Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (640)

Search Parameters:
Keywords = unmanned aircraft systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Viewed by 164
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

13 pages, 733 KiB  
Proceeding Paper
AI-Based Assistant for SORA: Approach, Interaction Logic, and Perspectives for Cybersecurity Integration
by Anton Puliyski and Vladimir Serbezov
Eng. Proc. 2025, 100(1), 65; https://doi.org/10.3390/engproc2025100065 - 1 Aug 2025
Viewed by 178
Abstract
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level [...] Read more.
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level instructions with the goal of translating complex regulatory concepts into clear and actionable guidance. The approach combines structured definitions, contextualized examples, constrained response behavior, and references to authoritative sources such as JARUS and EASA. Rather than substituting expert or regulatory roles, the assistant provides process-oriented support, helping users understand and complete the various stages of risk assessment. The model’s effectiveness is illustrated through practical interaction scenarios, demonstrating its value across educational, operational, and advisory use cases, and its potential to contribute to the digital transformation of safety and compliance processes in the drone ecosystem. Full article
Show Figures

Figure 1

29 pages, 4456 KiB  
Article
Effect of Design on Human Injury and Fatality Due to Impacts by Small UAS
by Borrdephong Rattanagraikanakorn, Henk A. P. Blom, Derek I. Gransden, Michiel Schuurman, Christophe De Wagter, Alexei Sharpanskykh and Riender Happee
Designs 2025, 9(4), 88; https://doi.org/10.3390/designs9040088 - 28 Jul 2025
Viewed by 298
Abstract
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations [...] Read more.
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations to heavily restrict UAS operations in populated regions. These operational constraints hinder the ability to gather safety insights through the conventional method of learning from real-world incidents. To address this, a promising alternative is to use dynamic simulations that model UAS collisions with humans, providing critical data to inform safer UAS design. In the automotive industry, the modelling and simulation of car crashes has been well developed. For small UAS, this dynamical modelling and simulation approach has focused on the effect of the varying weight and kinetic energy of the UAS, as well as the geometry and location of the impact on a human body. The objective of this research is to quantify the effects of UAS material and shape on-ground TPR through dynamical modelling and simulation. To accomplish this objective, five camera–drone types are selected that have similar weights, although they differ in terms of airframe structure and materials. For each of these camera–drones, a dynamical model is developed to simulate impact, with a biomechanical human body model validated for impact. The injury levels and probability of fatality (PoF) results, obtained through conducting simulations with these integrated dynamical models, are significantly different for the camera–drone types. For the uncontrolled vertical impact of a 1.2 kg UAS at 18 m/s on a model of a human head, differences in UAS designs even yield an order in magnitude difference in PoF values. Moreover, the highest PoF value is a factor of 2 lower than the parametric PoF models used in standing regulation. In the same scenario for UAS types with a weight of 0.4 kg, differences in UAS designs even considered yield an order when regarding the magnitude difference in PoF values. These findings confirm that the material and shape design of a UAS plays an important role in reducing ground TPR, and that these effects can be addressed by using dynamical modelling and simulation during UAS design. Full article
(This article belongs to the Collection Editorial Board Members’ Collection Series: Drone Design)
Show Figures

