Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = vanZ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 388 KB  
Article
Occurrence of Antibiotic Resistance in Lacticaseibacillus paracasei and Lactiplantibacillus plantarum Strains Isolated from Traditional Sardinian Fermented Food
by Gavino Carboni, Maria E. Mura, Margherita Chessa, Giuseppe Blaiotta, Anna Nudda and Nicoletta P. Mangia
Antibiotics 2026, 15(1), 18; https://doi.org/10.3390/antibiotics15010018 - 22 Dec 2025
Viewed by 446
Abstract
Background: This study investigated the phenotypic and genotypic antibiotic resistance profiles of 50 Lactic Acid Bacteria (LAB) strains—25 Lactiplantibacillus plantarum and 25 Lacticaseibacillus paracasei—isolated from traditional Sardinian fermented foods of animal origin. Methods: The sensitivity of the isolates to antibiotics such as [...] Read more.
Background: This study investigated the phenotypic and genotypic antibiotic resistance profiles of 50 Lactic Acid Bacteria (LAB) strains—25 Lactiplantibacillus plantarum and 25 Lacticaseibacillus paracasei—isolated from traditional Sardinian fermented foods of animal origin. Methods: The sensitivity of the isolates to antibiotics such as β-lactams, tetracyclines, aminoglycosides, macrolides, phenicols, and glycopeptides was initially assessed using disc diffusion and minimum inhibitory concentration (MIC) tests. Subsequently, PCR analyses were performed on both genomic DNA and plasmid DNA to detect blaZ, tet(W), strA, aac(6′)-Ie–aph(2″)-Ia, and vanX genes associated with resistance to ampicillin, tetracycline, streptomycin, gentamicin, and vancomycin. Results: The analysis revealed that L. plantarum strains frequently carried the tet(W) gene on the chromosome and strA on plasmids, while vanX was detected in most strains as a chromosomal determinant. By contrast, L. paracasei strains exhibited a predominantly plasmid-mediated distribution of resistance genes. For example, strA, aac(6′)-Ie–aph(2″)-Ia and blaZ were often found on plasmids, whereas vanX remained chromosomally encoded. Phenotypic assays confirmed high intrinsic resistance to vancomycin in both species, with L. plantarum showing a higher overall frequency and diversity of resistant phenotypes compared to L. paracasei. Conclusions: The co-occurrence of multiple resistance determinants, including plasmid-encoded ones, in most strains suggests that even autochthonous isolates from artisanal products may represent potential reservoirs for transmissible resistance genes. Full article
Show Figures

Graphical abstract

23 pages, 8989 KB  
Article
Characterization of Novel Composite Materials with Radiation Shielding Properties for Electronic Encapsulation
by Carla Ortiz Sánchez, Juan José Medina Del Barrio, Gonzalo Fernández Romero, Ángel Yedra Martínez, Paula Ruiz Losada and Luis Alejandro Arriaga Arellano
Materials 2025, 18(24), 5564; https://doi.org/10.3390/ma18245564 - 11 Dec 2025
Viewed by 1486
Abstract
It is well known that the space radiation environment, which has contributions from the trapped particles within the Van Allen belts, solar energetic particles (SEPs) and galactic cosmic rays (GCRs), directly influences space systems. These systems rely on complex and fragile electronic devices, [...] Read more.
It is well known that the space radiation environment, which has contributions from the trapped particles within the Van Allen belts, solar energetic particles (SEPs) and galactic cosmic rays (GCRs), directly influences space systems. These systems rely on complex and fragile electronic devices, whose performance can be degraded because of the action of the radiation and its related phenomena: single-event effects (SEEs), displacement damages (DDs) and total ionizing dose (TID). This could cause failures to arise through various mechanisms, ranging from parametric drift failures, such as leakage current and threshold voltage, among others, to destructive effects, like single-event burnout (SEB) or single-event latch-up (SEL). These failures in electronics affect the system’s reliability and its performance, which could compromise the mission’s success. Considering this, the main objective of the SRPROTEC project is to develop and validate new composite materials with better shielding performance against space radiation to increase the radiation tolerance of microelectronic devices encapsulated with these materials. For this purpose, three composites will be synthesized using a liquid epoxy resin filled with silica as a matrix mixed in different proportions, with a high-Z filler. The presence of low-Z elements from the high hydrogen content in the polymer and the presence of high-Z fillers are expected to produce a material with good radiation shielding properties. The developed materials will be exhaustively characterized, subjecting the three composites and control samples to rheological outgassing; gamma radiation shielding; and thermal, electrical, thermomechanical and moisture absorption, among other tests. Finally, the composite with the best performance will be selected and subjected to degradation tests (thermal cycling in vacuum, thermal cycling, thermal shock and relative humidity tests) to determine its suitability for space packaging applications. Full article
(This article belongs to the Topic Advanced Composite Materials)
Show Figures

