Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = urban forest biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2213 KB  
Review
Sustainable Estimation of Tree Biomass and Volume Using UAV Imagery: A Comprehensive Review
by Dan Munteanu, Simona Moldovanu, Gabriel Murariu and Lucian Dinca
Sustainability 2026, 18(2), 1095; https://doi.org/10.3390/su18021095 - 21 Jan 2026
Viewed by 77
Abstract
Accurate estimation of tree biomass and volume is essential for sustainable forest management, climate change mitigation, and ecosystem service assessment. Recent advances in unmanned aerial vehicle (UAV) technology enable the acquisition of ultra-high-resolution optical and three-dimensional data, providing a resource-efficient alternative to traditional [...] Read more.
Accurate estimation of tree biomass and volume is essential for sustainable forest management, climate change mitigation, and ecosystem service assessment. Recent advances in unmanned aerial vehicle (UAV) technology enable the acquisition of ultra-high-resolution optical and three-dimensional data, providing a resource-efficient alternative to traditional field-based inventories. This review synthesizes 181 peer-reviewed studies on UAV-based estimation of tree biomass and volume across forestry, agricultural, and urban ecosystems, integrating bibliometric analysis with qualitative literature review. The results reveal a clear methodological shift from early structure-from-motion photogrammetry toward integrated frameworks combining three-dimensional canopy metrics, multispectral or LiDAR data, and machine learning or deep learning models. Across applications, tree height, crown geometry, and canopy volume consistently emerge as the most robust predictors of biomass and volume, enabling accurate individual-tree and plot-level estimates while substantially reducing field effort and ecological disturbance. UAV-based approaches demonstrate particularly strong performance in orchards, plantation forests, and urban environments, and increasing applicability in complex systems such as mangroves and mixed forests. Despite significant progress, key challenges remain, including limited methodological standardization, insufficient uncertainty quantification, scaling constraints beyond local extents, and the underrepresentation of biodiversity-rich and structurally complex ecosystems. Addressing these gaps is critical for the operational integration of UAV-derived biomass and volume estimates into sustainable land management, carbon accounting, and climate-resilient monitoring frameworks. Full article
Show Figures