Figure 1

22 pages, 8689 KiB  
Article
Transfer Learning-Based Accurate Detection of Shrub Crown Boundaries Using UAS Imagery
by Jiawei Li, Huihui Zhang and David Barnard
Remote Sens. 2025, 17(13), 2275; https://doi.org/10.3390/rs17132275 - 3 Jul 2025
Viewed by 368
Abstract
The accurate delineation of shrub crown boundaries is critical for ecological monitoring, land management, and understanding vegetation dynamics in fragile ecosystems such as semi-arid shrublands. While traditional image processing techniques often struggle with overlapping canopies, deep learning methods, such as convolutional neural networks [...] Read more.
The accurate delineation of shrub crown boundaries is critical for ecological monitoring, land management, and understanding vegetation dynamics in fragile ecosystems such as semi-arid shrublands. While traditional image processing techniques often struggle with overlapping canopies, deep learning methods, such as convolutional neural networks (CNNs), offer promising solutions for precise segmentation. This study employed high-resolution imagery captured by unmanned aircraft systems (UASs) throughout the shrub growing season and explored the effectiveness of transfer learning for both semantic segmentation (Attention U-Net) and instance segmentation (Mask R-CNN). It utilized pre-trained model weights from two previous studies that originally focused on tree crown delineation to improve shrub crown segmentation in non-forested areas. Results showed that transfer learning alone did not achieve satisfactory performance due to differences in object characteristics and environmental conditions. However, fine-tuning the pre-trained models by unfreezing additional layers improved segmentation accuracy by around 30%. Fine-tuned pre-trained models show limited sensitivity to shrubs in the early growing season (April to June) and improved performance when shrub crowns become more spectrally unique in late summer (July to September). These findings highlight the value of combining pre-trained models with targeted fine-tuning to enhance model adaptability in complex remote sensing environments. The proposed framework demonstrates a scalable solution for ecological monitoring in data-scarce regions, supporting informed land management decisions and advancing the use of deep learning for long-term environmental monitoring. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

26 pages, 6535 KiB  
Article
Aerodynamic Optimization of Morphing Airfoil by PCA and Optimization-Guided Data Augmentation
by Ao Guo, Jing Wang, Miao Zhang and Han Wang
Aerospace 2025, 12(7), 599; https://doi.org/10.3390/aerospace12070599 - 1 Jul 2025
Viewed by 342
Abstract
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. [...] Read more.
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. However, other aircraft, such as Unmanned Aerial Vehicles (UAVs), may be expected to perform well at a wide range of flight conditions. Morphing systems may be a solution to this problem, as they allow the aircraft to adapt its shape to produce optimum performance at each flight condition. This study proposes an aerodynamic optimization framework for morphing airfoils by integrating Principal Component Analysis (PCA) for geometric dimensionality reduction and deep learning (DL) for surrogate modeling, alongside an optimization-guided data augmentation strategy. By employing PCA, the geometric dimensionality of airfoil surfaces is reduced from 24 to 18 design variables while preserving 100% shape fidelity, thus establishing a compressed morphing parameterization space. A Multi-Island Genetic Algorithm (MIGA) efficiently explores the reduced design space, while iterative retraining of the surrogate model enhances prediction accuracy, particularly in high-performance regions. Additionally, Shapley Additive Explanation (SHAP) analysis reveals interpretable correlations between principal component modes and aerodynamic performances. Experimental results show that the optimized airfoil achieves a 54.66% increase in low-speed cruise lift-to-drag ratio and 10.90% higher climb lift compared to the baseline. Overall, the proposed framework not only enhances the adaptability of morphing airfoils across various low-speed flight conditions but also facilitates targeted surrogate refinement and efficient data acquisition in high-performance regions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 6723 KiB  
Article
Parametric Modeling and Evaluation of Departure and Arrival Air Routes for Urban Logistics UAVs
by Zhongming Li, Yifei Zhao and Xinhui Ren
Drones 2025, 9(7), 454; https://doi.org/10.3390/drones9070454 - 23 Jun 2025
Viewed by 380
Abstract
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have [...] Read more.
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have established fixed departure and arrival air routes above vertiports and designed fixed flight air routes between vertiports to guide UAVs to fly along predefined paths. In the complex and constrained low-altitude urban environment, the design of safe and efficient air routes has undoubtedly become a key enabler for successful operations. This research, grounded in both current theoretical research and real-world logistics UAV operations, defines the concept of UAV logistics air routes and presents a comprehensive description of their structure. A parametric model for one-way round-trip logistics air routes is proposed, along with an air route evaluation model and optimization method. Based on this framework, the research identifies four basic configurations that are commonly adopted for one-way round-trip operations. These configurations can be further improved into two optimized configurations with more balanced performance across multiple metrics. Simulation results reveal that Configuration 1 is only suitable for small-scale transport; as the number of delivery tasks increases, delays grow linearly. When the task volume exceeds 100 operations per 30 min, Configurations 2, 3, and 4 reduce average delay by 88.9%, 89.2%, and 93.3%, respectively, compared with Configuration 1. The research also finds that flight speed along segments and the cruise segment capacity have the most significant influence on delays. Properly increasing these two parameters can lead to a 28.4% reduction in the average delay. The two optimized configurations, derived through further refinement, show better trade-offs between average delay and flight time than any of the fundamental configurations. This research not only provides practical guidance for the planning and design of UAV logistics air routes but also lays a methodological foundation for future developments in UAV scheduling and air route network design. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