Figure 1

18 pages, 1656 KB  
Article
Impact of Antimicrobial-Resistant Bacterial Pneumonia on In-Hospital Mortality and Length of Hospital Stay: A Retrospective Cohort Study in Spain
by Iván Oterino-Moreira, Montserrat Pérez-Encinas, Francisco J. Candel-González and Susana Lorenzo-Martínez
Antibiotics 2025, 14(10), 1006; https://doi.org/10.3390/antibiotics14101006 - 10 Oct 2025
Viewed by 1389
Abstract
Objectives: Antimicrobial resistance is a major global health threat. This study aimed to assess the impact of antimicrobial-resistant bacterial pneumonia on in-hospital mortality and length of hospital stay in Spain using a large, nationally representative cohort. Methods: A retrospective cohort study that used [...] Read more.
Objectives: Antimicrobial resistance is a major global health threat. This study aimed to assess the impact of antimicrobial-resistant bacterial pneumonia on in-hospital mortality and length of hospital stay in Spain using a large, nationally representative cohort. Methods: A retrospective cohort study that used data from Spain’s Registry of Specialized Health Care Activity (RAE-CMBD) between 2017 and 2022. Hospitalized adults with bacterial pneumonia were included. Hospitalization episodes with bacterial antimicrobial resistance, defined according to ICD-10-CM codes for antimicrobial resistance (Z16.1, Z16.2), were analyzed versus hospitalization episodes without these codes. Multivariate logistic regression models, adjusted for potential confounders (e.g., age, comorbidity, intensive care unit admission) and sensitivity analyses (Poisson regression and propensity score matching test), were performed. Results: Of the 116,901 eligible hospitalizations, 6017 (5.15%) involved antimicrobial-resistant bacteria. Patients with antimicrobial-resistant bacterial pneumonia were older (median 75 vs. 72 years), had greater comorbidity (Elixhauser–van Walraven index: 8 vs. 5), and were more frequently admitted to the intensive care unit (22% vs. 14%). Crude in-hospital mortality was higher in the antimicrobial resistance group (18.46% vs. 10.05%, p < 0.0001), with an adjusted odds ratio of 1.47 (95% confidence interval, 1.36–1.58), p < 0.0001. Length of hospital stay was prolonged in antimicrobial resistance patients (median 14 vs. 8 days; adjusted incident rate ratio of 1.46; 95% confidence interval of 1.41 to 1.50). The most prevalent antimicrobial resistant pathogens were Staphylococcus aureus and Gram-negative bacilli (Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli). Conclusions: Antimicrobial resistance is associated with longer hospital stays and an up to 50% higher risk of mortality. Despite the implementation of control policies in place over the past decade, policymakers must strengthen AMR surveillance and ensure adequate resource allocation. Clinicians, in turn, must reinforce antimicrobial stewardship and incorporate rapid diagnostic tools to minimize the impact of antimicrobial resistance on patient outcomes. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