Figure 1

18 pages, 4104 KB  
Communication
Selective Predation and Chick Provisioning Rhythms in the European Scops Owl (Otus scops)
by Ignasi Torre, Joan Grajera and Josep Maria Olmo-Vidal
Diversity 2026, 18(1), 34; https://doi.org/10.3390/d18010034 - 8 Jan 2026
Viewed by 279
Abstract
This study analyzes the provisioning strategy of the European Scops Owl (Otus scops) via continuous video monitoring of a breeding pair in a peri-urban Mediterranean forest in NE Spain (n = 724 deliveries). Invertebrates dominated numerically, with Orthoptera constituting 64.6%. [...] Read more.
This study analyzes the provisioning strategy of the European Scops Owl (Otus scops) via continuous video monitoring of a breeding pair in a peri-urban Mediterranean forest in NE Spain (n = 724 deliveries). Invertebrates dominated numerically, with Orthoptera constituting 64.6%. Although vertebrates were scarce (1.8%), they contributed disproportionately to total biomass (20.8%), with rodents alone accounting for 20.3% of delivered energy. Parental effort followed a bimodal nocturnal rhythm, peaking at darkness onset (22:00 h) and before dawn. Crucially, we found a significant predation bias towards female orthopterans (65.6% vs. 34.3%; p < 0.001). While driven by Meconema thalassinum, selection in larger species like Tettigonia viridissima evidences a strategy focused on biomass profitability. Since Ensifera biomass scales allometrically (W ~ L2.797), selecting females yields disproportionate energetic gains. We also report the systematic removal of ovipositors prior to delivery, a behavior that optimizes intake but renders high-value females undetectable in traditional pellet analyses. These results suggest O. scops exploits artificial light sources (“streetlight traps”) to maximize foraging efficiency. Full article
(This article belongs to the Topic Mediterranean Biodiversity, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 1506 KB  
Communication
The Root of Urban Renewal: Linking Miyawaki Afforestation to Soil Recovery
by Andres F. Ospina Parra, John Evangelista and Daniela J. Shebitz
Land 2026, 15(1), 84; https://doi.org/10.3390/land15010084 - 31 Dec 2025
Viewed by 427
Abstract
Urban areas often suffer from enduring environmental issues, including flooding, biodiversity loss, heat island effects, and air and soil pollution. The Miyawaki method of afforestation, characterized by dense planting of native species on remediated soil, has been proposed as a rapid, nature-based solution [...] Read more.
Urban areas often suffer from enduring environmental issues, including flooding, biodiversity loss, heat island effects, and air and soil pollution. The Miyawaki method of afforestation, characterized by dense planting of native species on remediated soil, has been proposed as a rapid, nature-based solution for restoring urban ecological function. This study aims to evaluate early-stage changes in soil health following Miyawaki-style microforest establishment in formerly redlined neighborhoods in Elizabeth, New Jersey. Specifically, it investigates whether this method improves soil permeability, carbon content, and microbial activity within the first three years of planting. Three microforests aged one, two, and three years were assessed using a chronosequence approach. At each site, soil samples from within the microforest and adjacent untreated urban soil (control) were compared. Analyses included physical (porosity, dry density, void ratio), chemical (total carbon), and biological (microbial respiration, biomass, metabolic rate, carbon use efficiency) assessments. Soil permeability was estimated via the Kozeny–Carman equation. Microforest soils showed significantly greater porosity (p = 0.015), higher void ratios (p = 0.009), and reduced compaction compared to controls. Soil permeability improved dramatically, with factors ranging from 5.99 to 52.27. Total carbon content increased with forest age, reaching 2.0 mg C/g in the oldest site (p < 0.001). Microbial metabolic rate rose by up to 287.5% (p = 0.009), while carbon use efficiency also improved, particularly in the older microforests. Within just one to three years, Miyawaki microforests significantly enhanced both the physical and biological properties of degraded urban soils, signaling rapid restoration of soil function and the early return of ecosystem services. Full article
Show Figures

Graphical abstract

18 pages, 1477 KB  
Article
Development and Comparison of Allometric Equations for Estimating Carbon Storage of Two Hibiscus syriacus Cultivars with Different Growth Forms in Urban Areas of Republic of Korea
by Hak-Koo Kim, Hanna Shin, Jeong-Min Lee, Seo-Hyeon Joo, Go-Eun Bang, Hyun-A Kim, Jun-Seop Lee, Seonghun Lee, Yun-Kyung Lim, Hyun-Chul Kim, Yong-Jin Kwon and Chan-Beom Kim
Forests 2025, 16(12), 1845; https://doi.org/10.3390/f16121845 - 11 Dec 2025
Viewed by 359
Abstract
Urban vegetation plays a role as a sink, but accurately estimating carbon storage requires cultivar-specific allometric equations due to variations in growth patterns. This study develops and compares carbon storage models for cultivars of Hibiscus syriacus L.: ‘Wonhwa’ and ‘Chilbo’, ranked first and [...] Read more.
Urban vegetation plays a role as a sink, but accurately estimating carbon storage requires cultivar-specific allometric equations due to variations in growth patterns. This study develops and compares carbon storage models for cultivars of Hibiscus syriacus L.: ‘Wonhwa’ and ‘Chilbo’, ranked first and second in preference in South Korea and most widely planted in urban areas, to address the lack of specific data for these popular varieties. We destructively sampled 106 trees from experimental nurseries in Korea, measuring growth parameters, partitioned biomass, and component-specific carbon content. A non-linear regression equation modeled the relationship between root collar diameter (RCD) and total carbon storage. RCD proved the most effective predictor, resulting in high-performance power-function models (R2 = 0.99) for both cultivars: ‘Wonhwa’ (CS = 0.02RCD2.41) and ‘Chilbo’ (CS = 0.01RCD2.38). An extra sum-of-squares F-test confirmed a statistically significant difference between the models (p < 0.001). Notably, both cultivars exhibited a branch-dominant allocation pattern (accounting for approximately 50–51% of total biomass), which contrasts significantly with the stem-dominant pattern typically observed in forest-grown trees. The observed inter-cultivar differences indicate that using a single species-level equation can yield inaccurate carbon estimates. Consequently, we recommend that urban managers apply these cultivar-specific equations rather than generic species-level models to minimize estimation uncertainty and support precise carbon inventory management. Full article
Show Figures

