An Enhanced Artificial Lemming Algorithm and Its Application in UAV Path Planning
Abstract
1. Introduction
1.1. Background and Motivations
- The lack of diversity in population initialization may lead to premature convergence.
- Fixed parameter settings are difficult to adapt to the characteristics of different problems.
- There is a lack of an effective mechanism to balance global exploration and local development.
1.2. Contributions
- Chaotic initialization using a Kent map: Replaces random initialization to achieve better population diversity and coverage of the search space.
- An adaptive parameter adjustment mechanism: An adaptive randomized perturbation for enhanced exploration.
- Modified differential mutation operator: Enhances the local exploitation of promising solutions by incorporating information from multiple individuals.
1.3. Article Organization
2. Artificial Lemming Algorithm
2.1. Initialization
2.2. Behavior 1: Long-Distance Migration (Exploration)
2.3. Behavior 2: Digging Holes (Exploration)
2.4. Behavior 3: Foraging (Exploitation)
2.5. Behavior 4: Evading Predators (Exploitation)
3. Proposed Improvements to ALA
3.1. Chaos-Mapping-Based Population Initialization
3.2. Adaptive Randomized Perturbation for Stochastic Optimization
3.3. DE-Inspired Hybrid Mutation Strategy
Algorithm 1 EALA |
|
3.4. Ablation Study of EALA
4. Experimental Analysis
4.1. Experimental Setting
4.2. Results and Analysis of the Test Functions for CEC2022
4.3. Results for 10 Dimensions on the CEC2017 Benchmark
- Average fitness (avg): The average fitness of different algorithms on the same test function varies significantly. Overall, no algorithm has the best average fitness on all test functions. For example, the EALA has a lower average fitness and performs better on some functions, but it has no clear advantage on other functions. This reflects the dependence of algorithm performance on the function; thus, the appropriate algorithm needs to be selected according to the specific function.
- Fitness standard deviation (std): The standard deviation reflects the stability of the algorithm results. For example, on the F6 function, the standard deviation of the ACO algorithm is 5.75 , which is a very small value, indicating that its results on the F6 function are extremely stable; on the F12 function, the standard deviation of the ACO algorithm is 1.45 , indicating that its results on this function fluctuate greatly. Some of the algorithms have relatively stable standard deviations on multiple functions, which means that their performance is less affected by function changes. Others have large standard deviation fluctuations, and their stability varies significantly among different functions, so their stability risks need to be considered when using them.
- Average running time (avgtime): The running time of different algorithms varies significantly. On the F1 function, the average running times of the EALA and ACO are 7.10 and 0.136, respectively. The running time of ACO is much longer than that of the EALA, indicating that the EALA is more efficient in calculating the F1 function. Generally speaking, complex algorithms may take longer to run, but there are exceptions. The running time depends not only on algorithm complexity but also on the function’s characteristics. In practical applications, the solution quality and running time of the algorithm need to be comprehensively considered.
5. Application of Three-Dimensional Trajectory Planning for Unmanned Aerial Vehicles
5.1. Challenges in UAV Path Planning
5.2. Problem Formulation
5.2.1. Environment Representation
- Distance cost: the Euclidean distance to the start and goal;
- Priority weights: the terrain safety/threat levels via priority matrix;
- Obstacle constraints: impassable areas marked on a map.
5.2.2. Euclidean Distance Calculation
5.3. The Objective Function of the Algorithm
- represents the threat intensity at a discrete path point , typically normalized to ;
- denotes the incremental path length between waypoints.
- is the horizontal angle change (azimuth) between waypoints k and (radians);
- is the vertical angle change (elevation) between waypoints k and (radians).
5.4. Analysis of Test Results for UAV Path Planning
- Large-scale environment (Map 1): The experimental environment comprised a volumetric space of (length × width × height). Spatial discretization was performed with a resolution of meters per grid unit along the -axes, respectively. Obstacles were modeled as parametric cuboids, with geometric parameters (position and dimensions) imported from structured Excel data files. These obstacles were then rendered in the 3D simulation environment. The path planning scenario requires navigation from the initial position at coordinates to the target location at , as visually represented in Figure 10.
- Medium-scale environment (Map 2): A reduced test environment was configured with the dimensions , maintaining the same discretization resolution of meters per grid unit for a consistent comparative analysis. In this configuration, the path planning task initiates at and terminates at .
5.4.1. Analysis of Test Results for Large-Scale Environments
5.4.2. Analysis of Test Results for Medium-Scale Environments
