. USA 2004, 101, 15076–15081. [Google Scholar] [CrossRef]
- Park, J.P.; Song, I.T.; Lee, J.; Ryu, J.H.; Lee, Y.; Lee, H. Vanadyl–catecholamine hydrogels inspired by ascidians and mussels. Chem. Mater. 2015, 27, 105–111. [Google Scholar] [CrossRef]
- Panzella, L.; Gentile, G.; D’Errico, G.; Della Vecchia, N.F.; Errico, M.E.; Napolitano, A.; Carfagna, C.; d’Ischia, M. Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angew. Chem. 2013, 125, 12684–12687. [Google Scholar] [CrossRef]
- Wang, S.; Chen, C.-Y.; Rzasa, J.R.; Tsao, C.-Y.; Li, J.; VanArsdale, E.; Kim, E.; Zakaria, F.R.; Payne, G.F.; Bentley, W.E. Redox-enabled electronic interrogation and feedback control of hierarchical and networked biological systems. Nat. Commun. 2023, 14, 8514. [Google Scholar] [CrossRef]
- Motabar, D.; Li, J.; Wang, S.; Tsao, C.Y.; Tong, X.; Wang, L.X.; Payne, G.F.; Bentley, W.E. Simple, rapidly electroassembled thiolated PEG-based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnol. Bioeng. 2021, 118, 2744–2758. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; McCallum, N.C.; Ni, Q.Z.; Li, W.; Boyce, H.; Mao, H.; Zhou, X.; Sun, H.; Thompson, M.P.; Battistella, C.; et al. Selenomelanin: An abiotic selenium analogue of pheomelanin. J. Am. Chem. Soc. 2020, 142, 12802–12810. [Google Scholar] [CrossRef]
- Johansson, L.; Gafvelin, G.; Arnér, E.S.J. Selenocysteine in proteins—Properties and biotechnological use. Biochim. Biophys. Acta (BBA)–Gen. Subj. 2005, 1726, 1–13. [Google Scholar] [CrossRef]
- VanArsdale, E.; Kelly, E.; Sayer, C.V.; Vora, G.J.; Tschirhart, T. Engineering xylose induction in Vibrio natriegens for biomanufacturing applications. Biotechnol. Bioeng. 2024, 121, 3572–3581. [Google Scholar] [CrossRef]
- Walker, K.T.; Li, I.S.; Keane, J.; Goosens, V.J.; Song, W.; Lee, K.-Y.; Ellis, T. Self-pigmenting textiles grown from cellulose-producing bacteria with engineered tyrosinase expression. Nat. Biotechnol. 2025, 43, 345–354. [Google Scholar] [CrossRef]
- Sono, K.; Lye, D.; Moore, C.A.; Boyd, W.C.; Gorlin, T.A.; Belitsky, J.M. Melanin-Based Coatings as Lead-Binding Agents. Bioinorg. Chem. Appl. 2012, 2012, 361803. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Wu, D.; Zhou, W.; Wang, P.; Gong, J.; Yang, J.; Xia, X. Melanin/melanin-like nanoparticles in tumor photothermal and targeted therapies. Int. J. Pharm. 2025, 672, 125354. [Google Scholar] [CrossRef]
- Ju, K.-Y.; Lee, J.W.; Im, G.H.; Lee, S.; Pyo, J.; Park, S.B.; Lee, J.H.; Lee, J.-K. Bio-Inspired, Melanin-Like Nanoparticles as a Highly Efficient Contrast Agent for T1-Weighted Magnetic Resonance Imaging. Biomacromolecules 2013, 14, 3491–3497. [Google Scholar] [CrossRef]
DOPA Melanin Control | Vanadate–DOPA Melanin | Selenite–Vanadate DOPA Melanin | |
---|---|---|---|