Figure 1

22 pages, 1593 KB  
Article
Advancing Community Bioenergy in Central Greece: Biomass Integration and Market-Uptake Evaluation
by Michalis Alexandros Kougioumtzis, Vassilis Filippou, Kostas Dasopoulos and Panagiotis Grammelis
Energies 2025, 18(23), 6346; https://doi.org/10.3390/en18236346 - 3 Dec 2025
Viewed by 376
Abstract
This paper investigates how the existing pellet plant of the Energy Community of Karditsa (ESEK) can be leveraged to strengthen RESCoop operations by integrating a variety of biomass feedstocks as (i) urban residual biomass, (ii) forest residues, and (iii) alternative sources such as [...] Read more.
This paper investigates how the existing pellet plant of the Energy Community of Karditsa (ESEK) can be leveraged to strengthen RESCoop operations by integrating a variety of biomass feedstocks as (i) urban residual biomass, (ii) forest residues, and (iii) alternative sources such as spent coffee grounds (SCGs). The RESCoop envisions an extended role as an Energy Service Company (ESCO) by installing and operating biomass boilers in local public buildings. The paper provides an overview of the technical and business support that was provided to the RESCoop for the development of such new business activities and aggregates the lessons learned from engaging the rural society towards sustainable bioenergy production. More specifically, the study covers the logistical aspects of the new RESCoop value chains, including availability, collection, transportation, and processing of the feedstocks along with their costs. A base case scenario investigates the feasibility of installing biomass boilers in municipal buildings through a detailed financial viability study examining capital and operational expenses, revenues, and key financial indicators. Further, the environmental and socio-economic impacts of the new RESCoop activities are evaluated in terms of CO2 equivalent savings compared to fossil fuel solutions and new job creation, respectively. This detailed analysis highlights the potential for sustainable bioenergy integration and provides valuable insights for similar initiatives aiming to diversify and enhance sustainable energy practices in local communities. Full article
Show Figures

Figure 1

21 pages, 9861 KB  
Article
Accounting for 10 m Resolution Mapping for Above-Ground Biomass of Urban Trees in C40 Cities Across Eurasia Continent
by Ge Yan, Zhifang Shi, Gaomin Lian, Kailong Cui, Nan Li, Ying Luo, Shuyuan Zhou, Mengmeng Cao and Yaoping Cui
Remote Sens. 2025, 17(23), 3898; https://doi.org/10.3390/rs17233898 - 30 Nov 2025
Viewed by 644
Abstract
High-resolution above-ground biomass (AGB) data play a critical role in advancing low-carbon development strategies across cities. However, research on urban trees’ AGB largely relies on high-accuracy field measurements, which limits the feasibility of conducting cross-regional studies. In contrast, existing remote-sensing-based AGB products provide [...] Read more.
High-resolution above-ground biomass (AGB) data play a critical role in advancing low-carbon development strategies across cities. However, research on urban trees’ AGB largely relies on high-accuracy field measurements, which limits the feasibility of conducting cross-regional studies. In contrast, existing remote-sensing-based AGB products provide extensive coverage while lacking the spatial resolution required for precise city-scale analysis. To address the dilemma of achieving both high spatial resolution and broad coverage, this study integrated 149 feature variables derived from multi-source datasets and implemented quality-control procedures to select high-quality samples from two globally representative AGB products (GEDI AGB and CCI AGB). This strategy substantially improved the performance of the random forest model and generated 10 m resolution urban trees’ AGB maps for 51 C40 cities across Eurasia continent. The results indicate that: (1) after applying quality control to the target variables, the mean R2 of ten-fold cross validation improved from 0.37 to 0.75, and the MAE decreased substantially from 47.02 Mg/ha to 17.48 Mg/ha; (2) by enhancing the spatial resolution of AGB maps to 10 m, the resulting products exhibit superior spatial detail, better capture local variations, and maintain greater spatial continuity compared with the CCI AGB and GEDI AGB datasets; (3) the mean AGB density across the Eurasian continent was 39.44 Mg/ha, with total urban tree s’ AGB reaching 83.83 × 106 t. Comparison with previous single-city C40 studies shows that our estimated AGB density and total AGB closely align with previously reported values. The above data implies that cities carry an undeniable amount of carbon storage, both in terms of carbon density and total amount. This study provides a robust foundation for accurately assessing the potential of urban carbon sinks and optimizing the path to achieving carbon neutrality. Full article
Show Figures