15 pages, 468 KB  
Article
Antimicrobial Resistance Gene Patterns in Traditional Montenegrin Njeguški Cheese Revealed by qPCR
by Vesna Milanović, Giorgia Rampanti, Andrea Cantarini, Federica Cardinali, Giuseppe Paderni, Aleksandra Martinovic, Andrea Brenciani, Lucia Aquilanti, Andrea Osimani and Cristiana Garofalo
Genes 2025, 16(9), 1089; https://doi.org/10.3390/genes16091089 - 16 Sep 2025
Cited by 1 | Viewed by 778
Abstract
Background/Objectives: This study was aimed to investigate the safety profile of traditional Montenegrin Njeguški cheese by quantifying genes associated with resistance to clinically important antibiotics. Methods: Samples of Njeguški cheese were sourced from three artisan producers in Montenegro, identified as A, [...] Read more.
Background/Objectives: This study was aimed to investigate the safety profile of traditional Montenegrin Njeguški cheese by quantifying genes associated with resistance to clinically important antibiotics. Methods: Samples of Njeguški cheese were sourced from three artisan producers in Montenegro, identified as A, B, and C, with three individual batches selected per producer. Quantitative PCR (qPCR) was performed on bacterial DNA extracted directly from samples to detect genes encoding resistance to macrolide–lincosamide–streptogramin B (MLSB) [erm(A), erm(B), erm(C)], vancomycin (vanA, vanB), tetracyclines [tet(M), tet(O), tet(S), tet(K), tet(W)], β-lactams (mecA, blaZ), aminoglycosides [aac (6′)-Ie aph (2″)-Ia], and carbapenems (blaKPC, blaOXA-48, blaNDM-1, blaGES, and blaVIM). Results: Among the MLSB resistance genes, erm(B) was detected in all samples, erm(C) was present only in those from producer B, while erm(A) was found exclusively in batch 3 from producer C. Tetracycline resistance genes were widely distributed, except for tet(O), which was absent in batch 3 from producers A and B. Regarding β-lactam resistance, both blaZ and mecA were consistently detected across all samples, with statistically significant differences observed between producers. None of the samples tested positive for vancomycin resistance genes or the aminoglycoside resistance gene, regardless of producer. Among the carbapenemase genes analyzed, blaNDM-1 was the only one detected, found in most samples from producers B and C. Conclusions: This research provides the first risk assessment of artisanal and commercial Njeguški cheese regarding antimicrobial resistance genes. The findings offer valuable insights to enhance the microbiological safety of traditional Montenegrin cheeses, supporting consumer confidence in local and international markets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1789 KB  
Article
Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium Isolates with Full and Truncated vanA Operons from Russian Hospitals
by Anna Slavokhotova, Andrey Shelenkov, Yulia Mikhaylova, Lyudmila Petrova, Vitaly Gusarov, Mikhail Zamyatin and Vasiliy Akimkin
Antibiotics 2025, 14(9), 858; https://doi.org/10.3390/antibiotics14090858 - 25 Aug 2025
Viewed by 1561
Abstract
Background: Vancomycin-resistant Enterococcus faecium (VREfm), particularly vanA-positive strains, represents a growing threat in hospital settings worldwide. These bacteria are able to survive under severe environmental conditions, including high temperatures and saline concentrations. High genome plasticity and advanced ability of inheriting antimicrobial [...] Read more.
Background: Vancomycin-resistant Enterococcus faecium (VREfm), particularly vanA-positive strains, represents a growing threat in hospital settings worldwide. These bacteria are able to survive under severe environmental conditions, including high temperatures and saline concentrations. High genome plasticity and advanced ability of inheriting antimicrobial resistance determinants defined the success of E. faecium as a hospital pathogen. Methods: This study presents the whole genomic characterization of vanA-positive VREfm isolates, analyzing 10 clinical isolates collected from three tertiary care hospitals in Moscow, Russia. Several typing approaches, including two MLST schemes and cgMLST profiles, were used to elucidate the relationship between the isolates. Phylogenetic analysis placed the isolates in context with global VREfm populations, demonstrating both local clonal expansion and possible international connections. Phenotypic and genomic antimicrobial resistance profiles were obtained, as well as data regarding the repertoire of virulence factors and plasmid content. Results: Whole genome sequencing revealed that all isolates belonged to the clinically significant CC17 lineage, specifically sequence types ST80 and ST552. Notably, two isolates possessed truncated Tn1546-type transposons lacking vanY and vanZ genes, representing a potentially emerging variant of the vanA operon in Russian clinical settings. A plasmid carrying a truncated vanA operon was reconstructed using long-read sequencing. Conclusions: The study highlights the utility of genomic investigation for tracking resistance mechanisms and strain dissemination, providing crucial baseline data for epidemiological surveillance of infections caused by VREfm in Russia. These findings emphasize the need for continued genomic monitoring to understand the evolution and spread of antimicrobial resistance in clinically important enterococcal lineages. Full article
Show Figures