- The EALA performs best in terms of path length and convergence speed; it outperforms other algorithms in both large- and medium-scale environments, achieving the shortest, smoothest, and safest paths with real-time computation.
- The EALA proves particularly suitable for time-sensitive operations, with computation times under in large-scale scenarios. The algorithm maintains Pareto optimality across all key metrics.
6. Conclusions and Prospects
6.1. Conclusions
6.2. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Amiri, M.H.; Mehrabi Hashjin, N.; Montazeri, M.; Mirjalili, S.; Khodadadi, N. Hippopotamus optimization algorithm: A novel nature-inspired optimization algorithm. Sci. Rep. 2024, 14, 5032. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wu, L.; Huang, X.; Xu, D.; Liu, C.; Xiao, W. Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning. Knowl.-Based Syst. 2024, 288, 20. [Google Scholar] [CrossRef]
- Dilek, S.; Tosun, S. Integer linear programming-based optimization methodology for reliability and energy-aware high-level synthesis. Microelectron. Reliab. 2022, 139, 114849. [Google Scholar] [CrossRef]
- Zambon, E.; Bossois, D.Z.; Garcia, B.B.; Azeredo, E.F. A novel nonlinear programming model for distribution protection optimization. IEEE Trans. Power Deliv. 2017, 24, 1951–1958. [Google Scholar] [CrossRef]
- Upadhyay, B.B.; Pandey, R.K.; Liao, S. Newton’s method for interval-valued multiobjective optimization problem. J. Ind. Manag. Optim. 2024, 20, 1633–1661. [Google Scholar] [CrossRef]
- Pang, L. A new hybrid descent algorithm for large-scale nonconvex optimization and application to some image restoration problems. Mathematics 2024, 12, 3088. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, J.; Ma, M.; Du, X.; Wu, H.; Fei, X.; Niu, D. Improved differential evolution algorithm based on cooperative multi-population. Eng. Appl. Artif. Intell. 2024, 133, 108149. [Google Scholar] [CrossRef]
- Seyedgarmroudi, S.D.; Kayakutlu, G.; Kayalica, M.O.; Olak, N. Improved Pelican optimization algorithm for solving load dispatch problems. Energy 2024, 289, 129811. [Google Scholar] [CrossRef]
- Tian, A.Q.; Liu, F.F.; Lv, H.X. Snow Geese Algorithm: A novel migration-inspired meta-heuristic algorithm for constrained engineering optimization problems. Appl. Math. Model. 2024, 126, 327–347. [Google Scholar] [CrossRef]
- Oruç, R.; Baklacıoğlu, T. Cruise range modeling of different flight strategies for transport aircraft using genetic algorithms and particle swarm optimization. Energy 2024, 294, 130917. [Google Scholar] [CrossRef]
- Meena, N.K.; Parashar, S.; Swarnkar, A.; Gupta, N.; Niazi, K.R. Improved elephant herding optimization for multiobjective DER accommodation in distribution systems. IEEE Trans. Ind. Inform. 2017, 14, 1029–1039. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, R.S. User-defined weight based multi objective task scheduling in cloud using whale optimization algorithm. Simul. Model. Pract. Theory 2024, 133, 102915. [Google Scholar] [CrossRef]
- Lei, B.; Tang, H.; Su, Y.; Ru, Y.; Fei, S. Fuzzy adaptive power optimization control of wind turbine with improved whale optimization algorithm and kernel extreme learning machine. Expert Syst. Appl. 2025, 272, 126750. [Google Scholar] [CrossRef]
- Yannibelli, V.; Pacini, E.; Monge, D.A.; Mateos, C.; Rodriguez, G.; Millán, E.; Santos, J.R. An in-depth benchmarking of evolutionary and swarm intelligence algorithms for autoscaling parameter sweep applications on public clouds. Sci. Program. 2023, 2023, 1–26. [Google Scholar] [CrossRef]
- Li, B.; Wu, Y.; Li, Z. Efficient parameter-free adaptive hashing for large-scale cross-modal retrieval. Int. J. Approx. Reason. 2025, 180, 109383. [Google Scholar] [CrossRef]
- Han, M.; Du, Z.; Yuan, L.Q. Walrus optimizer: A novel nature-inspired metaheuristic algorithm. Expert Syst. Appl. 2024, 239, 122413. [Google Scholar] [CrossRef]
- Wang, W.C.; Tian, W.C.; Xu, D.M.; Zang, H.F. Arctic puffin optimization: A bio-inspired metaheuristic algorithm for solving engineering design optimization. Adv. Eng. Softw. 2024, 195, 103694. [Google Scholar] [CrossRef]
- Oladejo, S.O.; Ekwe, S.O.; Mirjalili, S. The Hiking Optimization Algorithm: A novel human-based metaheuristic approach. Knowl.-Based Syst. 2024, 296, 111880. [Google Scholar] [CrossRef]
- Chen, P.; Pei, J.; Lu, W.; Li, M. A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance. Neurocomputing 2022, 497, 64–75. [Google Scholar] [CrossRef]
- Li, B.; Na, Z.; Lin, B. UAV trajectory planning from a comprehensive energy efficiency perspective in harsh environments. IEEE Netw. 2022, 36, 62–68. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Y.; Wu, Y.; Wang, C.; Zang, D.; Abusorrah, A.; Zhou, M. PSO-based sparse source location in large-scale environments with a UAV swarm. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5249–5258. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, H.; Huang, Y.; Cheng, D.; Huang, J. A GA and SVM classification model for pine wilt disease detection using UAV-based hyperspectral imagery. Appl. Sci. 2022, 12, 6676. [Google Scholar] [CrossRef]
- Xiao, Y.; Cui, H.; Khurma, R.A.; Castillo, P.A. Artificial lemming algorithm: A novel bionic meta-heuristic technique for solving real-world engineering optimization problems. Artif. Intell. Rev. 2025, 58, 84. [Google Scholar] [CrossRef]