27 pages, 1880 KiB  
Article
UAV-Enabled Video Streaming Architecture for Urban Air Mobility: A 6G-Based Approach Toward Low-Altitude 3D Transportation
by Liang-Chun Chen, Chenn-Jung Huang, Yu-Sen Cheng, Ken-Wen Hu and Mei-En Jian
Drones 2025, 9(6), 448; https://doi.org/10.3390/drones9060448 - 18 Jun 2025
Viewed by 693
Abstract
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally [...] Read more.
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally sustainable solutions. However, supporting high bandwidth, real-time video applications, such as Virtual Reality (VR), Augmented Reality (AR), and 360° streaming, remains a major challenge, particularly within bandwidth-constrained metropolitan regions. This study proposes a novel Unmanned Aerial Vehicle (UAV)-enabled video streaming architecture that integrates 6G wireless technologies with intelligent routing strategies across cooperative airborne nodes, including unmanned eVTOLs and High-Altitude Platform Systems (HAPS). By relaying video data from low-congestion ground base stations to high-demand urban zones via autonomous aerial relays, the proposed system enhances spectrum utilization and improves streaming stability. Simulation results validate the framework’s capability to support immersive media applications in next-generation autonomous air mobility systems, aligning with the vision of scalable, resilient 3D transportation infrastructure. Full article
Show Figures

Figure 1

35 pages, 6410 KiB  
Article
Conceptual Design of a Low-Cost Class-III Turbofan-Based UCAV Loyal Wingman
by Savvas Roussos, Eleftherios Karatzas, Vassilios Kostopoulos and Vaios Lappas
Aerospace 2025, 12(6), 556; https://doi.org/10.3390/aerospace12060556 - 18 Jun 2025
Viewed by 625
Abstract
The rapid evolution of military technology has led to an increased interest in Unmanned Combat Aerial Vehicles (UCAVs). This research focuses on the conceptual design of a low-cost, turbofan-powered UCAV, specifically a Class-III aircraft as defined by NATO classification (STANAG 4670), with a [...] Read more.
The rapid evolution of military technology has led to an increased interest in Unmanned Combat Aerial Vehicles (UCAVs). This research focuses on the conceptual design of a low-cost, turbofan-powered UCAV, specifically a Class-III aircraft as defined by NATO classification (STANAG 4670), with a target take-off weight of approximately one tonne. The study adopts a “from scratch” design approach, recognizing the limitations of existing data and the potential for scaling errors. This approach involves a meticulous design process that includes the development of precise requirements, weight estimations, and iterative optimization of the aircraft layout to ensure aerodynamic efficiency and operational functionality. A key element of this conceptual design is its focus on a low-cost profile, achieved through the adoption of a simplified structural layout, and the integration of off-the-shelf components where possible. The design process involves an iterative approach, beginning with fundamental requirements and progressing through the detailed development of individual components and their integration into a cohesive aircraft. The study details the selection of an existing and operational engine due to its power output. The design and analysis of the wing, fuselage, and V-tail configuration are presented, incorporating considerations for aerodynamic efficiency, stability, weight estimation, and internal component layout. The study concludes by outlining recommendations for future work, including high-fidelity CFD simulations, structural analysis, and the integration of advanced electronic systems and AI capabilities essential for the Loyal Wingman concept. Full article
(This article belongs to the Special Issue UAV System Modelling Design and Simulation)
Show Figures