Figure 1

15 pages, 3628 KB  
Article
Functional Divergence of Two General Odorant-Binding Proteins to Sex Pheromones and Host Plant Volatiles in Adoxophyes orana (Lepidoptera: Tortricidae)
by Shaoqiu Ren, Yuhan Liu, Xiulin Chen, Kun Luo, Jirong Zhao, Guangwei Li and Boliao Li
Insects 2025, 16(9), 880; https://doi.org/10.3390/insects16090880 - 24 Aug 2025
Cited by 1 | Viewed by 991
Abstract
Adoxophyes orana (Lepidoptera: Tortricidae) is a significant polyphagous leafroller that damages trees and shrubs in Rosaceae and other families. However, the molecular mechanisms by which this pest recognizes sex pheromones and host plant volatiles remain largely unknown. Tissue expression profiles indicated that two [...] Read more.
Adoxophyes orana (Lepidoptera: Tortricidae) is a significant polyphagous leafroller that damages trees and shrubs in Rosaceae and other families. However, the molecular mechanisms by which this pest recognizes sex pheromones and host plant volatiles remain largely unknown. Tissue expression profiles indicated that two general odorant-binding proteins (AoraGOBP1 and AoraGOBP2) were more abundant in the antennae and wings of both sexes, with AoraGOBP1 being rich in the female head and abdomen. Temporal expression profiles showed that AoraGOBP1 was expressed at the highest level in 5 day-nmated adults, while AoraGOBP2 exhibited high expression in 5 day-unmated, 7 day-unmated, and mated female adults. Fluorescence competitive binding assays of heterologous expressed AoraGOBPs demonstrated that AoraGOBP2 strongly bound to the primary sex pheromone Z9-14:Ac, and two minor sex pheromones Z9-14:OH and Z11-14:OH, whereas AoraGOBP1 only showed a high binding affinity to Z9-14:Ac. What is more, AoraGOBP1 exhibited a broader binding spectrum for host plant volatiles than AoraGOBP2. Molecular dockings, molecular dynamic simulations, and per-residue binding free decompositions indicated that the van der Waals interaction was the predominant contributor to the binding free energy. Electrostatic interactions between aldehydes, or alcohols and AoraGOBPs stabilized the conformational structures. Phe12 from AoraGOBP1, and Phe13 from AoraGOBP2 were identified as the most important residues that contributed to bind free energy. Our findings provide a comprehensive insight into the molecular mechanisms of olfactory recognition in A. orana, facilitating the development of chemical ecology-based approaches for the control. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

10 pages, 2374 KB  
Proceeding Paper
Design and Development of RDI Monitoring System of RSU’s Funded Research Projects
by Preexcy B. Tupas, Nova Marie F. Rosas, Ana G. Gervacio and Garry Vanz V. Blancia
Eng. Proc. 2025, 107(1), 13; https://doi.org/10.3390/engproc2025107013 - 22 Aug 2025
Viewed by 705
Abstract
This paper presents the design, development, and evaluation of the REDI Monitoring System, a web-based platform aimed at enhancing the management and monitoring of funded research projects at Romblon State University (RSU). The system provides streamlined functionalities for proposal creation, submission, collaborator management, [...] Read more.
This paper presents the design, development, and evaluation of the REDI Monitoring System, a web-based platform aimed at enhancing the management and monitoring of funded research projects at Romblon State University (RSU). The system provides streamlined functionalities for proposal creation, submission, collaborator management, and administrative oversight, tailored to the needs of both students and faculty members. The development process adhered to established software engineering standards to ensure robustness and usability. A comprehensive testing phase was conducted with 50 participants, including students and faculty, following the ISO/IEC/IEEE 29119 software testing framework. Results demonstrated high user satisfaction, with over 90% of participants finding the system user-friendly and reliable. Minor areas for improvement were identified in notification delivery and interface responsiveness for faculty users. The REDI Monitoring System presents an effective and efficient solution that supports RSU’s research administration processes, fostering greater collaboration and transparency in funded research activities. Full article
Show Figures

