Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,221)

Search Parameters:
Keywords = urban water challenges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1786 KiB  
Article
Simulation and Control of Water Pollution Load in the Xiaoxingkai Lake Basin Based on a System Dynamics Model
by Yaping Wu, Dan Chen, Fujia Li, Mingming Feng, Ping Wang, Lingang Hao and Chunnuan Deng
Sustainability 2025, 17(15), 7167; https://doi.org/10.3390/su17157167 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment [...] Read more.
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment model based on the system dynamics methodology, incorporating subsystems for population, agriculture, and water pollution. The model focuses on four key indicators of pollution severity, namely, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N), and simulates the changes in pollutant loads entering the river under five different scenarios from 2020 to 2030. The results show that agricultural non-point sources are the primary contributors to TN (79.5%) and TP (73.7%), while COD primarily originates from domestic sources (64.2%). NH3-N is mainly influenced by urban domestic activities (44.7%) and agricultural cultivation (41.2%). Under the status quo development scenario, pollutant loads continue to rise, with more pronounced increases under the economic development scenario, thus posing significant sustainability risks. The pollution control enhancement scenario is most effective in controlling pollutants, but it does not promote socio-economic development and has high implementation costs, failing to achieve coordinated socio-economic and environmental development in the region. The dual-reinforcement scenario and moderate-reinforcement scenario achieve a balance between pollution control and economic development, with the moderate-reinforcement scenario being more suitable for long-term regional development. The findings can provide a scientific basis for water resource management and planning in the Xiaoxingkai Lake basin. Full article
23 pages, 3193 KiB  
Perspective
The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon
by Michaela Koucka, Cara Poor, Jordyn Wolfand, Heejun Chang, Vivek Shandas, Adrienne Aiona, Henry Stevens, Tim Kurtz, Svetlana Hedin, Steve Fancher, Joshua Lighthipe and Adam Zucker
Sustainability 2025, 17(15), 7159; https://doi.org/10.3390/su17157159 - 7 Aug 2025
Abstract
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s [...] Read more.
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure. Full article
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 244
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 - 1 Aug 2025
Viewed by 195
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

26 pages, 942 KiB  
Review
The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria
by Sameh Meradji, Nosiba S. Basher, Asma Sassi, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 763; https://doi.org/10.3390/antibiotics14080763 - 29 Jul 2025
Viewed by 431
Abstract
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, [...] Read more.
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

31 pages, 1247 KiB  
Review
A Review of Water Quality Forecasting and Classification Using Machine Learning Models and Statistical Analysis
by Amar Lokman, Wan Zakiah Wan Ismail and Nor Azlina Ab Aziz
Water 2025, 17(15), 2243; https://doi.org/10.3390/w17152243 - 28 Jul 2025
Viewed by 488
Abstract
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models [...] Read more.
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models and statistical methods applied in forecasting and classification of water quality. A particular focus is given to hybrid models that integrate multiple approaches to improve predictive accuracy and robustness. This study also reviews water quality standards and highlights the environmental context that necessitates advanced predictive tools. Statistical techniques such as residual analysis, principal component analysis (PCA), and feature importance assessment are also explored to enhance model interpretability and reliability. Comparative tables of model performance, strengths, and limitations are presented alongside real-world applications. Despite recent advancements, challenges remain in data quality, model interpretability, and integration of spatio-temporal and fuzzy logic techniques. This review identifies key research gaps and proposes future directions for developing transparent, adaptive, and accurate models. The findings can also guide researchers and policymakers towards the development of smart water quality management systems that enhance decision-making and ecological sustainability. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 389
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