Figure 1

12 pages, 4280 KB  
Article
Incorporating Spectral Unmixing to Estimate Carbon Sequestration Changes in an Urban Forest Canopy
by Michael K. Crosby and T. Eric McConnell
Urban Sci. 2025, 9(11), 454; https://doi.org/10.3390/urbansci9110454 - 1 Nov 2025
Cited by 1 | Viewed by 324
Abstract
The urban forest canopy provides critical ecosystem services, including carbon storage and sequestration. Healthy, well-managed trees in an urban setting can provide these services in a way comparable to forests managed for production or as nature preserves. Disturbance events threaten these benefits by [...] Read more.
The urban forest canopy provides critical ecosystem services, including carbon storage and sequestration. Healthy, well-managed trees in an urban setting can provide these services in a way comparable to forests managed for production or as nature preserves. Disturbance events threaten these benefits by reducing canopy cover and biomass. A tornado struck Ruston, Louisiana, on 25 April 2019, resulting in severe canopy damage through a swatch of the city. We used iTree Canopy to obtain estimates of ecosystem services (carbon sequestration, etc.) and converted this to a per-pixel value before interpolating for the study area. Fractional vegetation estimates obtained from spectral unmixing were obtained from pre- and post-tornado images using Sentinel-2 data and applied to weight damage. Pre- and post-tornado assessments revealed that Ruston’s urban forest canopy sequestered 85% of its pre-storm capability, with an estimated decline in social value of approximately $36,000. Assessing disturbance-based landscape changes, and subsequently calculating fractional changes in biomass and corresponding monetary impacts, will increasingly be looked to as ecosystem services and severe weather events are expected to become more commonplace in the future. The methodology employed demonstrates a cost-effective way to assess disturbance impacts in small urban areas, offering a framework to small municipalities to monitor canopy dynamics. Full article
Show Figures