Figure 1

16 pages, 3710 KB  
Article
Janus Ga2SSe-Based van der Waals Heterojunctions as a Class of Promising Candidates for Photocatalytic Water Splitting: A DFT Investigation
by Fan Yang, Marie-Christine Record and Pascal Boulet
Crystals 2025, 15(8), 728; https://doi.org/10.3390/cryst15080728 - 16 Aug 2025
Cited by 1 | Viewed by 1421
Abstract
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der [...] Read more.
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der Waals (vdW) heterojunctions, Ga2SSe/GaP, Ga2SSe/PtSSe, and Ga2SSe/SnSSe, each explored in four distinct stacking configurations, with Ga2SSe serving as the base monolayer. We assessed their structural stability, electronic properties, and optical responses to determine their suitability for photocatalytic water splitting. The analysis showed that Ga2SSe/GaP and Ga2SSe/SnSSe exhibit type-II band alignment, while Ga2SSe/PtSSe displays a type-I alignment. Electrostatic potential profiles and Bader charge calculations identified SeGa2S/SSnSe and SeGa2S/SeSnS as direct Z-scheme systems, offering efficient charge carrier separation and robust redox potential. For effective water splitting, the band edges must straddle the water redox potentials. Our results indicate that configurations A and B in Ga2SSe/GaP, along with C and D in Ga2SSe/SnSSe, fulfill this requirement. These four configurations also exhibit strong absorption in both the visible and ultraviolet spectral ranges. Notably, configurations C and D of Ga2SSe/SnSSe achieve high solar-to-hydrogen (STH) efficiencies, reaching 38.44% and 21.75%, respectively. Overall, our findings suggest that these direct Z-scheme heterostructures are promising candidates for water splitting photocatalysis. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

16 pages, 298 KB  
Article
Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy
by Fabrizio Bertelloni, Francesca Pauselli, Giulia Cagnoli, Roberto Biscontri, Renato Ceccherelli and Valentina Virginia Ebani
Antibiotics 2025, 14(7), 725; https://doi.org/10.3390/antibiotics14070725 - 18 Jul 2025
Cited by 1 | Viewed by 899
Abstract
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were [...] Read more.
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were typed and analyzed for exfoliative toxins genes and the phenotypic and genotypic characteristics of antimicrobial resistance. Results: A total of 54 strains were isolated and typed as S. aureus, S. xylosus, S. sciuri, S. pseudintermedius, S. simulans, S. chromogenes, S. epidermidis, S. hyicus, and S. lentus. No strains had the eta and etb genes coding for exfoliative toxins. Overall, 39/54 (72.20%) isolates showed phenotypic resistance to at least one antimicrobial and 21/54 (38.80%) showed more than one resistance. The lowest efficacy was observed for erythromycin, with 40/54 (74.08%) strains classified as intermediate and 6/54 (11.11%) classified as resistant. Among the 29 isolates shown to be penicillin-resistant, 11 (37.93%) were oxacillin-resistant, with a minimum inhibitory concentration (MIC). Among the 54 staphylococcal strains, 2 (3.70%) were resistant to vancomycin, both with an MIC value equal to the maximum concentration of the antibiotic tested (256 μg/mL) and 2 (3.70%) had an intermediate resistance profile with an 8 μg/mL MIC value. No strains had the genes vanA and vanB. Two of the 29 (6.90%) penicillin-resistant strains had the blaZ gene; 8 (27.13%) strains had the mecA gene. Overall, 2/54 (3.70%) isolates were classified as extensively drug-resistant (XDR) and 9/54 (16.66%) were classified as multidrug-resistant (MDR). Conclusions: Hedgehogs can harbor antimicrobial-resistant staphylococci and can be sources of these bacteria for other animals and humans. They can also serve as bioindicators of the pathogens and antimicrobial-resistant bacteria circulating in a given habitat. Full article
27 pages, 7874 KB  
Article
Electronic Structure of the Ground and Low-Lying States of MoLi
by Constantinos Demetriou and Demeter Tzeli
Molecules 2025, 30(13), 2874; https://doi.org/10.3390/molecules30132874 - 6 Jul 2025
Cited by 1 | Viewed by 903
Abstract
Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding [...] Read more.
Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding of the ground and 40 low-lying states of the MoLi molecule are explored, employing multireference methodologies, i.e., CASSCF and MRCISD(+Q) in conjunction with the aug-cc-pV5z(-PP) basis set. Bond distances, dissociation energies, dipole moments as well as common spectroscopic constants are given, while the potential energy curves are plotted. For the ground state, XΣ+6, it is found that Re = 2.708 Å, De = 24.1 kcal/mol, ωe = 316.8 cm1, ωexe = 2.11 cm1, and μ = 3.63 D. Overall, the calculated states present a variety of bonds, from weak van der Waals up to the formation of 2.5 bonds. The dissociation energies of the calculated states range from 2.3 kcal/mol (aΣ+8) to 34.7 (cΠ4), while the bond distances range from 2.513 Å to 3.354 Å. Finally, dipole moment values up to 3.72 D are calculated. In most states, a 2s2pz hybridization on Li and a 4dz25s5pz or 5s5pz hybridization on Mo are found. Moreover, it is observed that the excited Li(P2) atom forms the shortest bonds because its empty 2s0 orbital can easily accept electrons, resulting in a strong σ dative bond. Finally, the present work highlights the exceptional ability of lithium atoms to participate in a variety of bonding schemes, and it could provide the opening gate for further investigation of this species or associated material and complexes. Full article
Show Figures

