The Root of Urban Renewal: Linking Miyawaki Afforestation to Soil Recovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Selection and Preparation
2.2. Soil Sampling
2.3. Soil Porosity
2.4. Hydraulic Conductivity and Permeability
2.5. Total Carbon Analysis
2.6. Soil Microbial Activity: Respiration and Biomass
2.7. Microbial Biomass Carbon
2.8. Data Analysis
3. Results
4. Discussion
4.1. Rapid Improvements in Soil Structure
4.2. Organic Carbon Accumulation and Soil Respiration
4.3. Early Signs of Ecological Self-Organization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, H. Mini-Forest Revolution: Using the Miyawaki Method to Rapidly Rewild the World; Chelsea Green Publishing: White River Junction, VT, USA, 2022. [Google Scholar]
- Riyas, A.F. Miyawaki Technique: Creating Mini Forests in Urban Areas; ClearIAS: Thiruvananthapuram, India, 2022; Available online: https://www.clearias.com/miyawaki-technique/ (accessed on 25 March 2023).
- Singh, C.; Saini, G. Sustainable Solution for Urban Environment: Miyawaki Forest. 2019. Available online: https://www.researchgate.net/publication/351372104_Sustainable_Solution_for_Urban_Environment_Miyawaki_Forest#fullTextFileContent (accessed on 20 November 2025).
- Schirone, B.; Salis, A.; Vessella, F. Effectiveness of the Miyawaki method in Mediterranean forest restoration programs. Landsc. Ecol. Eng. 2011, 7, 81–92. [Google Scholar] [CrossRef]
- Qi, H.; Dempsey, N.; Cameron, R. Seeing the forest for the trees? An exploration of the Miyawaki forest method in the UK. Arboric. J. 2024, 46, 292–304. [Google Scholar] [CrossRef]
- Roy, A.; Lopus, M.; Surendran, S.; Kushwaha, A.; Sreejith, K.A.; Akhila, K.C.; Anna, G.; Saranga, P.; Sethulakhsmi, N.; Jaiswal, D. Assessing carbon sequestration in urban Miyawaki forests of south India: Implications for climate mitigation planning and land suitability. Trees For. People 2025, 21, 100925. [Google Scholar] [CrossRef]
- Miyawaki, A. Creative ecology: Restoration of native forests by native trees. Plant Biotechnol. 1999, 16, 15–25. [Google Scholar] [CrossRef]
- Miyawaki, A. Native forest by native trees: Restoration of indigenous forest ecosystem. Bull. Inst. Environ. Sci. Technol. 1993, 19, 73–107. [Google Scholar]
- Nargi, L. The Miyawaki Method: A better way to build forests? JSTOR Daily, 24 July 2019. Available online: https://daily.jstor.org/the-miyawaki-method-a-better-way-to-build-forests/ (accessed on 20 November 2025).
- Buckley, C. Tiny forests with big benefits. The New York Times, 26 August 2023. Available online: https://www.nytimes.com/2023/08/24/climate/tiny-forests-climate-miyawaki.html (accessed on 30 November 2025).
- Miyawaki, A. Restoration of urban green environments based on the theories of vegetation ecology. Ecol. Eng. 1998, 11, 157–165. [Google Scholar] [CrossRef]
- Webber, S. The Miyawaki Method for Creating Forests—Creating Tomorrow’s Forests: Restoring Biodiversity by Creating Habitats and Planting Trees [WWW Document]. 2022. Available online: https://www.creatingtomorrowsforests.co.uk/blog/the-miyawaki-method-for-creating-forests (accessed on 7 August 2025).
- Kavana, L. Miyawaki Forest Technical Report. 2023. Available online: https://www.researchgate.net/publication/372909629_Miyawaki_Forest (accessed on 7 August 2025).
- Guo, X.F. Effects of different forest reconstruction methods on characteristics of understory vegetation and soil quality. Appl. Ecol. Environ. Res. 2018, 16, 7501–7517. [Google Scholar] [CrossRef]
- Manuel, C. The Miyawaki Method—Data & Concepts; Urban Forests Company: Chennai, India, 2020; Available online: https://urbanforest.be/wp-content/uploads/2025/01/Urban-Forests-report-The-Miyawaki-method-%E2%80%93-Data-concepts.pdf (accessed on 30 November 2025).