Figure 1

26 pages, 5468 KB  
Article
Predicting Forest Carbon Sequestration of Ecological Buffer Zone in Urban Agglomeration: Integrating Vertical Heterogeneity and Age Class Dynamics to Unveil Future Trajectories
by Chan Chen, Juyang Liao, Yan Liu, Yaqi Huang, Qiaoyun Li, Xinyu Yi, Ling Wang, Linshi Wu and Zhao Shi
Forests 2025, 16(11), 1648; https://doi.org/10.3390/f16111648 - 29 Oct 2025
Viewed by 559
Abstract
Forest ecosystems are vital for climate mitigation, yet predicting their carbon (C) sequestration remains challenging, especially in urban-proximal regions. This study investigates the C storage dynamics across five major forest types in the Chang-Zhu-Tan Green Heart, a critical ecological buffer zone in China’s [...] Read more.
Forest ecosystems are vital for climate mitigation, yet predicting their carbon (C) sequestration remains challenging, especially in urban-proximal regions. This study investigates the C storage dynamics across five major forest types in the Chang-Zhu-Tan Green Heart, a critical ecological buffer zone in China’s Yangtze River Mid-Reach urban agglomeration. We integrated field measurements with structural equation and random forest modeling to analyze vertical C distribution and its drivers. The results revealed that over 90% of vegetation C was stored in the tree layer, with soil C highest in evergreen broad-leaved forests (41.26 Mg C/ha). Biological factors (i.e., tree volume and biomass) primarily drove vegetation C (52–73% of variance), while non-biological factors (soil properties and micronutrients) predominantly regulated soil C. We identified distinct age-related trajectories: J-shaped accumulation in broad-leaved forests versus S-shaped patterns in coniferous and mixed forests. These findings provide a mechanistic framework for forest-type-specific management strategies to enhance C sequestration in urban-agglomeration buffer zones. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 3619 KB  
Article
Synergistic Effects of Biochar and Bacillus thuringiensis NL-11 on Ophiopogon japonicus Growth and Soil Microbial Diversity in Trampled Urban Forest Soils
by Qianqian Liu, Hui Nie, Xiaorui Sun, Lina Dong, Liu Xiang, Jinchi Zhang and Xin Liu
Microorganisms 2025, 13(9), 2004; https://doi.org/10.3390/microorganisms13092004 - 27 Aug 2025
Viewed by 1035
Abstract
Bare soil expansion in urban forests, driven by persistent high-intensity trampling, degrades both macro-scale natural resources and micro ecological conditions. Targeted interventions are therefore essential. In this study, trampled bare ground in forest parks and artificially cultivated Ophiopogon japonicus were used as experimental [...] Read more.
Bare soil expansion in urban forests, driven by persistent high-intensity trampling, degrades both macro-scale natural resources and micro ecological conditions. Targeted interventions are therefore essential. In this study, trampled bare ground in forest parks and artificially cultivated Ophiopogon japonicus were used as experimental models We employed trampled bare ground in forest parks as well as artificially cultivated O. japonicus as experimental models. Five treatments were implemented: enclosure control (CK), ploughing (F), Bacillus thuringiensis NL-11 application (J), biochar addition (C), and co-application of B. thuringiensis NL-11 with biochar (JC). Our results indicate that, compared with CK, biochar treatments reduced soil bulk density by 30%, increased soil porosity by 89%, and improved water-holding capacity. The soil nitrate nitrogen content in the NL-11 treatment was increased by 113.8% compared with CK, while the co-application of NL-11 with biochar exhibited the highest sucrase and urease activities. Notably, the co-application of B. thuringiensis NL-11 with biochar exhibited the most pronounced effects on aboveground biomass, plant height, and root development, followed by the B. thuringiensis NL-11 treatment. Microbial β-diversity shifts under co-application of B. thuringiensis NL-11 with biochar treatment strongly correlated with soil enzyme activation and plant growth enhancement (Mantel test, p < 0.05). Correlation analysis confirmed that exogenous nutrient inputs significantly influenced enzyme activities, thereby promoting plant development. These results highlight the effectiveness of integrating microbial inoculation with biochar to restore trampled urban forest soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 2782 KB  
Article
Urban Forest Fragmentation Reshapes Soil Microbiome–Carbon Dynamics
by Melinda Haydee Kovacs, Nguyen Khoi Nghia and Emoke Dalma Kovacs
Diversity 2025, 17(8), 545; https://doi.org/10.3390/d17080545 - 1 Aug 2025
Cited by 1 | Viewed by 1680
Abstract
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of [...] Read more.
Urban expansion fragments once-contiguous forest patches, generating pronounced edge gradients that modulate soil physicochemical properties and biodiversity. We quantified how fragmentation reshaped the soil microbiome continuum and its implications for soil carbon storage in a temperate urban mixed deciduous forest. A total of 18 plots were considered in this study, with six plots for each fragment type. Intact interior forest (F), internal forest path fragment (IF), and external forest path fragment (EF) soils were sampled at 0–15, 15–30, and 30–45 cm depths and profiled through phospholipid-derived fatty acid (PLFA) chemotyping and amino sugar proxies for living microbiome and microbial-derived necromass assessment, respectively. Carbon fractionation was performed through the chemical oxidation method. Diversity indices (Shannon–Wiener, Pielou evenness, Margalef richness, and Simpson dominance) were calculated based on the determined fatty acids derived from the phospholipid fraction. The microbial biomass ranged from 85.1 to 214.6 nmol g−1 dry soil, with the surface layers of F exhibiting the highest values (p < 0.01). Shannon diversity declined systematically from F > IF > EF. The microbial necromass varied from 11.3 to 23.2 g⋅kg−1. Fragmentation intensified the stratification of carbon pools, with organic carbon decreasing by approximately 14% from F to EF. Our results show that EFs possess a declining microbiome continuum that weakens their carbon sequestration capacity in urban forests. Full article
Show Figures