Figure 1

15 pages, 264 KB  
Article
Geometry of Kenmotsu Manifolds via Q-Curvature Tensor and Schouten–Van Kampen Connection
by Mustafa Yıldırım, Selahattin Beyendi, Gülhan Ayar and Nesip Aktan
Axioms 2025, 14(7), 498; https://doi.org/10.3390/axioms14070498 - 26 Jun 2025
Cited by 1 | Viewed by 655
Abstract
This research paper aims to study the Q-curvature tensor on Kenmotsu manifolds endowed with the Schouten–van Kampen connection. Using the Q-curvature tensor, whose trace is the well-known Z-tensor, we characterized Kenmotsu manifolds by introducing the notion of ζ-Q˜ [...] Read more.
This research paper aims to study the Q-curvature tensor on Kenmotsu manifolds endowed with the Schouten–van Kampen connection. Using the Q-curvature tensor, whose trace is the well-known Z-tensor, we characterized Kenmotsu manifolds by introducing the notion of ζ-Q˜ flat and ϕ-Q˜ flat manifolds and novel tensor conditions, such as Q˜(ξ,X)Q˜=0, Q˜(ξ,X)R˜=0, Q˜(ξ,X)C˜=0, Q˜(ξ,X)S˜=0, Q˜(ξ,X)H˜=0, and Q˜(ξ,X)P˜=0, with the Schouten–van Kampen connection. To validate some of our results, we constructed a non-trivial example of Kenmotsu manifolds endowed with the Schouten–van Kampen connection. Full article
(This article belongs to the Special Issue Advances in Geometry and Its Applications)
21 pages, 964 KB  
Article
Curvature Effects on the Regimes of the Lateral van der Waals Force
by Alexandre P. Costa, Lucas Queiroz and Danilo T. Alves
Atoms 2025, 13(7), 61; https://doi.org/10.3390/atoms13070061 - 25 Jun 2025
Viewed by 788
Abstract
Recently, it has been shown that, under the action of the lateral van der Waals (vdW) force due to a perfectly conducting corrugated plane, a neutral anisotropic polarizable particle in vacuum can be attracted not only to the nearest corrugation peak but also [...] Read more.
Recently, it has been shown that, under the action of the lateral van der Waals (vdW) force due to a perfectly conducting corrugated plane, a neutral anisotropic polarizable particle in vacuum can be attracted not only to the nearest corrugation peak but also to a valley or an intermediate point between a peak and a valley, with such behaviors called peak, valley, and intermediate regimes, respectively. In the present paper, we discuss how the curvature of the corrugated surface affects the occurrence of the mentioned regimes. For this, we calculate the vdW interaction between a polarizable particle and a grounded conducting corrugated cylinder. We consider the corrugations along the azimuthal (ϕ-direction) angle or along the cylinder axis (z-direction). We show that when the corrugation occurs in the z-direction, the curvature has a small effect on the occurrence of the valley regime. On the other hand, it inhibits the intermediate regimes up to a certain particle–surface distance above which it amplifies the occurrence of this regime. When the corrugation occurs in the ϕ-direction, we show that the curvature inhibits both the valley and intermediate regimes. Full article
Show Figures

Figure 1

18 pages, 6277 KB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Cited by 3 | Viewed by 1047
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