18 pages, 7903 KiB  
Article
Study on the Mechanical Response of FSP-IV Steel Sheet Pile Cofferdam and the Collaborative Mechanism of Sediment Control Technology in the Nenjiang Water Intake Project
by Ziguang Zhang, Liang Wu, Rui Luo, Lin Wei and Feifei Chen
Buildings 2025, 15(15), 2610; https://doi.org/10.3390/buildings15152610 - 23 Jul 2025
Viewed by 309
Abstract
In response to the dual challenges of the mechanical behavior of steel sheet pile cofferdam and sediment control in urban water intake projects, a multi-method integrated study was conducted based on the Nenjiang Project. The results show that the peak stress of FSP-IV [...] Read more.
In response to the dual challenges of the mechanical behavior of steel sheet pile cofferdam and sediment control in urban water intake projects, a multi-method integrated study was conducted based on the Nenjiang Project. The results show that the peak stress of FSP-IV steel sheet piles (64.3 MPa) is located at a depth of 5.5–8.0 m in the center of the foundation pit, and that the maximum horizontal displacement (6.96 mm) occurs at the middle of the side span of the F pile. The internal support stress increases with depth, reaching 87.2 MPa at the bottom, with significant stress concentration at the connection of the surrounding girder. The lack of support or excessively large spacing leads to insufficient stiffness at the side span (5.3 mm displacement at the F point) and right-angle area (B/H point). The simultaneously developed sediment control integrated system, through double-line water intake, layered placement of the geotextile filter, and the collaborative construction of the water intake hole–filter layer system, achieves a 75% reduction in sediment content and a decrease in standard deviation. This approach ensures stable water quality and continuous water supply, ultimately forming a systematic solution for water intake in high-sediment rivers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 2274 KiB  
Review
Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next?
by Eleonora Santos
Water 2025, 17(15), 2193; https://doi.org/10.3390/w17152193 - 23 Jul 2025
Viewed by 494
Abstract
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European [...] Read more.
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance. Full article
Show Figures

Figure 1

29 pages, 8280 KiB  
Article
Constructing an Ecological Spatial Network Optimization Framework from the Pattern–Process–Function Perspective: A Case Study in Wuhan
by An Tong, Yan Zhou, Tao Chen and Zihan Qu
Remote Sens. 2025, 17(15), 2548; https://doi.org/10.3390/rs17152548 - 22 Jul 2025
Viewed by 413
Abstract
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services [...] Read more.
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services (ES) in Wuhan from the “pattern–process–function” perspective. To overcome the lag in research concerning the coupling of ecological processes, functions, and spatial patterns, we explore the long-term dynamic evolution of ecosystem structure, process, and function by integrating multi-source data, including remote sensing, enabling comprehensive spatiotemporal analysis from 2000 to 2020. Addressing limitations in current EN optimization approaches, we integrate morphological spatial pattern analysis (MSPA), use circuit theory to identify EN components, and conduct spatial optimization accurately. We further assess the effectiveness of two scenario types: “pattern–function” and “pattern–process”. The results reveal a distinct “increase-then-decrease” trend in EN structural attributes: from 2000 to 2020, source areas declined from 39 (900 km2) to 37 (725 km2), while corridor numbers fluctuated before stabilizing at 89. Ecological processes and functions exhibited phased fluctuations. Among water-related indicators, water conservation (as a core function), and modified normalized difference water index (MNDWI, as a key process) predominantly drive positive correlations under the “pattern–function” and “pattern–process” scenarios, respectively. The “pattern–function” scenario strengthens core area connectivity (24% and 4% slower degradation under targeted/random attacks, respectively), enhancing resistance to general disturbances, whereas the “pattern–process” scenario increases redundancy in edge transition zones (21% slower degradation under targeted attacks), improving resilience to targeted disruptions. This complementary design results in a gradient EN structure characterized by core stability and peripheral resilience. This study pioneers an EN optimization framework that systematically integrates identification, assessment, optimization, and validation into a closed-loop workflow. Notably, it establishes a quantifiable, multi-objective decision basis for EN optimization, offering transferable guidance for green infrastructure planning and ecological restoration from a pattern–process–function perspective. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