- Long, Y.; Xu, G.; Zhao, J.; Xie, B.; Fang, M. Dynamic truck–UAV collaboration and integrated route planning for resilient urban emergency response. IEEE Trans. Eng. Manag. 2023, 71, 9826–9838. [Google Scholar] [CrossRef]
- Haris, M.; Bhatti, D.M.S.; Nam, H. A fast-convergent hyperbolic tangent PSO algorithm for UAVs path planning. IEEE Open J. Veh. Technol. 2024, 5, 681–694. [Google Scholar] [CrossRef]
- Mandloi, D.; Arya, R.; Verma, A.K. Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environment. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 990–1000. [Google Scholar] [CrossRef]
- Zhou, G.; Du, J.; Guo, J.; Li, G. A novel hippo swarm optimization: For solving high-dimensional problems and engineering design problems. J. Comput. Des. Eng. 2024, 11, 12–42. [Google Scholar] [CrossRef]
- Han, Z.; Guo, W. Dynamic UAV Task Allocation and Path Planning with Energy Management Using Adaptive PSO in Rolling Horizon Framework. Appl. Sci. 2025, 15, 4220. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, D. A systematic review on firefly algorithm: Past, present, and future. Arch. Comput. Methods Eng. 2021, 28, 3269–3291. [Google Scholar] [CrossRef]
- Yu, X.; Wang, P.; Zhang, Z. Learning-based end-to-end path planning for lunar rovers with safety constraints. Sensors 2021, 21, 796. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Dahou, A.; Abualigah, L.; Yu, L.; Alshinwan, M.; Khasawneh, A.M.; Lu, S. Advanced metaheuristic optimization techniques in applications of deep neural networks: A review. Neural Comput. Appl. 2021, 33, 14079–14099. [Google Scholar] [CrossRef]
- Regaya, C.B.; Hamdi, H.; Farhani, F.; Marai, A.; Zaafouri, A.; Chaari, A. Real-time implementation of a novel MPPT control based on the improved PSO algorithm using an adaptive factor selection strategy for photovoltaic systems. ISA Trans. 2024, 146, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Huo, F.; Zhu, S.; Dong, H.; Ren, W. A new approach to smooth path planning of Ackerman mobile robot based on improved ACO algorithm and B-spline curve. Robot. Auton. Syst. 2024, 175, 104655. [Google Scholar] [CrossRef]
- Gu, Q.; Peng, Y.; Wang, Q.; Jiang, S.Q. Multimodal multi-objective optimization based on local optimal neighborhood crowding distance differential evolution algorithm. Neural Comput. Appl. 2024, 36, 461–481. [Google Scholar] [CrossRef]
- Qi, A.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Chen, H. FATA: An efficient optimization method based on geophysics. Neurocomputing 2024, 607, 128289. [Google Scholar] [CrossRef]
- Wei, F.; Shi, X.; Feng, Y.; Zhao, T. Improved Harris hawk algorithm based on multi-strategy synergy mechanism for global optimization. Soft Comput. 2024, 28, 12705–12750. [Google Scholar] [CrossRef]
- Askr, H.; Abdel-Salam, M.; Hassanien, A.E. Copula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problems. Expert Syst. Appl. 2024, 238 Pt B, 121582. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Tan, D.; Liu, X.; Zhou, R.; Fu, X.; Li, Z. A novel multi-objective artificial bee colony algorithm for solving the two-echelon load-dependent location-routing problem with pick-up and delivery. Eng. Appl. Artif. Intell. 2025, 139, 109636. [Google Scholar] [CrossRef]
- Wang, X.; Snasel, V.; Kong, L.; Mirjalili, S.; Pan, J.-S.; Shehadeh, H.A. Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization. Knowl.-Based Syst. 2024, 295, 111737. [Google Scholar] [CrossRef]
- Akl, D.T.; Saafan, M.M.; Haikal, A.Y.; El-Gendy, E.M. IHHO: An improved Harris Hawks optimization algorithm for solving engineering problems. Neural Comput. Appl. 2024, 36, 12185–12298. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A.; Braik, M.S.; Makhadmeh, S.; Doush, I.A. Elk herd optimizer: A novel nature-inspired metaheuristic algorithm. Artif. Intell. Rev. 2024, 57, 48. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, D.; Chen, J.; He, L. Secretary bird optimization algorithm: A new metaheuristic for solving global optimization problems. Artif. Intell. Rev. 2024, 57, 123. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, J.; Rao, H.; Abualigah, L. Improved sandcat swarm optimization algorithm for solving global optimum problems. Artif. Intell. Rev. 2025, 58, 5. [Google Scholar] [CrossRef]
- Ghasemi, M.; Golalipour, K.; Zare, M.; Mirjalili, S.; Trojovsk, P.; Abualigah, L.; Hemmati, R. Flood algorithm (FLA): An efficient inspired meta-heuristic for engineering optimization. J. Supercomput. 2024, 80, 22913–23017. [Google Scholar] [CrossRef]
- Al Satai, H.; Abdul Zahra, M.M.; Rasool, Z.I.; Abd-Ali, R.S.; Pruncu, C.I. Bézier Curves-Based Optimal Trajectory Design for Multirotor UAVs with Any-Angle Pathfinding Algorithms. Sensors 2021, 21, 2460. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Xiong, G.; Haider, M.H.; Tamir, T.S.; Dong, X.; Shen, Z. Feature selection-based decision model for UAV path planning on rough terrains. Expert Syst. Appl. 2023, 232, 120713. [Google Scholar] [CrossRef]
- Du, Y. Multi-UAV search and rescue with enhanced A* algorithm path planning in 3D environment. Int. J. Aerosp. Eng. 2023, 2023, 8614117. [Google Scholar] [CrossRef]