- Xu, H.; Chen, C.; Pang, Z.; Zhang, G.; Wu, J.; Kan, H. Short-term vegetation restoration enhances the complexity of soil fungal network and decreases the complexity of bacterial network. J. Fungi 2022, 8, 1122. [Google Scholar] [CrossRef] [PubMed]
- Sandip, R.; Sharma, P.; Modi, N.R. Development of tree plantation through Miyawaki method at Sabarmati Riverfront Development Corporation Limited: A research. Int. Assoc. Biol. Comput. Dig. 2022, 1, 163–174. [Google Scholar] [CrossRef]
- Viezzer, J.; Schmidt, M.A.R.; dos Reis, A.R.N.; Freiman, F.P.; de Moraes, E.N.; Biondi, D. Restoration of urban forests to reduce flood susceptibility: A starting point. Int. J. Disaster Risk Reduct. 2022, 74, 102944. [Google Scholar] [CrossRef]
- Ebenberger, M.; Arnberger, A. Exploring visual preferences for structural attributes of urban forest stands for restoration and heat relief. Urban For. Urban Green. 2019, 41, 272–282. [Google Scholar] [CrossRef]
- Burghardt, K.T.; Avolio, M.L.; Locke, D.H.; Grove, J.M.; Sonti, N.F.; Swan, C.M. Current street tree communities reflect race-based housing policy and modern attempts to remedy environmental injustice. Ecology 2023, 104, e3881. [Google Scholar] [CrossRef] [PubMed]
- Schinasi, L.H.; Kanungo, C.; Christman, Z.; Barber, S.; Tabb, L.; Headen, I. Associations between historical redlining and present-day heat vulnerability, housing and land cover characteristics in Philadelphia, PA. J. Urban Health 2022, 99, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.; Nash, M.S.; Rosebaum, D.J.; Prince, S.E.; D’Aloisio, A.A.; Mehaffey, M.H.; Sandler, D.P.; Buckley, T.J.; Neale, A.C. Association of redlining and natural environment with depressive symptoms in women in the Sister Study. Environ. Health Perspect. 2023, 131, 107009. [Google Scholar] [CrossRef] [PubMed]
- Zeybek, O. Evaluating the Miyawaki afforestation technique in urban landscapes: Opportunities and challenges. ICONARP Int. J. Archit. Plan. 2025, 13, 314–315. [Google Scholar] [CrossRef]
- ASTM D422-63; Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM D7928-21e1; Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer). ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D7263-21; Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens. ASTM International: West Conshohocken, PA, USA, 2021.
- Wang, J.; François, B.; Lambert, P. Equation for hydraulic conductivity estimation from particle size distribution: A dimensional analysis. Water Resour. Res. 2017, 53, 8127–8134. [Google Scholar] [CrossRef]
- Irving, D.; Bakhshandeh, S.; Tran, T.K.A.; McBratney, A. A cost-effective method for quantifying soil respiration. Soil Secur. 2024, 16, 1001626. [Google Scholar] [CrossRef]
- Ananyeva, N.D.; Susyan, E.A.; Gavrilenko, E.G. Determination of the soil microbial biomass carbon using the method of substrate-induced respiration. Eurasian Soil Sci. 2011, 44, 1215–1221. [Google Scholar] [CrossRef]
- First Street Foundation. High Water, High Stakes: FEMA, Flood Risk, and the NFIP [Data Set]. Zenodo. 2025. Available online: https://firststreet.org/city/elizabeth-nj/3421000_fsid/flood (accessed on 20 November 2025).
- Kueh, R.J.H.; Majid, N.M.; Ahmed, O.H.; Gandaseca, S. Assessment of carbon stock in chronosequence rehabilitated tropical forest stands in Malaysia. J. For. Environ. Sci. 2016, 32, 302–310. [Google Scholar] [CrossRef]
- Peddle, S.D.; Bissett, A.; Borrett, R.J.; Bullock, P.; Gardner, M.G.; Liddicoat, C.; Tibbett, M.; Breed, M.F.; Krauss, S.L. Soil DNA chronosequence analysis shows bacterial community re-assembly following post-mining forest rehabilitation. Restor. Ecol. 2023, 31, e13706. [Google Scholar] [CrossRef]






| Site | Year | Size | Estimated Cost | Total Plants Installed | Tree Species | Total Plant Species Richness | Planting Density |
|---|---|---|---|---|---|---|---|
| Elmora Library | 2021 | 100 m2 | $80,000 | 106 | 19 | 31 | 1.06/m2 |
| Housing Authority | 2022 | 163 m2 | $70,000 | 200 | 5 | 8 | 1.23/m2 |
| Senior Center | 2023 | 153 m2 | $68,000 | 175 | 20 | 27 | 1.14/m2 |