23 pages, 6048 KiB  
Article
Design and Implementation of a Hybrid Real-Time Salinity Intrusion Monitoring and Early Warning System for Bang Kachao, Thailand
by Uma Seeboonruang, Pinit Tanachaichoksirikun, Thanavit Anuwongpinit and Uba Sirikaew
Water 2025, 17(14), 2162; https://doi.org/10.3390/w17142162 - 21 Jul 2025
Viewed by 388
Abstract
Salinity intrusion is a growing threat to freshwater resources, particularly in low-lying coastal and estuarine regions, necessitating the development of effective early warning systems (EWS) to support timely mitigation. Although various water quality monitoring technologies exist, many face challenges related to long-term sustainability, [...] Read more.
Salinity intrusion is a growing threat to freshwater resources, particularly in low-lying coastal and estuarine regions, necessitating the development of effective early warning systems (EWS) to support timely mitigation. Although various water quality monitoring technologies exist, many face challenges related to long-term sustainability, ongoing maintenance, and accessibility for local users. This study introduces a novel hybrid real-time salinity intrusion early warning system that uniquely integrates fixed and portable monitoring technologies with strong community participation—an approach not yet widely applied in comparable urban-adjacent delta regions. Unlike traditional systems, this model emphasizes local ownership, flexible data collection, and system scalability in resource-constrained environments. This study presents a real-time salinity intrusion early warning system for Bang Kachao, Thailand, combining eight fixed monitoring stations and 20 portable salinity measurement devices. The system was developed in response to community needs, with local input guiding both station placement and the design of mobile measurement tools. By integrating fixed stations for continuous, high-resolution data collection with portable devices for flexible, on-demand monitoring, the system achieves comprehensive spatial coverage and adaptability. A core innovation lies in its emphasis on community participation, enabling villagers to actively engage in monitoring and decision-making. The use of IoT-based sensors, Remote Telemetry Units (RTUs), and cloud-based data platforms further enhances system reliability, efficiency, and accessibility. Automated alerts are issued when salinity thresholds are exceeded, supporting timely interventions. Field deployment and testing over a seven-month period confirmed the system’s effectiveness, with fixed stations achieving 90.5% accuracy and portable devices 88.7% accuracy in detecting salinity intrusions. These results underscore the feasibility and value of a hybrid, community-driven monitoring approach for protecting freshwater resources and building local resilience in vulnerable regions. Full article
Show Figures

Figure 1

8 pages, 331 KiB  
Proceeding Paper
Advances in Implementation of Metal Oxide Nanoparticles for Urban Water Pollution Treatment
by Md. Golam Sazid and Sk. Tanjim Jaman Supto
Eng. Proc. 2025, 87(1), 96; https://doi.org/10.3390/engproc2025087096 - 18 Jul 2025
Viewed by 252
Abstract
Urban water bodies are facing a growing crisis due to contamination from a diverse array of pollutants, encompassing heavy metals, oil and grease, organic and inorganic chemicals, industrial effluents, and pathogenic microorganisms. This study focuses on the burgeoning field of utilizing metal oxide [...] Read more.
Urban water bodies are facing a growing crisis due to contamination from a diverse array of pollutants, encompassing heavy metals, oil and grease, organic and inorganic chemicals, industrial effluents, and pathogenic microorganisms. This study focuses on the burgeoning field of utilizing metal oxide nanoparticles (MONs) as a potential solution to this pressing environmental challenge. The distinctive physicochemical properties of MONs, including their large surface area, catalytic activity, and photocatalytic ability, position them as promising candidates for water purification technologies. This study also comprehensively discusses the sources of urban water pollution and the specific challenges posed by different types of contaminants. A critical evaluation of MONs’ efficacy in removing heavy metals, oil and grease, organic and inorganic chemicals, and industrial pollutants is presented, with a focus on the underlying mechanisms such as adsorption, photocatalysis, and redox reactions. Furthermore, the potential of MONs to neutralize pathogens and microbial contaminants is investigated. While MONs exhibit significant advantages, this study acknowledges the challenges associated with nanoparticle stability, recovery, and potential environmental repercussions. To fully realize the potential of MONs in water treatment, sustained research is imperative to refine treatment processes, develop economically viable strategies, and ensure the long-term sustainability of these technologies in addressing urban water pollution. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