- Chodnicki, M.; Mazur, M.; Nowakowski, M.; Kowaleczko, G. The mathematical model of UAV vertical take-off and landing. Aircr. Eng. Aerosp. Technol. 2019, 91, 249–256. [Google Scholar] [CrossRef]
- Ait Saadi, A.; Soukane, A.; Meraihi, Y.; Benmessaoud Gabis, A.; Mirjalili, S.; Ramdane-Cherif, A. UAV path planning using optimization approaches: A survey. Arch. Comput. Methods Eng. 2022, 29, 4233–4284. [Google Scholar] [CrossRef]
Func. | Type | EALA | ALA | ACO | GA | DE | FATA | HHO | GJO | GWO | ABC |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | std | 4.47 × 103 | 5.11 × 103 | 1.49 × 105 | 2.13 × 104 | 1.01 × 104 | 7.55 × 103 | 1.34 × 104 | 5.94 × 103 | 7.97 × 103 | 7.48 × 103 |
avg | 7.25 × 103 | 1.09 × 104 | 3.15 × 105 | 8.60 × 104 | 5.27 × 104 | 1.78 × 104 | 3.62 × 104 | 1.67 × 104 | 1.92 × 104 | 4.62 × 104 | |
avgtime | 1.04 × 10−3 | 9.29 × 10−4 | 2.81 × 10−1 | 5.21 × 10−2 | 1.08 × 10−1 | 3.53 × 10−2 | 5.05 × 10−2 | 5.36 × 10−2 | 4.15 × 10−2 | 1.41 × 10−1 | |
F2 | std | 2.42 × 101 | 2.47 × 101 | 1.39 | 1.87 × 102 | 1.28 × 101 | 7.29 × 101 | 6.16 × 101 | 7.80 × 101 | 3.59 × 101 | 9.14 |
avg | 4.66 × 102 | 4.63 × 102 | 4.20 × 102 | 8.06 × 102 | 4.61 × 102 | 6.50 × 102 | 5.92 × 102 | 6.21 × 102 | 5.07 × 102 | 4.62 × 102 | |
avgtime | 9.07 × 10−4 | 8.19 × 10−4 | 2.57 × 10−1 | 5.37 × 10−2 | 1.12 × 10−1 | 3.40 × 10−2 | 4.71 × 10−2 | 5.09 × 10−2 | 4.12 × 10−2 | 1.48 × 10−1 | |
F3 | std | 3.20 | 7.72 | 1.55 | 1.20 × 101 | 2.27 × 10−1 | 8.10 | 1.03 × 101 | 1.33 × 101 | 6.15 | 1.03 |
avg | 6.06 × 102 | 6.09 × 102 | 6.04 × 102 | 7.01 × 102 | 6.01 × 102 | 6.67 × 102 | 6.64 × 102 | 6.30 × 102 | 6.09 × 102 | 6.04 × 102 | |
avgtime | 2.15 × 10−3 | 1.87 × 10−3 | 3.11 × 10−1 | 8.28 × 10−2 | 1.48 × 10−1 | 6.06 × 10−2 | 1.22 × 10−1 | 7.67 × 10−2 | 6.95 × 10−2 | 2.08 × 10−1 | |
F4 | std | 2.25 × 101 | 2.28 × 101 | 1.09 × 101 | 2.29 × 101 | 9.45 | 1.42 × 101 | 1.58 × 101 | 3.38 × 101 | 2.78 × 101 | 1.02 × 101 |
avg | 8.72 × 102 | 8.72 × 102 | 9.47 × 102 | 1.02 × 103 | 9.42 × 102 | 9.50 × 102 | 8.85 × 102 | 9.15 × 102 | 8.63 × 102 | 9.38 × 102 | |
avgtime | 1.34 × 10−3 | 1.30 × 10−3 | 3.11 × 10−1 | 7.15 × 10−2 | 1.16 × 10−1 | 3.93 × 10−2 | 7.18 × 10−2 | 5.90 × 10−2 | 4.80 × 10−2 | 1.61 × 10−1 | |
F5 | std | 3.39 × 102 | 3.89 × 102 | 1.21 × 102 | 1.21 × 103 | 4.74 × 102 | 4.12 × 102 | 3.74 × 102 | 5.69 × 102 | 4.01 × 102 | 1.66 × 102 |
avg | 1.21 × 103 | 1.40 × 103 | 1.13 × 103 | 2.68 × 103 | 2.34 × 103 | 3.25 × 103 | 2.98 × 103 | 2.38 × 103 | 1.40 × 103 | 1.36 × 103 | |
avgtime | 1.43 × 10−3 | 1.47 × 10−3 | 2.84 × 10−1 | 6.47 × 10−2 | 1.18 × 10−1 | 4.34 × 10−2 | 7.42 × 10−2 | 6.00 × 10−2 | 5.01 × 10−2 | 1.65 × 10−1 | |
F6 | std | 7.49 × 103 | 1.00 × 104 | 4.75 × 107 | 1.09 × 106 | 1.06 × 107 | 8.72 × 106 | 2.41 × 105 | 7.79 × 107 | 6.76 × 106 | 5.44 × 106 |
avg | 8.01 × 103 | 1.70 × 104 | 9.19 × 107 | 7.71 × 105 | 1.81 × 107 | 1.60 × 107 | 3.96 × 105 | 3.24 × 107 | 2.79 × 106 | 1.17 × 107 | |
avgtime | 1.29 × 10−3 | 9.19 × 10−4 | 2.43 × 10−1 | 5.70 × 10−2 | 1.28 × 10−1 | 3.72 × 10−2 | 5.55 × 10−2 | 5.50 × 10−2 | 4.36 × 10−2 | 1.52 × 10−1 | |
F7 | std | 3.77 × 101 | 4.08 × 101 | 2.91 × 101 | 7.15 × 101 | 1.54 × 101 | 3.30 × 101 | 5.33 × 101 | 3.98 × 101 | 6.13 × 101 | 2.15 × 101 |
avg | 2.10 × 103 | 2.09 × 103 | 2.20 × 103 | 2.24 × 103 | 2.08 × 103 | 2.19 × 103 | 2.20 × 103 | 2.12 × 103 | 2.12 × 103 | 2.14 × 103 | |
avgtime | 2.44 × 10−3 | 2.03 × 10−3 | 3.11 × 10−1 | 9.27 × 10−2 | 1.49 × 10−1 | 6.47 × 10−2 | 1.38 × 10−1 | 8.60 × 10−2 | 7.55 × 10−2 | 2.27 × 10−1 | |
F8 | std | 1.82 × 101 | 3.61 × 101 | 5.23 × 101 | 1.09 × 102 | 3.36 | 3.72 × 101 | 9.88 × 101 | 6.50 × 101 | 6.84 × 101 | 7.67 |
avg | 2.23 × 103 | 2.24 × 103 | 2.38 × 103 | 2.38 × 103 | 2.23 × 103 | 2.27 × 103 | 2.30 × 103 | 2.28 × 103 | 2.28 × 103 | 2.25 × 103 | |
avgtime | 2.51 × 10−3 | 2.57 × 10−3 | 3.41 × 10−1 | 1.05 × 10−1 | 1.61 × 10−1 | 7.79 × 10−2 | 1.58 × 10−1 | 9.09 × 10−2 | 8.56 × 10−2 | 2.49 × 10−1 | |
F9 | std | 5.25 × 10−1 | 2.79 | 5.86 × 101 | 8.19 × 101 | 2.26 × 10−1 | 3.53 × 101 | 5.52 × 101 | 3.92 × 101 | 3.94 × 101 | 7.46 × 10−1 |
avg | 2.48 × 103 | 2.48 × 103 | 2.55 × 103 | 2.75 × 103 | 2.48 × 103 | 2.61 × 103 | 2.59 × 103 | 2.58 × 103 | 2.53 × 103 | 2.48 × 103 | |
avgtime | 2.35 × 10−3 | 2.46 × 10−3 | 3.21 × 10−1 | 1.01 × 10−1 | 2.06 × 10−1 | 6.60 × 10−2 | 1.30 × 10−1 | 9.23 × 10−2 | 6.81 × 10−2 | 2.40 × 10−1 | |
F10 | std | 1.27 × 103 | 9.77 × 102 | 2.86 × 102 | 1.28 × 103 | 4.50 × 102 | 1.73 × 103 | 7.54 × 102 | 1.79 × 103 | 6.81 × 102 | 5.83 × 102 |
avg | 4.32 × 103 | 3.88 × 103 | 7.40 × 103 | 6.02 × 103 | 2.84 × 103 | 5.03 × 103 | 4.53 × 103 | 4.36 × 103 | 3.59 × 103 | 2.69 × 103 | |
avgtime | 2.12 × 10−3 | 2.16 × 10−3 | 3.32 × 10−1 | 9.19 × 10−2 | 1.69 × 10−1 | 6.41 × 10−2 | 1.30 × 10−1 | 8.46 × 10−2 | 7.00 × 10−2 | 2.08 × 10−1 | |
F11 | std | 4.23 × 101 | 1.34 × 102 | 1.26 × 102 | 1.49 × 104 | 2.24 × 101 | 7.08 × 102 | 7.68 × 102 | 8.28 × 102 | 4.45 × 102 | 1.69 × 102 |
avg | 3.03 × 103 | 3.21 × 103 | 3.35 × 103 | 2.70 × 104 | 3.00 × 103 | 6.60 × 103 | 4.42 × 103 | 5.84 × 103 | 3.80 × 103 | 3.64 × 103 | |
avgtime | 2.94 × 10−3 | 2.54 × 10−3 | 3.35 × 10−1 | 1.14 × 10−1 | 1.79 × 10−1 | 8.71 × 10−2 | 1.63 × 10−1 | 9.86 × 10−2 | 9.27 × 10−2 | 2.58 × 10−1 | |
F12 | std | 3.02 × 101 | 2.91 × 101 | 3.41 × 10−5 | 1.82 × 102 | 4.54 | 1.74 × 102 | 1.66 × 102 | 6.55 × 101 | 2.92 × 101 | 4.91 |