Figure 1

23 pages, 6982 KiB  
Article
An Efficient and Low-Delay SFC Recovery Method in the Space–Air–Ground Integrated Aviation Information Network with Integrated UAVs
by Yong Yang, Buhong Wang, Jiwei Tian, Xiaofan Lyu and Siqi Li
Drones 2025, 9(6), 440; https://doi.org/10.3390/drones9060440 - 16 Jun 2025
Viewed by 421
Abstract
Unmanned aerial vehicles (UAVs), owing to their flexible coverage expansion and dynamic adjustment capabilities, hold significant application potential across various fields. With the emergence of urban low-altitude air traffic dominated by UAVs, the integrated aviation information network combining UAVs and manned aircraft has [...] Read more.
Unmanned aerial vehicles (UAVs), owing to their flexible coverage expansion and dynamic adjustment capabilities, hold significant application potential across various fields. With the emergence of urban low-altitude air traffic dominated by UAVs, the integrated aviation information network combining UAVs and manned aircraft has evolved into a complex space–air–ground integrated Internet of Things (IoT) system. The application of 5G/6G network technologies, such as cloud computing, network function virtualization (NFV), and edge computing, has enhanced the flexibility of air traffic services based on service function chains (SFCs), while simultaneously expanding the network attack surface. Compared to traditional networks, the aviation information network integrating UAVs exhibits greater heterogeneity and demands higher service reliability. To address the failure issues of SFCs under attack, this study proposes an efficient SFC recovery method for recovery rate optimization (ERRRO) based on virtual network functions (VNFs) migration technology. The method first determines the recovery order of failed SFCs according to their recovery costs, prioritizing the restoration of SFCs with the lowest costs. Next, the migration priorities of the failed VNFs are ranked based on their neighborhood certainty, with the VNFs exhibiting the highest neighborhood certainty being migrated first. Finally, the destination nodes for migrating the failed VNFs are determined by comprehensively considering attributes such as the instantiated SFC paths, delay of physical platforms, and residual resources. Experiments demonstrate that the ERRRO performs well under networks with varying resource redundancy and different types of attacks. Compared to methods reported in the literature, the ERRRO achieves superior performance in terms of the SFC recovery rate and delay. Full article
(This article belongs to the Special Issue Space–Air–Ground Integrated Networks for 6G)
Show Figures

Figure 1

25 pages, 1875 KiB  
Article
Hybrid Powerplant Design and Energy Management for UAVs: Enhancing Autonomy and Reducing Operational Costs
by Javier A. Quintana, Carlos Bordons, Sergio Esteban and Julian Delgado
Energies 2025, 18(12), 3101; https://doi.org/10.3390/en18123101 - 12 Jun 2025
Cited by 1 | Viewed by 491
Abstract
This study presents the design of a hybrid powerplant for unmanned aerial vehicles (UAVs), improving its autonomy compared to power systems based solely on batteries. The powerplant is designed for the Mugin EV-350 aircraft. Using experimental data from electric motors in a wind [...] Read more.
This study presents the design of a hybrid powerplant for unmanned aerial vehicles (UAVs), improving its autonomy compared to power systems based solely on batteries. The powerplant is designed for the Mugin EV-350 aircraft. Using experimental data from electric motors in a wind tunnel and fuel cells, a comparative analysis of different energy management strategies, such as fuzzy logic and passive, is conducted to reduce the operational and maintenance costs. A Python-based software program is developed and utilized for the real-time implementation and simulation of energy management strategies, with data collected in databases. This study integrates experimental data (wind tunnel and fuel cells) with real-time EMS strategies, and simulation-based predictions indicate practical improvements in endurance and cost reduction, as well as an increase in flight autonomy of 50%. Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