Figure 1

13 pages, 2073 KB  
Article
Quantifying Ozone-Driven Forest Losses in Southwestern China (2019–2023)
by Qibing Xia, Jingwei Zhang, Zongxin Lv, Duojun Wu, Xiao Tang and Huizhi Liu
Atmosphere 2025, 16(8), 927; https://doi.org/10.3390/atmos16080927 - 31 Jul 2025
Viewed by 779
Abstract
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3 [...] Read more.
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3’s impacts on forest ecosystems in Southwestern China (Yunnan, Guizhou, Sichuan, and Chongqing), which harbors crucial forest resources. We analyzed high-resolution monitoring data from over 200 stations (2019–2023), employing spatial interpolation to derive the regional maximum daily 8 h average O3 (MDA8-O3, ppb) and accumulated O3 exposure over 40 ppb (AOT40) metrics. Through AOT40-based exposure–response modeling, we quantified the forest relative yield losses (RYL), economic losses (ECL) and ECL/GDP (GDP: gross domestic product) ratios in this region. Our findings reveal alarming O3 increases across the region, with a mean annual MDA8-O3 anomaly trend of 2.4% year−1 (p < 0.05). Provincial MDA8-O3 anomaly trends varied from 1.4% year−1 (Yunnan, p = 0.059) to 4.3% year−1 (Guizhou, p < 0.001). Strong correlations (r > 0.85) between annual RYL and annual MDA8-O3 anomalies demonstrate the detrimental effects of O3 on forest biomass. The RYL trajectory showed an initial decline during 2019–2020 and accelerated losses during 2020–2023, peaking at 13.8 ± 6.4% in 2023. Provincial variations showed a 5-year averaged RYL ranging from 7.10% (Chongqing) to 15.85% (Yunnan). O3 exposure caused annual ECL/GDP averaging 4.44% for Southwestern China, with Yunnan suffering the most severe consequences (ECL/GDP averaging 8.20%, ECL averaging CNY 29.8 billion). These results suggest that O3-driven forest degradation may intensify, potentially undermining the regional carbon sequestration capacity, highlighting the urgent need for policy interventions. We recommend enhanced monitoring networks and stricter control methods to address these challenges. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

25 pages, 5461 KB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Cited by 1 | Viewed by 1796
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

20 pages, 2546 KB  
Article
Positive Relationships Between Soil Organic Carbon and Tree Physical Structure Highlights Significant Carbon Co-Benefits of Beijing’s Urban Forests
by Rentian Xie, Syed M. H. Shah, Chengyang Xu, Xianwen Li, Suyan Li and Bingqian Ma
Forests 2025, 16(8), 1206; https://doi.org/10.3390/f16081206 - 22 Jul 2025
Viewed by 1413
Abstract
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on [...] Read more.
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on 146 soil samples collected at plot locations selected across Beijing, we examined relationships between soil organic carbon (SOC) and key characteristics of urban forests, including their spatial structure and species complexity. The results showed that SOC in the topsoil with a depth of 20 cm was highest over forested plots (6.384 g/kg–20.349 g/kg) and lowest in soils without any vegetation cover (5.586 g/kg–6.783 g/kg). The plots with herbaceous/shrub vegetation but no tree cover had SOC values in between (5.586 g/kg–15.162 g/kg). The plot data revealed that SOC was better correlated with the physical structure than the species diversity of Beijing’s urban trees. The correlation coefficients (r) between SOC and five physical structure indicators, including average diameter at breast height (DBH), average tree height, basal area density, and the diversity of DBH and tree height, ranged from 0.32 to 0.52, whereas the r values for four species diversity indicators ranged from 0.10 to 0.25, two of which were not statistically different from 0. Stepwise linear regression analyses revealed that the species diversity indicators were not very sensitive to SOC variations among a large portion of the plots and were about half as effective as the physical structure indicators for explaining the total variance of SOC. These results suggest that urban planning and greenspace management policies could be tailored to maximize the carbon co-benefits of urban land. Specifically, trees should be planted in urban areas wherever possible, preferably as densely as what can be allowed given other urban planning considerations. Protection of large, old trees should be encouraged, as these trees will continue to sequester and store large quantities of carbon in above- and belowground biomass as well as in soil. Such policies will enhance the contribution of urban land, especially urban forests and other greenspaces, to nature-based solutions (NBS) to climate change. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
Show Figures