avg | 2.97 × 103 | 2.96 × 103 | 2.90 × 103 | 3.62 × 103 | 2.95 × 103 | 3.29 × 103 | 3.28 × 103 | 3.05 × 103 | 2.98 × 103 | 2.96 × 103 | |
avgtime | 2.97 × 10−3 | 3.31 × 10−3 | 3.40 × 10−1 | 1.17 × 10−1 | 1.77 × 10−1 | 8.81 × 10−2 | 1.90 × 10−1 | 1.06 × 10−1 | 9.84 × 10−2 | 2.60 × 10−1 |
Func. | ALA | ACO | GA | DE | FATA | HHO | GJO | GWO | ABC |
---|---|---|---|---|---|---|---|---|---|
F1 | 3.85 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 1.20 × 10−8 | 3.34 × 10−11 | 4.69 × 10−8 | 2.39 × 10−8 | 3.02 × 10−11 |
F2 | 8.77 × 10−1 | 3.02 × 10−11 | 3.34 × 10−11 | 6.84 × 10−1 | 3.69 × 10−11 | 1.21 × 10−10 | 2.61 × 10−10 | 4.44 × 10−7 | 7.28 × 10−1 |
F3 | 7.73 × 10−2 | 1.24 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 1.09 × 10−10 | 7.01 × 10−2 | 1.99 × 10−2 |
F4 | 9.59 × 10−1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 2.42 × 10−2 | 6.74 × 10−6 | 4.36 × 10−2 | 3.02 × 10−11 |
F5 | 2.32 × 10−2 | 9.47 × 10−1 | 1.86 × 10−9 | 3.16 × 10−10 | 3.69 × 10−11 | 4.08 × 10−11 | 6.12 × 10−10 | 1.03 × 10−2 | 1.49 × 10−4 |
F6 | 5.97 × 10−5 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 1.96 × 10−10 | 3.02 × 10−11 |
F7 | 3.71 × 10−1 | 6.12 × 10−10 | 1.78 × 10−10 | 2.06 × 10−1 | 8.10 × 10−10 | 5.46 × 10−9 | 5.08 × 10−3 | 2.64 × 10−1 | 1.87 × 10−5 |
F8 | 4.29 × 10−1 | 4.50 × 10−11 | 5.07 × 10−10 | 8.53 × 10−1 | 1.85 × 10−8 | 9.51 × 10−6 | 7.62 × 10−3 | 2.40 × 10−1 | 1.56 × 10−8 |
F9 | 3.78 × 10−2 | 3.02 × 10−11 | 3.02 × 10−11 | 1.49 × 10−6 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.69 × 10−11 | 1.09 × 10−10 |
F10 | 7.01 × 10−2 | 3.02 × 10−11 | 1.47 × 10−7 | 3.18 × 10−3 | 5.19 × 10−2 | 9.94 × 10−1 | 2.71 × 10−1 | 4.23 × 10−3 | 5.32 × 10−3 |
F11 | 9.26 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 2.81 × 10−2 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F12 | 7.17 × 10−1 | 3.02 × 10−11 | 3.02 × 10−11 | 8.77 × 10−2 | 3.02 × 10−11 | 7.39 × 10−11 | 8.35 × 10−8 | 2.07 × 10−2 | 8.30 × 10−1 |
Func. | Type | EALA | ALA | ACO | GA | DE | FATA | HHO | GJO | GWO | ABC |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | std | 3.64 × 103 | 4.12 × 103 | 2.80 × 103 | 6.96 × 106 | 8.06 × 104 | 1.37 × 108 | 2.47 × 107 | 4.21 × 108 | 8.85 × 107 | 2.55 × 106 |
avg | 4.39 × 103 | 5.07 × 103 | 2.08 × 103 | 5.31 × 106 | 8.96 × 104 | 2.64 × 108 | 1.66 × 107 | 5.05 × 108 | 2.59 × 107 | 1.27 × 106 | |
avgtime | 7.10 × 10−4 | 6.37 × 10−4 | 1.36 × 10−1 | 5.11 × 10−2 | 9.79 × 10−2 | 2.17 × 10−2 | 3.17 × 10−2 | 3.11 × 10−2 | 2.10 × 10−2 | 1.15 × 10−1 | |
F3 | std | 4.44 × 10−2 | 7.95 × 101 | 2.00 × 104 | 2.22 × 104 | 4.20 × 103 | 2.19 × 103 | 9.40 × 102 | 3.14 × 103 | 3.63 × 103 | 3.50 × 103 |
avg | 3.00 × 102 | 3.54 × 102 | 4.23 × 104 | 5.67 × 104 | 1.38 × 104 | 3.15 × 103 | 2.22 × 103 | 5.17 × 103 | 4.21 × 103 | 1.09 × 104 | |
avgtime | 6.91 × 10−4 | 5.84 × 10−4 | 1.27 × 10−1 | 3.96 × 10−2 | 8.07 × 10−2 | 2.10 × 10−2 | 3.08 × 10−2 | 3.08 × 10−2 | 2.04 × 10−2 | 1.10 × 10−1 | |
F4 | std | 1.19 × 101 | 1.21 × 101 | 1.66 × 10−1 | 7.02 × 101 | 8.28 × 10−1 | 2.77 × 101 | 4.05 × 101 | 4.46 × 101 | 1.84 × 101 | 4.34 × 10−1 |
avg | 4.05 × 102 | 4.07 × 102 | 4.06 × 102 | 4.95 × 102 | 4.07 × 102 | 4.45 × 102 | 4.44 × 102 | 4.51 × 102 | 4.19 × 102 | 4.07 × 102 | |
avgtime | 6.94 × 10−4 | 5.95 × 10−4 | 1.25 × 10−1 | 4.03 × 10−2 | 8.15 × 10−2 | 2.08 × 10−2 | 3.13 × 10−2 | 3.07 × 10−2 | 2.04 × 10−2 | 1.15 × 10−1 | |
F5 | std | 7.91 | 8.12 | 5.04 | 2.24 × 101 | 4.06 | 1.21 × 101 | 1.89 × 101 | 1.39 × 101 | 1.29 × 101 | 4.53 |
avg | 5.17 × 102 | 5.21 × 102 | 5.38 × 102 | 5.91 × 102 | 5.22 × 102 | 5.60 × 102 | 5.57 × 102 | 5.35 × 102 | 5.24 × 102 | 5.40 × 102 | |
avgtime | 7.91 × 10−4 | 7.16 × 10−4 | 1.29 × 10−1 | 4.33 × 10−2 | 8.46 × 10−2 | 2.30 × 10−2 | 4.17 × 10−2 | 3.39 × 10−2 | 2.37 × 10−2 | 1.18 × 10−1 | |
F6 | std | 1.38 × 10−1 | 4.34 × 10−1 | 5.75 × 10−5 | 9.36 | 3.27 × 10−3 | 1.12 × 101 | 1.15 × 101 | 8.53 | 2.41 | 1.48 × 10−1 |
avg | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 | 6.64 × 102 | 6.00 × 102 | 6.34 × 102 | 6.44 × 102 | 6.11 × 102 | 6.01 × 102 | 6.00 × 102 | |
avgtime | 1.13 × 10−3 | 1.03 × 10−3 | 1.40 × 10−1 | 5.48 × 10−2 | 9.71 × 10−2 | 3.17 × 10−2 | 6.10 × 10−2 | 4.23 × 10−2 | 3.25 × 10−2 | 1.38 × 10−1 | |
F7 | std | 7.29 | 8.60 | 5.46 | 3.69 × 101 | 3.45 | 1.79 × 101 | 2.24 × 101 | 1.46 × 101 | 9.65 | 5.90 |
avg | 7.29 × 102 | 7.35 × 102 | 7.50 × 102 | 8.42 × 102 | 7.36 × 102 | 7.82 × 102 | 7.93 × 102 | 7.59 × 102 | 7.32 × 102 | 7.51 × 102 | |
avgtime | 8.53 × 10−4 | 7.34 × 10−4 | 1.31 × 10−1 | 4.49 × 10−2 | 8.60 × 10−2 | 2.43 × 10−2 | 4.39 × 10−2 | 3.48 × 10−2 | 2.42 × 10−2 | 1.21 × 10−1 | |
F8 | std | 9.04 | 8.97 | 6.28 | 1.70 × 101 | 3.92 | 6.19 | 1.11 × 101 | 1.28 × 101 | 7.90 | 4.98 |
avg | 8.18 × 102 | 8.21 × 102 | 8.38 × 102 | 8.81 × 102 | 8.25 × 102 | 8.40 × 102 | 8.32 × 102 | 8.35 × 102 | 8.18 × 102 | 8.38 × 102 | |
avgtime | 8.20 × 10−4 | 7.06 × 10−4 | 1.32 × 10−1 | 4.39 × 10−2 | 8.64 × 10−2 | 2.33 × 10−2 | 4.26 × 10−2 | 3.39 × 10−2 | 2.42 × 10−2 | 1.18 × 10−1 | |
F9 | std | 1.41 | 3.12 | 9.06 × 10−7 | 7.37 × 101 | 3.38 × 10−1 | 1.12 × 102 | 2.18 × 102 | 5.92 × 101 | 2.55 × 101 | 2.08 |
avg | 9.00 × 102 | 9.02 × 102 | 9.00 × 102 | 9.84 × 102 | 9.00 × 102 | 1.05 × 103 | 1.52 × 103 | 1.00 × 103 | 9.22 × 102 | 9.02 × 102 | |