| Species | Common Name | Growth Form | Elmora Library | Housing Authority | Senior Center |
|---|---|---|---|---|---|
| Acer rubrum | Red maple | Tree | x * | x | |
| Amelanchier canadensis | Serviceberry | Shrub | x | ||
| Aronia arbutifolia | Red chokeberry | Shrub | x | ||
| Aronia melanocarpa | Black chokeberry | Shrub | x * | ||
| Asimina triloba | Pawpaw | Tree | x | x | |
| Betula lenta | Sweet birch | Tree | x | ||
| Betula nigra | River birch | Tree | x * | ||
| Betula populifolia | Gray birch | Tree | x * | ||
| Calycanthus floridus | Carolina allspice | Shrub | x | ||
| Calycanthus occidentalis | Spice bush | Shrub | x | ||
| Castanea dentata | American chestnut | Tree | x | ||
| Ceanothus americanus | New Jersey tea | Shrub | x | ||
| Celtis occidentalis | Hackberry | Tree | x | x * | |
| Cercis canadensis | Eastern redbud | Tree | x | x | |
| Clethra alnifolia | Sweet pepperbush | Shrub | x | ||
| Cornus florida | Flowering dogwood | Tree | x | x | x * |
| Cornus racemosa | Gray dogwood | Tree | x | x | |
| Diospyros virginiana | Persimmon | Tree | x | x | |
| Euonymus americanus | Strawberry bush | Shrub | x | ||
| Fagus grandifolia | American beech | Tree | x | ||
| Gleditsia tricanthos | Honey locust | Tree | x | ||
| Gymnocladus dioicus | Kentucky coffee tree | Tree | x | ||
| Hamamelis virginiana | Witch hazel | Shrub | x * | x * | |
| Ilex opaca | American holly | Tree | x | x | |
| Ilex verticillata | Winterberry holly | Shrub | x | ||
| Juniperus virginiana | Eastern red cedar | Tree | x | ||
| Lidera benzoin | Northern spicebush | Shrub | x | ||
| Liriodendron tulipifera | Yellow poplar | Tree | x * | x | |
| Metasequoia glyptostroboides | Dawn redwood | Tree | x | ||
| Myrica pensylvanica | Northern bayberry | Shrub | x | ||
| Nyssa sylvatica | Black gum | Tree | x | ||
| Photinia pyrifolia | Red chokeberry | Shrub | x | ||
| Pinus alba | White pine | Tree | x | ||
| Pinus echinata | Shortleaf pine | Tree | x | ||
| Pinus resinosa | Red pine | Tree | x | ||
| Platanus occidentalis | American sycamore | Tree | x | ||
| Prunus maritima | Beach plum | Shrub | x | x | |
| Quercus alba | White oak | Tree | x | ||
| Quercus bicolor | Swamp white oak | Tree | x * | x | |
| Quercus coccinea | Scarlet oak | Tree | x | ||
| Quercus phellos | Willow oak | Tree | x | x * | |
| Quercus montana | Chestnut oak | Tree | x | x | |
| Quercus rubra | Red oak | Tree | x * | ||
| Rhus typhina | Staghorn sumac | Shrub | x | ||
| Rosa carolina | Carolina shrub | Shrub | x | ||
| Sambucus canadensis | Common elderberry | Shrub | x | ||
| Sassafras albidum | Sassafras | Tree | x | x | |
| Vaccinium corymbosum | Highbush blueberry | Shrub | x | ||
| Viburnum dentatum | Arrowwood viburnum | Shrub | x | ||
| Viburnum prunifolium | Blackhaw viburnum | Shrub | x * |
| Elmora Library | Housing Authority | Senior Center | ||||
|---|---|---|---|---|---|---|
| Forest | Control | Forest | Control | Forest | Control | |
| Porosity % | 72.31 | 63.02 | 68.41 | 53.24 | 72.02 | 53.06 |
| Dry density pcf | 47.02 | 62.79 | 53.64 | 79.4 | 47.51 | 79.71 |
| Void ratio | 2.61 | 1.7 | 2.17 | 1.14 | 2.57 | 1.13 |
| Total fines % | 28.9 | 50.9 | 22 | 61.9 | 51.2 | 52.5 |
| K-value | 1.1 × 10−5 | 8.6 × 10−7 | 1.1 × 10−5 | 2.2 × 10−7 | 3.1 × 10−6 | 5.1 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ospina Parra, A.F.; Evangelista, J.; Shebitz, D.J. The Root of Urban Renewal: Linking Miyawaki Afforestation to Soil Recovery. Land 2026, 15, 84. https://doi.org/10.3390/land15010084
Ospina Parra AF, Evangelista J, Shebitz DJ. The Root of Urban Renewal: Linking Miyawaki Afforestation to Soil Recovery. Land. 2026; 15(1):84. https://doi.org/10.3390/land15010084
Chicago/Turabian StyleOspina Parra, Andres F., John Evangelista, and Daniela J. Shebitz. 2026. "The Root of Urban Renewal: Linking Miyawaki Afforestation to Soil Recovery" Land 15, no. 1: 84. https://doi.org/10.3390/land15010084
APA StyleOspina Parra, A. F., Evangelista, J., & Shebitz, D. J. (2026). The Root of Urban Renewal: Linking Miyawaki Afforestation to Soil Recovery. Land, 15(1), 84. https://doi.org/10.3390/land15010084