21 pages, 5313 KiB  
Article
MixtureRS: A Mixture of Expert Network Based Remote Sensing Land Classification
by Yimei Liu, Changyuan Wu, Minglei Guan and Jingzhe Wang
Remote Sens. 2025, 17(14), 2494; https://doi.org/10.3390/rs17142494 - 17 Jul 2025
Viewed by 353
Abstract
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and [...] Read more.
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and LiDAR data for land-use classification. Our approach employs a 3-D plus heterogeneous convolutional stack to extract rich spectral–spatial features, which are then tokenized and fused via a cross-modality transformer. To enhance model capacity without incurring significant computational overhead, we replace conventional dense feed-forward blocks with a sparse Mixture-of-Experts (MoE) layer that selectively activates the most relevant experts for each token. Evaluated on a 15-class urban benchmark, MixtureRS achieves an overall accuracy of 88.6%, an average accuracy of 90.2%, and a Kappa coefficient of 0.877, outperforming the best homogeneous transformer by over 12 percentage points. Notably, the largest improvements are observed in water, railway, and parking categories, highlighting the advantages of incorporating height information and conditional computation. These results demonstrate that conditional, expert-guided fusion is a promising and efficient strategy for advancing multimodal remote sensing models. Full article
Show Figures

Graphical abstract

23 pages, 2572 KiB  
Article
Drivers and Barriers for Edible Streets: A Case Study in Oxford, UK
by Kuhu Gupta, Mohammad Javad Seddighi, Emma L. Davies, Pariyarath Sangeetha Thondre and Mina Samangooei
Sustainability 2025, 17(14), 6538; https://doi.org/10.3390/su17146538 - 17 Jul 2025
Viewed by 345
Abstract
This study introduces Edible Streets as a distinct and scalable model of community-led urban food growing, specifically investigating the drivers and barriers to the initiative. Unlike traditional urban food-growing initiatives, Edible Streets explores the integration of edible plants into street verges and footpaths [...] Read more.
This study introduces Edible Streets as a distinct and scalable model of community-led urban food growing, specifically investigating the drivers and barriers to the initiative. Unlike traditional urban food-growing initiatives, Edible Streets explores the integration of edible plants into street verges and footpaths with direct community involvement of the people who live/work in a street. This study contributes new knowledge by evaluating Edible Streets through the COM-B model of behavioural change, through policy and governance in addition to behaviour change, and by developing practical frameworks to facilitate its implementation. Focusing on Oxford, the research engaged residents through 17 in-person interviews and 18 online surveys, alongside a stakeholder workshop with 21 policymakers, community leaders, and NGO representatives. Findings revealed strong motivation for Edible Streets, driven by values of sustainability, community resilience, and improved well-being. However, capability barriers, including knowledge gaps in gardening, land-use policies, and food preservation, as well as opportunity constraints related to land access, water availability, and environmental challenges, hindered participation. To address these, a How-to Guide was developed, and a pilot Edible Street project was launched. Future steps include establishing a licensing application model to facilitate urban food growing and conducting a Post-Use Evaluation and Impact Study. Nationally, this model could support Right to Grow policies, while globally, it aligns with climate resilience and food security goals. Locally grown food enhances biodiversity, reduces carbon footprints, and strengthens social cohesion. By tackling key barriers and scaling solutions, this study provides actionable insights for policymakers and practitioners to create resilient, equitable urban food systems. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

19 pages, 1952 KiB  
Article
Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability
by Yongqi Liu, Jiayu Zhao, Rana Muhammad Adnan Ikram, Soon Keat Tan and Mo Wang
Water 2025, 17(14), 2110; https://doi.org/10.3390/w17142110 - 15 Jul 2025
Viewed by 385
Abstract
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs [...] Read more.
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs into historic urban landscapes by employing Internal–External (IE) matrix modeling and an impact–uncertainty assessment, grounded in a structured evaluation of key internal strengths and weaknesses, as well as external opportunities and threats. The Internal Factor Evaluation (IFE) score of 2.900 indicates a favorable internal environment, characterized by the multifunctionality of NBS and their ability to reconnect urban populations with nature. Meanwhile, the External Factor Evaluation (EFE) score of 2.797 highlights moderate support from policy and public awareness but identifies barriers such as funding shortages and interdisciplinary coordination. Based on these findings, two strategies are developed: an SO (Strength–Opportunity) strategy, promoting community-centered and policy-driven NBS design, and a WO (Weakness–Opportunity) strategy, targeting resource optimization through legal support and cross-sectoral collaboration. This study breaks new ground by transforming theoretical NBS concepts into actionable, culturally sensitive planning tools that enable decision-makers to navigate the unique challenges of implementing adaptive stormwater and environmental management in historically constrained urban environments. Full article
Show Figures

Figure 1

Back to TopTop