Figure 1

30 pages, 4703 KB  
Article
Governance-Centred Industrial Symbiosis for Circular Economy Transitions: A Rural Forest Biomass Hub Framework Proposal
by Joel Joaquim de Santana Filho, Pedro Dinis Gaspar, Arminda do Paço and Sara M. Marcelino
Sustainability 2025, 17(12), 5659; https://doi.org/10.3390/su17125659 - 19 Jun 2025
Cited by 8 | Viewed by 2888
Abstract
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a [...] Read more.
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a strategic node within a reverse supply chain, the hub facilitates the conversion of solid waste into renewable energy and high-value co-products, including green hydrogen, tailored for industrial and agricultural applications, with an estimated 120 ktCO2/year reduction and 60 direct jobs. Aligned with the United Nations (UN) Sustainable Development Goals (SDGs) and the Paris Agreement, this initiative addresses global challenges such as decarbonization, resource efficiency, and the energy transition. Employing a mixed research methodology, this study integrates a comprehensive literature review, in-depth stakeholder interviews, and comparative case study analysis to formulate a governance framework fostering regional partnerships between industry, government, and local communities. The findings highlight Fundão’s potential to become a benchmark for rural industrial symbiosis, offering a replicable model for circularity in non-urban contexts, with a projected investment of USD 60 M. Special emphasis is placed on the green hydrogen value chain, positioning it as a key enabler for regional sustainability. This research underscores the importance of cross-sectoral collaboration in achieving scalable and efficient waste recovery processes. By delivering practical insights and a robust governance structure, the study contributes to the circular economy literature, providing actionable strategies for implementing rural reverse supply chains. Beyond validating waste valorization and renewable energy production, the proposed hub establishes a blueprint for sustainable rural industrial development, promoting long-term industrial symbiosis integration. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

16 pages, 853 KB  
Article
Response of the Invasive Alien Plant Duchesnea indica (Andrews) Teschem. to Different Environmental and Competitive Settings
by Maja Kreća, Nina Šajna and Mirjana Šipek
Plants 2025, 14(11), 1563; https://doi.org/10.3390/plants14111563 - 22 May 2025
Viewed by 809
Abstract
Indian mock strawberry (Duchesnea indica, syn. Potentilla indica), a clonal invasive plant native to Asia, has rapidly spread in Europe, where its ecological adaptation allows it to thrive under varying environmental conditions. It is mostly found in urban habitats such [...] Read more.
Indian mock strawberry (Duchesnea indica, syn. Potentilla indica), a clonal invasive plant native to Asia, has rapidly spread in Europe, where its ecological adaptation allows it to thrive under varying environmental conditions. It is mostly found in urban habitats such as lawns, parks, and urban and peri-urban forests, where it thrives in various plant communities. It can become dominant in certain communities, indicating its competitive advantage over native plants. Due to similar habitat preferences, it often coexists with the native species Glechoma hederacea, with which it shares other characteristics such as clonal growth. This study investigates the effects of light, nutrients, and competition on the growth, morphology, and physiology of D. indica. A controlled pot experiment exposed plants to combinations of sunlight and shade, optimal and increased nutrient levels, and competitive scenarios with the native plant G. hederacea. The plant traits of biomass, leaf and ramet number, stolon and flower production, leaf greenness, the photosynthetic efficiency of Photosystem II, and stomatal conductance were assessed. Results revealed that light and nutrient availability significantly enhanced growth metrics. In shaded conditions, D. indica adapted with elongated petioles and increased specific leaf area. Competition significantly reduced growth, with G. hederacea outperforming D. indica. These findings highlight the complex interplay between abiotic and biotic factors in influencing invasive species impact, providing essential insights for ecosystem management. Full article
(This article belongs to the Special Issue Plant Invasions across Scales)
Show Figures

Figure 1

Back to TopTop