carbon | 64.99 ± 0.08 | 65.82 ± 1.20 | 64.62 ± 0.35 |
nitrogen | 8.58 ± 0.22 | 7.57 ± 0.13 | 7.82 ± 0.08 |
oxygen | 24.86 ± 0.13 | 25.24 ± 1.36 | 19.97 ± 0.07 |
sodium | 0.16 ± 0.04 | 0.15 ± 0.04 | 2.50 ± 0.95 |
chlorine | 1.43 ± 0.39 | 1.23 ± 0.33 | 4.50 ± 0.70 |
selenium | ND | ND | 0.61 ± 0.08 |
DOPA Melanin Control | Vanadate–DOPA Melanin | Selenite–Vanadate DOPA Melanin | |
---|---|---|---|
C/N | 7.58 ± 0.18 | 8.70 ± 0.31 | 8.26 ± 0.13 |
C/O | 2.61 ± 0.01 | 2.61 ± 0.19 | 3.24 ± 0.01 |
O/N | 2.90 ± 0.06 | 3.34 ± 0.12 | 2.55 ± 0.04 |
DOPA Melanin Control | Vanadate–DOPA Melanin | Selenite–Vanadate DOPA Melanin | |
---|---|---|---|
C-hydrocarbon | 62.30 ± 0.85 | 59.15 ± 1.20 | 63.65 ± 1.20 |
C-heteroaromatic | 24.85 ± 1.20 | 29.20 ± 1.13 | 23.70 ± 0.99 |
C-carboxylate | 12.85 ± 0.35 | 11.65 ± 2.33 | 12.65 ± 0.21 |
O-hydroxyl | 18.90 ± 1.27 | 17.10 ± 2.40 | 48.75 ± 4.03 |
O-carboxyl | 81.10 ± 1.27 | 82.90 ± 2.40 | 51.25 ± 4.03 |
N-organic | 92.40 ± 0.57 | 93.65 ± 0.78 | 96.00 ± 0.85 |
N-ammonium | 7.60 ± 0.57 | 6.35 ± 0.78 | 4.00 ± 0.85 |
Cl-salt | 45.05 ± 13.79 | 79.75 ± 2.47 | 55.00 ± 52.32 |
Cl-organic | 54.95 ± 13.79 | 20.25 ± 2.47 | 45.00 ± 52.32 |
Selenite (mM) | T (°C) 5% | T (°C) 25% | T (°C) 50% | T (°C) Peak |
---|---|---|---|---|
0 | 103.79 ± 18.06 | 328.47 ± 49.83 | 852.93 ± 3.18 | 915.75 ± 53.63 |
12.5 | 91.73 ± 4.92 | 314.42 ± 6.27 | 847.39 ± 14.39 | 211.56 ± 2.62 |
25 | 89.78 ± 7.46 | 320.09 ± 17.52 | 872.19 ± 7.82 | 84.14 ± 32.31 |
50 | 107.22 ± 5.18 | 302.63 ± 49.65 | 794.02 ± 29.04 | 856.69 ± 25.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
VanArsdale, E.; Atoyebi, O.; Nag, O.; Laskoski, M.; Glaser, E.; Oh, E.; Vora, G.J.; Wang, Z. The Orthovanadate-Catalyzed Formation of a Thermally Inert and Low-Redox-Potential Melanin. Int. J. Mol. Sci. 2025, 26, 5537. https://doi.org/10.3390/ijms26125537
VanArsdale E, Atoyebi O, Nag O, Laskoski M, Glaser E, Oh E, Vora GJ, Wang Z. The Orthovanadate-Catalyzed Formation of a Thermally Inert and Low-Redox-Potential Melanin. International Journal of Molecular Sciences. 2025; 26(12):5537. https://doi.org/10.3390/ijms26125537
Chicago/Turabian StyleVanArsdale, Eric, Olufolasade Atoyebi, Okhil Nag, Matthew Laskoski, Evan Glaser, Eunkeu Oh, Gary J. Vora, and Zheng Wang. 2025. "The Orthovanadate-Catalyzed Formation of a Thermally Inert and Low-Redox-Potential Melanin" International Journal of Molecular Sciences 26, no. 12: 5537. https://doi.org/10.3390/ijms26125537
APA StyleVanArsdale, E., Atoyebi, O., Nag, O., Laskoski, M., Glaser, E., Oh, E., Vora, G. J., & Wang, Z. (2025). The Orthovanadate-Catalyzed Formation of a Thermally Inert and Low-Redox-Potential Melanin. International Journal of Molecular Sciences, 26(12), 5537. https://doi.org/10.3390/ijms26125537