avgtime | 8.34 × 10−4 | 7.25 × 10−4 | 1.33 × 10−1 | 4.42 × 10−2 | 8.77 × 10−2 | 2.44 × 10−2 | 4.42 × 10−2 | 3.45 × 10−2 | 2.44 × 10−2 | 1.20 × 10−1 | |
F10 | std | 2.63 × 102 | 2.52 × 102 | 1.69 × 102 | 3.37 × 102 | 1.52 × 102 | 2.05 × 102 | 2.67 × 102 | 3.89 × 102 | 3.26 × 102 | 1.75 × 102 |
avg | 1.88 × 103 | 1.79 × 103 | 2.91 × 103 | 2.50 × 103 | 2.00 × 103 | 2.70 × 103 | 2.07 × 103 | 2.07 × 103 | 1.73 × 103 | 2.40 × 103 | |
avgtime | 8.98 × 10−4 | 7.94 × 10−4 | 1.35 × 10−1 | 4.83 × 10−2 | 9.14 × 10−2 | 2.48 × 10−2 | 4.82 × 10−2 | 3.60 × 10−2 | 2.55 × 10−2 | 1.23 × 10−1 |
Func. | Type | EALA | ALA | ACO | GA | DE | FATA | HHO | GJO | GWO | ABC |
---|---|---|---|---|---|---|---|---|---|---|---|
F11 | std | 3.97 × 101 | 5.38 | 3.00 | 6.77 × 103 | 3.70 | 4.75 × 101 | 8.65 × 101 | 7.93 × 102 | 4.65 × 101 | 3.66 |
avg | 1.11 × 103 | 1.11 × 103 | 1.11 × 103 | 6.37 × 103 | 1.11 × 103 | 1.19 × 103 | 1.20 × 103 | 1.33 × 103 | 1.15 × 103 | 1.11 × 103 | |
avgtime | 7.79 × 10−4 | 6.55 × 10−4 | 1.29 × 10−1 | 4.14 × 10−2 | 8.41 × 10−2 | 2.24 × 10−2 | 3.66 × 10−2 | 3.20 × 10−2 | 2.21 × 10−2 | 1.16 × 10−1 | |
F12 | std | 1.40 × 104 | 2.80 × 105 | 1.45 × 106 | 6.32 × 106 | 2.07 × 106 | 4.32 × 106 | 5.40 × 106 | 1.32 × 106 | 1.43 × 106 | 1.48 × 106 |
avg | 1.00 × 104 | 8.82 × 104 | 1.51 × 106 | 5.00 × 106 | 2.82 × 106 | 4.15 × 106 | 4.81 × 106 | 8.87 × 105 | 1.23 × 106 | 2.14 × 106 | |
avgtime | 8.07 × 10−4 | 6.52 × 10−4 | 1.30 × 10−1 | 4.68 × 10−2 | 9.14 × 10−2 | 2.34 × 10−2 | 3.99 × 10−2 | 3.43 × 10−2 | 2.31 × 10−2 | 1.38 × 10−1 | |
F13 | std | 1.24 × 102 | 2.60 × 102 | 2.96 × 104 | 1.47 × 104 | 7.60 × 103 | 1.56 × 104 | 1.65 × 104 | 1.06 × 104 | 1.02 × 104 | 3.76 × 103 |
avg | 1.41 × 103 | 1.61 × 103 | 2.43 × 104 | 2.30 × 104 | 1.08 × 104 | 2.17 × 104 | 1.68 × 104 | 1.39 × 104 | 1.27 × 104 | 7.42 × 103 | |
avgtime | 9.54 × 10−4 | 1.23 × 10−3 | 1.69 × 10−1 | 5.11 × 10−2 | 1.05 × 10−1 | 2.76 × 10−2 | 5.03 × 10−2 | 3.94 × 10−2 | 2.90 × 10−2 | 1.47 × 10−1 | |
F14 | std | 1.54 × 101 | 4.94 | 3.24 × 103 | 7.95 × 103 | 7.57 × 102 | 7.41 × 102 | 1.18 × 103 | 1.81 × 103 | 2.25 × 103 | 2.36 × 102 |
avg | 1.42 × 103 | 1.43 × 103 | 5.05 × 103 | 9.08 × 103 | 2.05 × 103 | 1.89 × 103 | 2.24 × 103 | 4.02 × 103 | 4.63 × 103 | 1.70 × 103 | |
avgtime | 1.04 × 10−3 | 8.86 × 10−4 | 1.72 × 10−1 | 5.73 × 10−2 | 1.14 × 10−1 | 3.25 × 10−2 | 5.81 × 10−2 | 4.38 × 10−2 | 3.09 × 10−2 | 1.56 × 10−1 | |
F15 | std | 3.05 × 101 | 2.37 × 101 | 1.26 × 104 | 1.00 × 104 | 1.10 × 103 | 3.83 × 103 | 3.09 × 103 | 3.98 × 103 | 7.91 × 103 | 7.06 × 102 |
avg | 1.53 × 103 | 1.54 × 103 | 1.67 × 104 | 1.13 × 104 | 2.36 × 103 | 6.08 × 103 | 7.89 × 103 | 6.57 × 103 | 8.84 × 103 | 2.44 × 103 | |
avgtime | 8.90 × 10−4 | 7.48 × 10−4 | 1.49 × 10−1 | 4.09 × 10−2 | 8.55 × 10−2 | 2.67 × 10−2 | 4.72 × 10−2 | 4.12 × 10−2 | 2.69 × 10−2 | 1.45 × 10−1 | |
F15 | std | 3.05 × 101 | 2.37 × 101 | 1.26 × 104 | 1.00 × 104 | 1.10 × 103 | 3.83 × 103 | 3.09 × 103 | 3.98 × 103 | 7.91 × 103 | 7.06 × 102 |
avg | 1.53 × 103 | 1.54 × 103 | 1.67 × 104 | 1.13 × 104 | 2.36 × 103 | 6.08 × 103 | 7.89 × 103 | 6.57 × 103 | 8.84 × 103 | 2.44 × 103 | |
avgtime | 8.90 × 10−4 | 7.48 × 10−4 | 1.49 × 10−1 | 4.09 × 10−2 | 8.55 × 10−2 | 2.67 × 10−2 | 4.72 × 10−2 | 4.12 × 10−2 | 2.69 × 10−2 | 1.45 × 10−1 | |
F16 | std | 5.69 × 101 | 5.31 × 101 | 5.73 × 101 | 1.24 × 102 | 3.83 × 101 | 1.49 × 102 | 1.25 × 102 | 1.44 × 102 | 1.10 × 102 | 2.88 × 101 |
avg | 1.66 × 103 | 1.66 × 103 | 1.75 × 103 | 1.88 × 103 | 1.65 × 103 | 1.90 × 103 | 1.97 × 103 | 1.86 × 103 | 1.73 × 103 | 1.67 × 103 | |
avgtime | 9.90 × 10−4 | 9.19 × 10−4 | 1.64 × 10−1 | 5.49 × 10−2 | 1.03 × 10−1 | 2.94 × 10−2 | 5.06 × 10−2 | 4.28 × 10−2 | 2.83 × 10−2 | 1.54 × 10−1 | |
F17 | std | 1.57 × 101 | 1.22 × 101 | 2.83 × 101 | 6.93 × 101 | 8.49 | 2.49 × 101 | 7.60 × 101 | 3.54 × 101 | 2.72 × 101 | 1.27 × 101 |
avg | 1.75 × 103 | 1.74 × 103 | 1.78 × 103 | 1.80 × 103 | 1.73 × 103 | 1.80 × 103 | 1.80 × 103 | 1.77 × 103 | 1.77 × 103 | 1.77 × 103 | |
avgtime | 1.22 × 10−3 | 1.30 × 10−3 | 1.77 × 10−1 | 6.08 × 10−2 | 1.09 × 10−1 | 3.84 × 10−2 | 7.17 × 10−2 | 4.86 × 10−2 | 3.54 × 10−2 | 1.65 × 10−1 | |
F18 | std | 4.96 × 101 | 2.87 × 102 | 2.81 × 105 | 1.20 × 104 | 9.59 × 103 | 7.91 × 104 | 1.02 × 104 | 1.07 × 104 | 1.33 × 104 | 1.41 × 104 |
avg | 1.86 × 103 | 2.18 × 103 | 2.89 × 105 | 1.59 × 104 | 1.47 × 104 | 1.11 × 105 | 1.39 × 104 | 4.20 × 104 | 2.31 × 104 | 2.31 × 104 | |
avgtime | 1.01 × 10−3 | 8.96 × 10−4 | 1.65 × 10−1 | 5.53 × 10−2 | 1.01 × 10−1 | 2.93 × 10−2 | 5.02 × 10−2 | 4.14 × 10−2 | 3.13 × 10−2 | 1.49 × 10−1 | |
F19 | std | 7.98 | 1.69 × 101 | 7.94 × 103 | 9.94 × 103 | 1.54 × 103 | 2.42 × 104 | 6.52 × 104 | 6.15 × 104 | 6.21 × 104 | 2.84 × 102 |
avg | 1.90 × 103 | 1.91 × 103 | 1.12 × 104 | 1.12 × 104 | 3.01 × 103 | 1.46 × 104 | 4.08 × 104 | 2.70 × 104 | 2.76 × 104 | 2.27 × 103 | |
avgtime | 2.98 × 10−3 | 2.21 × 10−3 | 2.04 × 10−1 | 1.10 × 10−1 | 1.59 × 10−1 | 8.69 × 10−2 | 1.91 × 10−1 | 1.01 × 10−1 | 8.52 × 10−2 | 2.68 × 10−1 | |
F20 | std | 3.35 × 101 | 4.93 × 101 | 2.53 × 101 | 8.32 × 101 | 4.66 | 5.38 × 101 | 7.41 × 101 | 7.01 × 101 | 7.02 × 101 | 1.06 × 101 |
avg | 2.04 × 103 | 2.05 × 103 | 2.04 × 103 | 2.25 × 103 | 2.00 × 103 | 2.18 × 103 | 2.19 × 103 | 2.13 × 103 | 2.10 × 103 | 2.05 × 103 | |