19 pages, 47051 KiB  
Article
Demand-Driven Evaluation of an Airport Airtaxi Shuttle Service for the City of Frankfurt
by Fabian Morscheck, Christian Kallies, Enno Nagel and Rostislav Karásek
Aerospace 2025, 12(6), 528; https://doi.org/10.3390/aerospace12060528 - 11 Jun 2025
Viewed by 401
Abstract
The CORUS-XUAM project defined three two-way U-space corridors linking Frankfurt Airport’s Terminal 2 on the city outskirts with the city-center Trade Fair. These corridors avoid the approach cones of the northern and central runways and bypass hospital no-fly zones and large buildings. In [...] Read more.
The CORUS-XUAM project defined three two-way U-space corridors linking Frankfurt Airport’s Terminal 2 on the city outskirts with the city-center Trade Fair. These corridors avoid the approach cones of the northern and central runways and bypass hospital no-fly zones and large buildings. In our previous studies, we first used fast-time simulations to evaluate the U-space routing and its operating concept, based on historical air traffic data. Included were arriving and departing airplanes as well as police, and medical helicopters throughout the city. The focus was on the limitations of the airspace, avoiding conflicts with other airspace users and between the airtaxis using a different corridor or delaying the departure, as well as determining the throughput potential of such a corridor system. Building on our previous studies, this study incorporates higher-fidelity traffic simulation data and an updated demand analysis for the airtaxi shuttle service. Our new sizing analysis reveals that ground operations typically, not airspace capacity, constitute the primary bottleneck. Full article
(This article belongs to the Special Issue Operational Requirements for Urban Air Traffic Management)
Show Figures

Figure 1

21 pages, 4228 KiB  
Article
Real-Time TECS Gain Tuning Using Steepest Descent Method for Post-Transition Stability in Unmanned Tilt-Rotor eVTOLs
by Choonghyun Lee, Ngoc Phi Nguyen, Sangjun Bae and Sung Kyung Hong
Drones 2025, 9(6), 414; https://doi.org/10.3390/drones9060414 - 6 Jun 2025
Viewed by 952
Abstract
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy [...] Read more.
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy Control System (TECS) becomes active in fixed-wing mode, but its default static gains often fail to correct energy imbalances, resulting in substantial altitude loss. This paper presents the Steepest Descent-based Total Energy Control System (SD-TECS), a real-time adaptive TECS framework that dynamically tunes gains using the steepest descent method to enhance post-transition altitude and airspeed regulation in unmanned tilt-rotor eVTOLs. The proposed method integrates gain adaptation directly into the TECS loop, optimizing control actions based on instantaneous flight states such as altitude and energy-rate errors. This enables improved responsiveness to nonlinear dynamics during the critical post-transition phase. Simulation results demonstrate that the SD-TECS approach significantly improves control performance compared to the default PX4 TECS, achieving a 35.5% reduction in the altitude settling time, a 57.3% improvement in the airspeed settling time, and a 66.1% decrease in the integrated altitude error. These improvements highlight the effectiveness of SD-TECS in enhancing the stability and reliability of unmanned tilt-rotor eVTOLs operating under autonomous control. Full article
Show Figures

Figure 1

26 pages, 3839 KiB  
Article
Preliminary Design and Optimization Approach of Electric FW-VTOL UAV Based on Cell Discharge Characteristics
by Cheng He, Yuqi Tong, Diyi Liu, Shipeng Yang and Fengjiang Zhan
Drones 2025, 9(6), 415; https://doi.org/10.3390/drones9060415 - 6 Jun 2025
Viewed by 1400
Abstract
The electric vertical take-off and landing fixed-wing (FW-VTOL) unmanned aerial vehicle (UAV) combines the advantages of fixed-wing aircraft and multi-rotor aircraft. Based on the cell discharge characteristics and the power system features, this paper proposes a preliminary design and optimization method suitable for [...] Read more.
The electric vertical take-off and landing fixed-wing (FW-VTOL) unmanned aerial vehicle (UAV) combines the advantages of fixed-wing aircraft and multi-rotor aircraft. Based on the cell discharge characteristics and the power system features, this paper proposes a preliminary design and optimization method suitable for electric FW-VTOL UAVs. The purpose of this method is to improve the design accuracy of electric propulsion systems and overall parameters when dealing with the special power and energy requirements of this type of aircraft. The core of this method involves testing the performance data of the cell inside the battery pack, using small-capacity cells as the basic unit for battery sizing, thereby constructing a power battery performance model. Additionally, it establishes optimization design models for propellers and rotors and develops a brushless DC motor performance model based on a first-order motor model and statistical data, ultimately achieving optimized matching of the propulsion system and completing the preliminary design of the entire aircraft. Using a battery discharge model established based on real cell parameters and test data, the impact of the discharge process on battery performance is evaluated at the cell level, reducing the subjectivity of battery performance evaluation compared to the constant power/energy density method used in traditional battery sizing processes. Furthermore, matching the optimization design of power and propulsion systems effectively improves the accuracy of the preliminary design for FW-VTOL UAVs. A design case of a 30 kg electric FW-VTOL UAV is conducted, along with the completion of flight tests. The design parameters obtained using the proposed method show minimal discrepancies with the actual data from the actual aircraft, confirming the effectiveness of the proposed method. Full article
Show Figures

