Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = uniform mixing length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 9989 KB  
Article
Genesis and Formation Age of Albitite (Breccia) in the Eastern Segment of Qinling Orogen: Constraints from Accessory Mineral U–Pb Dating and Geochemistry
by Long Ma, Yunfei Ren, Yuanzhe Peng, Danling Chen, Pei Gao, Zhenjun Liu and Zhenhua Cui
Minerals 2026, 16(1), 67; https://doi.org/10.3390/min16010067 - 8 Jan 2026
Viewed by 148
Abstract
There exists an east–west trending albitite (breccia) zone, approximately 400 km in length, closely related to gold mineralization, in Devonian strata in the South Qinling tectonic belt. The genesis and formation age of these albitite (breccia) are of great significance for understanding gold [...] Read more.
There exists an east–west trending albitite (breccia) zone, approximately 400 km in length, closely related to gold mineralization, in Devonian strata in the South Qinling tectonic belt. The genesis and formation age of these albitite (breccia) are of great significance for understanding gold enrichment mechanisms and guiding future exploration. Past studies have mainly focused on the Fengxian–Taibai area in the western segment of the albitite (breccia) zone, whereas the eastern segment remains significantly understudied. In this study, a systematic field investigation, as well as petrology, geochemistry, and accessory-mineral geochronology studies were conducted on albitites and albitite breccias in the Shangnan area, the eastern segment of the albitite (breccia) zone. The results show that the albitites are interlayered with or occur as lenses within Devonian clastic rocks. The albitite breccias are mostly enclosed in albitite and Devonian strata, and the clasts within are subangular, uniform in type, and exhibit minimal displacement. Both albitites and albitite breccias exhibit similar trace-element characteristics and detrital zircon age spectra to those of Devonian clastic rocks. Abundant hydrothermal monazites with U–Pb ages ranging from 260 to 252 Ma are present in both albitites and albitite breccias but absent in Devonian clastic rocks. Collectively, these results indicate that the albitites in the Shangnan area are of hydrothermal metasomatic origin, while the albitite breccias record hydraulic fracturing and cementation, and both are products of the same fluid activity event in the Late Permian. We propose that albitite (breccia) zones in the South Qinling tectonic belt were formed under distinct tectonic settings during different evolution stages of the Late Paleozoic Mianlüe Ocean. Specifically, the albitites (breccias) in the Shangnan area are products of thorough metasomatism, local fracturing, and cementation of Devonian clastic rocks by mixed fluids, which ascended along the Fengzhen–Shanyang Fault coeval with the emplacement of magmatic rocks related to subduction of the Mianlüe Ocean. In contrast, the albitite breccias in the Fengxian–Taibai area are the result of fluid activity during the transition from regional compression to extension after the closure of the Mianlüe Ocean. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 1332 KB  
Article
Effects of Mixing Ratios on Branch Development in Young Mixed Plantations of Betula alnoides and Castanopsis hystrix
by Yangdong Zou, Chunsheng Wang, Yuhan Chang, Haifeng Yin, Qiong Dong and Jie Zeng
Plants 2025, 14(24), 3730; https://doi.org/10.3390/plants14243730 - 6 Dec 2025
Viewed by 317
Abstract
Branch characteristics (quantity, morphology, and distribution) are critical determinants of tree growth and wood quality. However, the influence of species mixing, particularly mixing ratios, on branch development remains poorly understood. This study examined the branch attributes of Betula alnoides and Castanopsis hystrix in [...] Read more.
Branch characteristics (quantity, morphology, and distribution) are critical determinants of tree growth and wood quality. However, the influence of species mixing, particularly mixing ratios, on branch development remains poorly understood. This study examined the branch attributes of Betula alnoides and Castanopsis hystrix in a six-year-old mixed-species trial plantation including monoculture of each species, and three mixtures at ratios of 1:1, 1:3, and 1:5 (B. alnoidesC. hystrix) in Pingxiang, Guangxi, China. Branch quantity (number, proportion, and density), morphology (diameter, length, and angle), and distribution (vertical and horizontal) were measured or recorded from 40 sampled dominant or codominant trees (20 B. alnoides and 20 C. hystrix). The results showed that mixing significantly increased the number and density of branches over 124.2% and 53.2%, respectively, in the lower crown (below 10 m) of B. alnoides, with these metrics positively correlated to the proportion of C. hystrix, while mixing exerted limited effects on branch quantity and size of C. hystrix. The 1:3 and 1:5 mixtures yielded more small branches (diameter < 10 mm) as well as more large branches (>25 mm) for B. alnoides. Branch distribution was almost uniform in different horizontal directions for both species, while variations in branch quantity and morphology along the stem were primarily species-specific; and both aspects remained consistent across the different mixing ratios. In conclusion, mixing B. alnoides with a low proportion of C. hystrix is proposed to produce high-quality solid wood for both species. Future studies should investigate alternative mixing patterns and higher proportions of B. alnoides in mixture with C. hystrix to optimize large-size and high-quality timber production. Full article
(This article belongs to the Section Plant Structural Biology)
Show Figures