avgtime | 1.27 × 10−3 | 1.04 × 10−3 | 1.75 × 10−1 | 6.28 × 10−2 | 1.17 × 10−1 | 3.62 × 10−2 | 7.15 × 10−2 | 5.00 × 10−2 | 3.68 × 10−2 | 1.67 × 10−1 |
Func. | Type | EALA | ALA | ACO | GA | DE | FATA | HHO | GJO | GWO | ABC |
---|---|---|---|---|---|---|---|---|---|---|---|
F21 | std | 5.92 × 101 | 5.36 × 101 | 8.93 | 3.91 × 101 | 3.99 × 101 | 4.77 × 101 | 6.95 × 101 | 2.39 × 101 | 8.03 | 2.88 × 101 |
avg | 2.26 × 103 | 2.23 × 103 | 2.33 × 103 | 2.39 × 103 | 2.30 × 103 | 2.33 × 103 | 2.30 × 103 | 2.32 × 103 | 2.31 × 103 | 2.30 × 103 | |
avgtime | 1.19 × 10−3 | 1.14 × 10−3 | 1.87 × 10−1 | 6.73 × 10−2 | 1.16 × 10−1 | 4.03 × 10−2 | 7.64 × 10−2 | 5.76 × 10−2 | 3.94 × 10−2 | 1.74 × 10−1 | |
F22 | std | 2.25 × 101 | 1.20 × 101 | 7.55 × 102 | 3.50 × 102 | 3.30 | 4.89 × 101 | 3.70 × 102 | 2.11 × 102 | 3.09 × 102 | 1.12 |
avg | 2.29 × 103 | 2.30 × 103 | 2.79 × 103 | 2.61 × 103 | 2.30 × 103 | 2.44 × 103 | 2.42 × 103 | 2.41 × 103 | 2.39 × 103 | 2.30 × 103 | |
avgtime | 1.55 × 10−3 | 1.37 × 10−3 | 1.96 × 10−1 | 7.50 × 10−2 | 1.24 × 10−1 | 4.59 × 10−2 | 9.14 × 10−2 | 6.06 × 10−2 | 4.57 × 10−2 | 1.94 × 10−1 | |
F23 | std | 6.97 | 8.54 | 5.59 | 2.11 × 101 | 3.61 | 8.65 | 3.44 × 101 | 1.49 × 101 | 1.20 × 101 | 5.85 |
avg | 2.61 × 103 | 2.62 × 103 | 2.64 × 103 | 2.70 × 103 | 2.62 × 103 | 2.66 × 103 | 2.68 × 103 | 2.64 × 103 | 2.62 × 103 | 2.63 × 103 | |
avgtime | 1.48 × 10−3 | 1.61 × 10−3 | 1.66 × 10−1 | 6.03 × 10−2 | 1.21 × 10−1 | 4.71 × 10−2 | 9.56 × 10−2 | 6.16 × 10−2 | 4.78 × 10−2 | 1.97 × 10−1 | |
F24 | std | 7.82 | 8.87 | 5.56 | 5.61 × 101 | 2.39 × 101 | 6.80 × 101 | 9.01 × 101 | 4.86 × 101 | 4.05 × 101 | 2.47 × 101 |
avg | 2.74 × 103 | 2.75 × 103 | 2.77 × 103 | 2.87 × 103 | 2.75 × 103 | 2.78 × 103 | 2.81 × 103 | 2.76 × 103 | 2.74 × 103 | 2.75 × 103 | |
avgtime | 1.93 × 10−3 | 1.38 × 10−3 | 1.98 × 10−1 | 7.56 × 10−2 | 1.24 × 10−1 | 5.00 × 10−2 | 9.98 × 10−2 | 6.61 × 10−2 | 5.00 × 10−2 | 1.94 × 10−1 | |
F25 | std | 2.34 × 101 | 2.87 × 101 | 1.46 × 101 | 7.97 × 101 | 1.08 × 101 | 2.44 × 101 | 2.33 × 101 | 3.98 × 101 | 1.42 × 101 | 7.81 |
avg | 2.92 × 103 | 2.93 × 103 | 2.94 × 103 | 3.05 × 103 | 2.93 × 103 | 2.93 × 103 | 2.94 × 103 | 2.95 × 103 | 2.93 × 103 | 2.94 × 103 | |
avgtime | 1.57 × 10−3 | 1.26 × 10−3 | 1.84 × 10−1 | 6.78 × 10−2 | 1.19 × 10−1 | 4.36 × 10−2 | 9.26 × 10−2 | 5.69 × 10−2 | 4.16 × 10−2 | 1.81 × 10−1 | |
F26 | std | 3.06 × 102 | 3.05 × 102 | 1.64 × 102 | 5.49 × 102 | 4.53 × 101 | 1.04 × 102 | 4.92 × 102 | 2.48 × 102 | 3.79 × 102 | 4.37 × 101 |
avg | 3.01 × 103 | 3.04 × 103 | 3.36 × 103 | 3.90 × 103 | 3.04 × 103 | 3.14 × 103 | 3.70 × 103 | 3.20 × 103 | 3.14 × 103 | 2.99 × 103 | |
avgtime | 2.07 × 10−3 | 2.00 × 10−3 | 2.03 × 10−1 | 8.22 × 10−2 | 1.28 × 10−1 | 5.28 × 10−2 | 1.06 × 10−1 | 6.82 × 10−2 | 5.39 × 10−2 | 1.97 × 10−1 | |
F27 | std | 1.31 × 101 | 2.82 | 2.44 × 101 | 4.90 × 101 | 1.91 | 3.19 × 101 | 6.75 × 101 | 2.14 × 101 | 1.16 × 101 | 1.45 |
avg | 3.09 × 103 | 3.09 × 103 | 3.18 × 103 | 3.22 × 103 | 3.09 × 103 | 3.12 × 103 | 3.20 × 103 | 3.11 × 103 | 3.10 × 103 | 3.09 × 103 | |
avgtime | 1.77 × 10−3 | 1.75 × 10−3 | 1.73 × 10−1 | 7.04 × 10−2 | 1.33 × 10−1 | 5.40 × 10−2 | 1.13 × 10−1 | 6.84 × 10−2 | 5.40 × 10−2 | 2.05 × 10−1 | |
F28 | std | 1.70 × 102 | 1.73 × 102 | 9.11 | 2.10 × 102 | 5.82 × 101 | 2.01 × 101 | 1.18 × 102 | 1.26 × 102 | 8.14 × 101 | 4.49 × 101 |
avg | 3.31 × 103 | 3.35 × 103 | 3.29 × 103 | 3.54 × 103 | 3.35 × 103 | 3.41 × 103 | 3.45 × 103 | 3.42 × 103 | 3.40 × 103 | 3.29 × 103 | |
avgtime | 1.53 × 10−3 | 1.57 × 10−3 | 1.90 × 10−1 | 7.71 × 10−2 | 1.27 × 10−1 | 4.98 × 10−2 | 9.80 × 10−2 | 6.31 × 10−2 | 4.94 × 10−2 | 1.95 × 10−1 | |
F29 | std | 4.01 × 101 | 2.95 × 101 | 7.43 × 101 | 1.00 × 102 | 1.86 × 101 | 4.48 × 101 | 1.14 × 102 | 6.52 × 101 | 5.46 × 101 | 2.55 × 101 |
avg | 3.18 × 103 | 3.18 × 103 | 3.35 × 103 | 3.35 × 103 | 3.20 × 103 | 3.27 × 103 | 3.42 × 103 | 3.23 × 103 | 3.21 × 103 | 3.25 × 103 | |
avgtime | 1.39 × 10−3 | 1.28 × 10−3 | 1.88 × 10−1 | 7.37 × 10−2 | 1.29 × 10−1 | 4.84 × 10−2 | 9.34 × 10−2 | 6.34 × 10−2 | 4.49 × 10−2 | 1.94 × 10−1 | |
F30 | std | 9.58 × 105 | 8.39 × 105 | 1.22 × 104 | 2.25 × 106 | 1.97 × 105 | 6.66 × 105 | 2.13 × 106 | 3.72 × 106 | 1.20 × 106 | 5.59 × 105 |
avg | 6.48 × 105 | 7.49 × 105 | 1.81 × 104 | 3.29 × 106 | 1.97 × 105 | 7.88 × 105 | 2.19 × 106 | 1.96 × 106 | 7.64 × 105 | 8.46 × 105 | |
avgtime | 3.70 × 10−3 | 3.08 × 10−3 | 2.67 × 10−1 | 1.25 × 10−1 | 1.72 × 10−1 | 9.67 × 10−2 | 2.15 × 10−1 | 1.11 × 10−1 | 9.68 × 10−2 | 2.94 × 10−1 |
Func. | ALA | ACO | GA | DE | FATA | HHO | GJO | GWO | ABC |
---|---|---|---|---|---|---|---|---|---|
F1 | 5.01 × 10−1 | 6.97 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F4 | 2.00 × 10−6 | 5.57 × 10−10 | 8.15 × 10−11 | 5.57 × 10−10 | 2.61 × 10−10 | 3.32 × 10−6 | 2.61 × 10−10 | 2.92 × 10−9 | 5.57 × 10−10 |
F5 | 2.24 × 10−2 | 6.72 × 10−10 | 3.02 × 10−11 | 1.17 × 10−4 | 3.02 × 10−11 | 8.15 × 10−11 | 9.53 × 10−7 | 7.48 × 10−2 | 2.37 × 10−10 |
F6 | 1.05 × 10−1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 2.44 × 10−9 | 1.75 × 10−5 |
F7 | 8.68 × 10−3 | 6.70 × 10−11 | 3.02 × 10−11 | 5.61 × 10−5 | 3.02 × 10−11 | 3.02 × 10−11 | 1.86 × 10−9 | 3.04 × 10−1 | 1.78 × 10−10 |
F8 | 1.58 × 10−1 | 1.17 × 10−9 | 3.02 × 10−11 | 3.56 × 10−4 | 1.17 × 10−9 | 5.46 × 10−6 | 1.49 × 10−6 | 8.88 × 10−1 | 6.12 × 10−10 |