17 pages, 3636 KB  
Article
DFT Investigation of a Direct Z-Scheme Photocatalyst for Overall Water Splitting: Janus Ga2SSe/Bi2O3 Van Der Waals Heterojunction
by Fan Yang, Pascal Boulet and Marie-Christine Record
Materials 2025, 18(7), 1648; https://doi.org/10.3390/ma18071648 - 3 Apr 2025
Cited by 5 | Viewed by 1724
Abstract
Constructing van der Waals heterojunctions with excellent properties has attracted considerable attention in the field of photocatalytic water splitting. In this study, four patterns, coined A, B, C, and D of Janus Ga2SSe/Bi2O3 van der Waals (vdW) heterojunctions [...] Read more.
Constructing van der Waals heterojunctions with excellent properties has attracted considerable attention in the field of photocatalytic water splitting. In this study, four patterns, coined A, B, C, and D of Janus Ga2SSe/Bi2O3 van der Waals (vdW) heterojunctions with different stacking modes, were investigated using first-principles calculations. Their stability, electronic structure, and optical properties were analyzed in detail. Among these, patterns A and C heterojunctions demonstrate stable behavior and operate as direct Z-scheme photocatalysts, exhibiting band gaps of 1.83 eV and 1.62 eV. In addition, the suitable band edge positions make them effective for photocatalytic water decomposition. The built-in electric field across the heterojunction interface effectively inhibits electron-hole recombination, thereby improving the photocatalytic efficiency. The optical absorption coefficients show that patterns A and C heterojunctions exhibit higher light absorption intensity than Ga2SSe and Bi2O3 monolayers, spanning from the ultraviolet to visible range. Their corrected solar-to-hydrogen (STH) efficiencies are 13.60% and 12.08%, respectively. The application of hydrostatic pressure and biaxial tensile strain demonstrate distinct effects on photocatalytic performance: hydrostatic pressure preferentially enhances the hydrogen evolution reaction (HER), while biaxial tensile strain primarily improves the oxygen evolution reaction (OER). Furthermore, the heterojunctions exhibited enhanced optical absorption across the UV-visible spectrum with increasing hydrostatic pressure. Notably, a 1% tensile strain results in an improvement in visible light absorption efficiency. These results demonstrate that Ga2SSe/Bi2O3 heterojunctions hold great promise as direct Z-scheme photocatalysts for overall water splitting. Full article
Show Figures

Figure 1

25 pages, 3475 KB  
Article
Structure Determination of Tegoprazan((S)-4-((5,7-difluorochroman-4-yl)oxy)-N,N,2-trimethyl-1H-benzo[d]imidazole-6-formamide) Polymorphs A and B by Laboratory X-Ray Powder Diffraction
by Seah Ryu, JooHo Lee, Jason Kim and Tokutaro Yamaguchi
Molecules 2025, 30(7), 1538; https://doi.org/10.3390/molecules30071538 - 30 Mar 2025
Cited by 2 | Viewed by 2174
Abstract
Tegoprazan is a potassium ion-competitive acid blocker (P-CAB) and a novel inhibitor of gastric acid secretion. The compound exists in two crystalline polymorphs, A and B, whose structures had not previously been reported. In this study, both polymorphs were analyzed by liquid- and [...] Read more.
Tegoprazan is a potassium ion-competitive acid blocker (P-CAB) and a novel inhibitor of gastric acid secretion. The compound exists in two crystalline polymorphs, A and B, whose structures had not previously been reported. In this study, both polymorphs were analyzed by liquid- and solid-state NMR, revealing identical tautomeric states. Using this information, the crystal structures were determined from laboratory powder X-ray diffraction data by simulated annealing and Rietveld refinement. Both forms were found to crystallize in the monoclinic space group P21, with Z = 4 and two independent molecules in the asymmetric unit (Z′ = 2). To assess the stability and reliability of the refined structures, we attempted geometry optimization and vibrational analysis using DFT-D methods. However, due to the high conformational complexity of Z′ = 2 systems, these calculations failed to converge or produced imaginary frequencies. Instead, single-point energy calculations were performed on the refined models. The resulting relative energy differences, together with solubility data, van’t Hoff enthalpies, and DSC profiles, consistently indicated that Polymorph A is more stable than Polymorph B. These results highlight the challenges of structure validation via DFT-D for complex molecular crystals and demonstrate the value of integrating experimental and computational approaches for polymorph characterization. Full article
Show Figures

Graphical abstract

Back to TopTop