Geometry of Kenmotsu Manifolds via Q-Curvature Tensor and Schouten–Van Kampen Connection
Abstract
1. Introduction
2. Preliminaries
3. -Curvature Tensor of Kenmotsu Manifolds Admitting the Schouten–Van Kampen Connection
3.1. Example
3.2. Example
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenmotsu, K. A class of almost contact Riemannian manifolds. Tohoku Math. J. 1972, 24, 93–103. [Google Scholar] [CrossRef]
- Pitis, G. Geometry of Kenmotsu Manifolds; Publishing House of Transilvania University of Braşov: Braşov, Romania, 2007. [Google Scholar]
- Jun, J.B.; De, U.C.; Pathak, G. On Kenmotsu Manifolds. J. Korean Math. Soc. 2005, 42, 435–445. [Google Scholar] [CrossRef]
- Özturk, H.; Aktan, N.; Murathan, C. On α-Kenmotsu manifolds satisfying certain conditions. App. Sci. 2010, 12, 115–126. [Google Scholar]
- Yildiz, A.; De, U.C. On a type of Kenmotsu manifolds. Differ. Geom.-Dyn. Syst. 2010, 12, 289–298. [Google Scholar]
- Ozgur, C.; De, U.C. On the quasi-conformal curvature tensor of a Kenmotsu manifold. Math. Pannonica 2006, 17, 221–228. [Google Scholar]
- Chaubey, S.K.; Prasad, R.; Yadav, S.K. Kenmotsu Manifolds Admit A Semi-Symmetric Metric Connection. Palest. J. Math. 2024, 13, 623–636. [Google Scholar]
- Chaubey, S.K.; Yadav, S.K. Study of Kenmotsu manifolds with semi-symmetric metric connection. Univers. J. Math. Appl. 2018, 1, 89–97. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.G. Riemann compatible tensors. Colloq. Math. 2012, 128, 197–200. [Google Scholar] [CrossRef]
- Mantica, C.A.; Suh, Y.J. Pseudo Q-symmetric Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 2013, 10, 1350013. [Google Scholar] [CrossRef]
- Yıldırım, M. A new characterization of Kenmotsu manifolds with respect to the Q tensor. J. Geom. Phys. 2022, 176, 104498. [Google Scholar] [CrossRef]
- Yilmaz, B.H. Sasakian manifolds satisfying certain conditions Q tensor. J. Geom. 2020, 11, 48. [Google Scholar]
- Yadav, S.; Yıldız, A. Q-Curvature Tensor on f-Kenmotsu 3-Manifolds. Univ. J. Math. Appl. 2022, 5, 96–106. [Google Scholar] [CrossRef]
- Solov’ev, A.F. On the curvature of the connection induced on a hyperdistribution in a Riemannian space. Geom. Sb. 1978, 19, 12–23. [Google Scholar]
- Bejancu, A. Schouten-van Kampen and Vranceanu connections on Foliated manifolds. Anal. Univ. (AL. I. Cuza Iasi. Mat.) 2006, 52, 37–60. [Google Scholar]
- Olszak, Z. The Schouten-van Kampen affine connection adapted to an almost(para) contact metric structure. Publ. Delinstitut Math. 2013, 94, 31–42. [Google Scholar] [CrossRef]
- Ghosh, G. On Schouten-van Kampen connection in Sasakian manifolds. Bol. Soc. Paran. Math. 2018, 36, 171–182. [Google Scholar] [CrossRef]
- Mert, T.; Atceken, M.; Uygun, P. Characterization of Almost η-Ricci Solitons With Respect to Schouten-van Kampen Connection on Sasakian Manifolds. Asian J. Math. Comput. Res. 2024, 31, 64–75. [Google Scholar] [CrossRef]
- Vaishali, S.; Kumar Yadav, S.; Upreti, J. Certain vector fields on f-Kenmotsu manifold with Schouten-van Kampen connection. Filomat 2024, 38, 531–541. [Google Scholar]
- Chakraborty, D.; Mishra, V.N.; Hui, S.K. Ricci solitons on three dimensional β-Kenmotsu manifolds with respect to Schouten-van Kampen connection. Ultra Sci. Phys. Sci. 2018, 30, 86–91. [Google Scholar]
- El hendi, H. Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten–van Kampen Connection. Mathematics 2023, 11, 1905. [Google Scholar] [CrossRef]
- Siddiqi, M.D.; Hakami, A.H. Optimal Inequalities on (α, β)-Type Almost Contact Manifold with the Schouten–Van Kampen Connection. Axioms 2023, 12, 1082. [Google Scholar] [CrossRef]
- Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Kıran Kumar, D.L.; Nagaraja, H.G.; Kumari, D. Concircular curvature tensor of Kenmotsu Manifolds admitting generalized Tanaka-Webster connection. J. Math. Comput. Sci. 2019, 9, 447–462. [Google Scholar]
- Mantica, C.A.; Molinari, L.G. Weakly Z-symmetric manifolds. Acta Math. Hung. 2012, 135, 80–96. [Google Scholar] [CrossRef]
- Yano, K.; Kon, M. Structures on Manifolds; Series in Pure Mathematics; World Scientific Publishing Co.: Singapore, 1984; Volume 3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldırım, M.; Beyendi, S.; Ayar, G.; Aktan, N. Geometry of Kenmotsu Manifolds via Q-Curvature Tensor and Schouten–Van Kampen Connection. Axioms 2025, 14, 498. https://doi.org/10.3390/axioms14070498
Yıldırım M, Beyendi S, Ayar G, Aktan N. Geometry of Kenmotsu Manifolds via Q-Curvature Tensor and Schouten–Van Kampen Connection. Axioms. 2025; 14(7):498. https://doi.org/10.3390/axioms14070498
Chicago/Turabian StyleYıldırım, Mustafa, Selahattin Beyendi, Gülhan Ayar, and Nesip Aktan. 2025. "Geometry of Kenmotsu Manifolds via Q-Curvature Tensor and Schouten–Van Kampen Connection" Axioms 14, no. 7: 498. https://doi.org/10.3390/axioms14070498
APA StyleYıldırım, M., Beyendi, S., Ayar, G., & Aktan, N. (2025). Geometry of Kenmotsu Manifolds via Q-Curvature Tensor and Schouten–Van Kampen Connection. Axioms, 14(7), 498. https://doi.org/10.3390/axioms14070498