F9 | 2.24 × 10−2 | 3.02 × 10−11 | 3.02 × 10−11 | 7.39 × 10−1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 1.16 × 10−7 | 1.11 × 10−4 |
F10 | 2.23 × 10−1 | 3.02 × 10−11 | 3.35 × 10−8 | 3.03 × 10−2 | 4.98 × 10−11 | 8.31 × 10−3 | 7.98 × 10−2 | 3.92 × 10−2 | 2.67 × 10−9 |
F11 | 1.56 × 10−2 | 5.86 × 10−6 | 4.98 × 10−11 | 8.29 × 10−6 | 5.57 × 10−10 | 8.89 × 10−10 | 5.07 × 10−10 | 9.76 × 10−10 | 1.16 × 10−7 |
F12 | 1.61 × 10−6 | 3.02 × 10−11 | 4.50 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 4.08 × 10−11 | 4.08 × 10−11 | 1.61 × 10−10 | 3.02 × 10−11 |
F13 | 6.28 × 10−6 | 3.02 × 10−11 | 3.02 × 10−11 | 4.50 × 10−11 | 3.02 × 10−11 | 3.34 × 10−11 | 3.34 × 10−11 | 4.50 × 10−11 | 3.02 × 10−11 |
F14 | 7.96 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 6.70 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F15 | 6.10 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 1.86 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F16 | 6.52 × 10−1 | 7.22 × 10−6 | 7.38 × 10−10 | 5.01 × 10−1 | 4.18 × 10−9 | 6.70 × 10−11 | 1.31 × 10−8 | 1.95 × 10−3 | 6.35 × 10−2 |
F17 | 8.31 × 10−3 | 9.79 × 10−5 | 8.88 × 10−6 | 1.09 × 10−5 | 8.89 × 10−10 | 8.15 × 10−5 | 1.11 × 10−4 | 2.89 × 10−3 | 7.20 × 10−5 |
F18 | 5.07 × 10−10 | 3.02 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F19 | 2.57 × 10−7 | 3.02 × 10−11 | 3.34 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 |
F20 | 6.00 × 10−1 | 1.67 × 10−1 | 6.07 × 10−11 | 4.08 × 10−11 | 1.61 × 10−10 | 3.47 × 10−10 | 7.12 × 10−9 | 1.43 × 10−5 | 2.68 × 10−4 |
F21 | 8.77 × 10−1 | 2.44 × 10−9 | 9.76 × 10−10 | 1.25 × 10−4 | 2.83 × 10−8 | 6.36 × 10−5 | 5.53 × 10−8 | 2.68 × 10−4 | 9.88 × 10−3 |
F22 | 3.40 × 10−1 | 5.57 × 10−10 | 3.02 × 10−11 | 3.08 × 10−8 | 3.02 × 10−11 | 5.09 × 10−8 | 4.20 × 10−10 | 4.08 × 10−11 | 4.98 × 10−11 |
F23 | 6.67 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 6.55 × 10−4 | 3.02 × 10−11 | 3.02 × 10−11 | 3.16 × 10−10 | 9.07 × 10−3 | 2.44 × 10−9 |
F24 | 1.24 × 10−3 | 1.21 × 10−10 | 3.69 × 10−11 | 8.66 × 10−5 | 8.48 × 10−9 | 3.35 × 10−8 | 1.16 × 10−7 | 5.89 × 10−1 | 9.52 × 10−4 |
F25 | 3.03 × 10−3 | 5.19 × 10−7 | 3.02 × 10−11 | 1.62 × 10−1 | 4.03 × 10−3 | 2.25 × 10−4 | 3.50 × 10−3 | 8.66 × 10−5 | 8.12 × 10−4 |
F26 | 2.15 × 10−2 | 1.09 × 10−5 | 3.50 × 10−9 | 4.11 × 10−7 | 1.73 × 10−7 | 1.16 × 10−7 | 1.25 × 10−7 | 6.10 × 10−3 | 8.66 × 10−5 |
F27 | 2.06 × 10−1 | 6.07 × 10−11 | 3.02 × 10−11 | 1.62 × 10−1 | 1.43 × 10−8 | 1.61 × 10−10 | 6.36 × 10−5 | 6.97 × 10−3 | 1.86 × 10−1 |
F28 | 6.95 × 10−1 | 6.63 × 10−1 | 5.60 × 10−5 | 3.04 × 10−1 | 2.68 × 10−6 | 1.25 × 10−5 | 1.78 × 10−4 | 1.25 × 10−4 | 6.41 × 10−1 |
F29 | 5.30 × 10−1 | 2.37 × 10−10 | 3.82 × 10−10 | 1.44 × 10−3 | 4.69 × 10−8 | 7.39 × 10−11 | 6.91 × 10−4 | 9.07 × 10−3 | 1.36 × 10−7 |
F30 | 6.35 × 10−2 | 4.36 × 10−2 | 1.60 × 10−7 | 6.20 × 10−1 | 5.55 × 10−2 | 2.25 × 10−4 | 1.44 × 10−2 | 3.63 × 10−1 | 2.51 × 10−2 |
Alg. | L | S | R | T | CT | CF |
---|---|---|---|---|---|---|
EALA | 58.94 | 25.24 | 0.00 | 19.00 | 1.35 | 60.0800 |
ALA | 62.75 | 34.31 | 0.00 | 28.59 | 1.69 | 64.1772 |
ACO | 111.33 | 129.02 | 1.14 | 158.27 | 55.17 | 128.5076 |
GA | 141.53 | 165.98 | 0.88 | 205.56 | 3.99 | 160.6451 |
DE | 103.77 | 106.77 | 0.89 | 128.34 | 55.94 | 117.0715 |
FATA | 62.75 | 34.31 | 0.02 | 28.59 | 57.55 | 64.2852 |
HHO | 62.75 | 34.31 | 0.00 | 28.59 | 5.66 | 64.1772 |
GJO | 95.62 | 102.62 | 0.97 | 114.86 | 17.12 | 108.1252 |
PSO | 60.26 | 26.66 | 0.96 | 20.74 | 3.42 | 65.5234 |
GWO | 101.14 | 94.21 | 0.91 | 100.61 | 43.89 | 112.7898 |
ABC | 95.68 | 98.77 | 0.96 | 111.82 | 167.72 | 107.9623 |
Alg. | L | S | R | T | CT | CF |
---|---|---|---|---|---|---|
EALA | 34.61 | 19.38 | 0.00 | 18.38 | 10.13 | 35.5344 |
ALA | 38.36 | 29.50 | 17.71 | 31.52 | 17.95 | 41.7103 |
ACO | 48.99 | 44.99 | 41.89 | 52.05 | 256.10 | 55.7861 |
GA | 71.23 | 77.15 | 46.42 | 99.96 | 15.81 | 80.8725 |
DE | 47.48 | 42.59 | 31.89 | 46.10 | 21.48 | 52.9781 |
FATA | 45.97 | 35.31 | 20.36 | 40.78 | 24.04 | 50.0449 |
HHO | 40.70 | 30.72 | 0.00 | 29.95 | 13.06 | 42.1994 |
GJO | 49.14 | 47.83 | 34.06 | 57.78 | 105.71 | 55.4325 |
PSO | 47.04 | 46.23 | 29.97 | 47.40 | 16.61 | 52.4111 |
GWO | 50.31 | 50.16 | 30.74 | 55.08 | 23.44 | 56.1405 |
ABC | 48.95 | 43.14 | 32.72 | 47.02 | 156.02 | 54.5710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Jia, C.; Zhao, J.; Xia, C.; Peng, W.; Huang, J.; Li, L. An Enhanced Artificial Lemming Algorithm and Its Application in UAV Path Planning. Biomimetics 2025, 10, 377. https://doi.org/10.3390/biomimetics10060377
Zhu X, Jia C, Zhao J, Xia C, Peng W, Huang J, Li L. An Enhanced Artificial Lemming Algorithm and Its Application in UAV Path Planning. Biomimetics. 2025; 10(6):377. https://doi.org/10.3390/biomimetics10060377
Chicago/Turabian StyleZhu, Xuemei, Chaochuan Jia, Jiangdong Zhao, Chunyang Xia, Wei Peng, Ji Huang, and Ling Li. 2025. "An Enhanced Artificial Lemming Algorithm and Its Application in UAV Path Planning" Biomimetics 10, no. 6: 377. https://doi.org/10.3390/biomimetics10060377
APA StyleZhu, X., Jia, C., Zhao, J., Xia, C., Peng, W., Huang, J., & Li, L. (2025). An Enhanced Artificial Lemming Algorithm and Its Application in UAV Path Planning. Biomimetics, 10(6), 377. https://doi.org/10.3390/biomimetics10060377