Figure 1

33 pages, 1615 KiB  
Article
An Enhanced Artificial Lemming Algorithm and Its Application in UAV Path Planning
by Xuemei Zhu, Chaochuan Jia, Jiangdong Zhao, Chunyang Xia, Wei Peng, Ji Huang and Ling Li
Biomimetics 2025, 10(6), 377; https://doi.org/10.3390/biomimetics10060377 - 6 Jun 2025
Cited by 1 | Viewed by 580
Abstract
This paper presents an enhanced artificial lemming algorithm (EALA) for solving complex unmanned aircraft system (UAV) path planning problems in three-dimensional environments. Key improvements include chaotic initialization, adaptive perturbation, and hybrid mutation, enabling a better exploration–exploitation balance and local refinement. Validation on the [...] Read more.
This paper presents an enhanced artificial lemming algorithm (EALA) for solving complex unmanned aircraft system (UAV) path planning problems in three-dimensional environments. Key improvements include chaotic initialization, adaptive perturbation, and hybrid mutation, enabling a better exploration–exploitation balance and local refinement. Validation on the IEEE CEC2017 and CEC2022 benchmark functions demonstrates the EALA’s superior performance, achieving faster convergence and better algorithm performance compared to the standard ALA and 10 other algorithms. When applied to UAV path planning in large- and medium-scale environments with realistic obstacle constraints, the EALA generates Pareto-optimal paths that minimize length, curvature, and computation time while guaranteeing collision avoidance. Benchmark tests and realistic simulations show that the EALA outperforms 10 algorithms. This method is particularly suited for mission-critical applications with strict safety and time constraints. Full article
Show Figures

Figure 1

17 pages, 1635 KiB  
Article
The Conceptual Design of a Variable Camber Wing
by Spencer Troy P. Cortez, Seksan Winyangkul and Suwin Sleesongsom
Biomimetics 2025, 10(6), 353; https://doi.org/10.3390/biomimetics10060353 - 1 Jun 2025
Viewed by 511
Abstract
The variable camber wing (VCW) is a morphing wing design anticipated to enhance unmanned aerial vehicles’ (UAVs’) performance in flight through continuously changing shape. The performance of VCWs has been proven, but techniques for their integration, including aerodynamic analysis, mechanism synthesis, and structural [...] Read more.
The variable camber wing (VCW) is a morphing wing design anticipated to enhance unmanned aerial vehicles’ (UAVs’) performance in flight through continuously changing shape. The performance of VCWs has been proven, but techniques for their integration, including aerodynamic analysis, mechanism synthesis, and structural tests, still lag in development at the conceptual design stage. Therefore, this research focuses on designing a variable camber wing, a key area for the advancement of morphing aircraft. Inspired by the high-lift capabilities of traditional aircraft devices but aiming for smoother airflow through continuous shape alteration, this research proposes a novel three-step design for a structurally integrated VCW. This approach begins with a critical aerodynamic analysis to determine wing shape adaptations across various flight conditions, followed by a mechanism synthesis phase to design a four-bar linkage that accurately approximates the desired trailing edge deflections by utilizing a variant of teaching–learning-based optimization. The objective is to minimize error between the intended and actual coupler link while adhering to design constraints for proper integration in the wing structure. Finally, structural analysis evaluates the skin’s ability to withstand operational loads and ensure the integrity of the VCW system. The design result demonstrates the success of this three-step approach to synthesizing a VCW mechanism that meets the defined aerodynamic (actual deflection of 9.1764°) and structural targets (maximum Von Mises stress of 81.5 MPa and maximum deflection of 0.073 m), paving the way for enhanced aircraft performance. Full article
Show Figures

Figure 1

Back to TopTop