Figure 1

20 pages, 296 KB  
Article
Age-Stratified Clinical and Microbiological Profiles in Pediatric Infectious Disease Admissions: Implications for Risk Prediction and Antimicrobial Stewardship
by Cristina Elena Singer, Elena Catalina Bica, Simina Gaman, Renata Maria Varut, Ion Dorin Pluta, Virginia Radulescu, Sirbulet Carmen, Cristian Cosmin Arsenie and Cristina Popescu
Pharmaceutics 2025, 17(11), 1472; https://doi.org/10.3390/pharmaceutics17111472 - 14 Nov 2025
Viewed by 677
Abstract
Background/Objectives: Pediatric infectious-disease admissions are common but heterogeneous. We characterized clinical, microbiological, and therapeutic patterns and identified high-risk subgroups relevant to antimicrobial stewardship. Methods: In an observational cohort of 136 children stratified by age, we recorded symptoms, diagnoses, culture results, pathogens, [...] Read more.
Background/Objectives: Pediatric infectious-disease admissions are common but heterogeneous. We characterized clinical, microbiological, and therapeutic patterns and identified high-risk subgroups relevant to antimicrobial stewardship. Methods: In an observational cohort of 136 children stratified by age, we recorded symptoms, diagnoses, culture results, pathogens, antibiotic therapy, and outcomes. A composite risk score integrating age and clinical/microbiological parameters was assessed. Results: Outcomes were generally favorable: intensive care unit (ICU) transfer 8.8% (95% confidence interval [CI]: 4.6–15.1), mortality 0.7% (95% CI: 0.1–3.9), and median length of stay (LOS) 10 days (interquartile range [IQR] 8–12). Pneumonia was the leading diagnosis (44.9%; 95% CI: 36.3–53.6). Among isolates, Escherichia coli (47.1%) and Klebsiella species (spp.) (27.9%) predominated. Pneumonia correlated with prolonged LOS (p = 0.006), and gastroenteritis with ICU transfer (p = 0.038) and longer LOS (p = 0.018). Mixed E. coli + Klebsiella infections were linked to prolonged stay (p = 0.021). The composite score identified a high-risk stratum with higher ICU transfer (p = 0.004) and prolonged stay (p = 0.006). Conclusions: Although overall outcomes were favorable, risk was not uniform. An age-stratified, multifactorial assessment—integrating clinical presentation, microbiology, and a composite score—identified pediatric subgroups with worse prognoses, supporting targeted monitoring and stewardship-aligned, age-aware empiric therapy. External validation is warranted. Full article
(This article belongs to the Special Issue Novel Formulations for Pediatric Infections)
14 pages, 1696 KB  
Article
Comparison of the Life History and Morphological Differences in Eight Korean Tiger Beetles Reared in the Laboratory to Develop an Ex Situ Conservation Method for the Endangered Tiger Beetle
by Deokjea Cha, Jong-Kook Jung and C. Barry Knisley
Animals 2025, 15(20), 3032; https://doi.org/10.3390/ani15203032 - 19 Oct 2025
Viewed by 904
Abstract
Tiger beetles serve as bioindicators of ecosystem health but are under increasing threat from habitat loss and population decline. Ex situ conservation via captive breeding offers promise for species lacking viable wild populations. We evaluated laboratory rearing from egg to adult for eight [...] Read more.
Tiger beetles serve as bioindicators of ecosystem health but are under increasing threat from habitat loss and population decline. Ex situ conservation via captive breeding offers promise for species lacking viable wild populations. We evaluated laboratory rearing from egg to adult for eight Korean tiger beetle species to determine the developmental period per developmental stage, mortality rates, larval burrow entrance size, and head–pronotum morphological characteristics under controlled laboratory conditions. High mortality (37.5–80%) occurred during the transition from the pre-pupa to pupa stage, suggesting that mass larval production is needed to offset losses. Reared-type adults of most tiger beetle species tended to be smaller in body length than wild-type adults. Species-specific behaviors (e.g., feeding habits in Cephalota chiloleuca) and the overwintering times of spring–fall and summer species are different, indicating that uniform rearing protocols are suboptimal. Our findings suggest the importance of species-specific adjustment of rearing methods (feeding frequency, overwintering timing) to increase the success of ex situ conservation methods for tiger beetles. In addition, the larval burrow entrance size offered limited utility for species identification in mixed-species habitats, whereas the color of the head and pronotum was considered helpful in identifying some tiger beetle species. Full article
(This article belongs to the Special Issue Protecting Endangered Species: Second Edition)
Show Figures

Figure 1

14 pages, 3959 KB  
Article
Three-Dimensional Simulation-Based Comparison of Streamer Initiation in SF6/N2 and SF6/CO2 for Different Mixing Ratios and Pressures
by Muhammad Farasat Abbas, Guangyu Sun, Baohong Guo and Yanbin Xin
Appl. Sci. 2025, 15(19), 10331; https://doi.org/10.3390/app151910331 - 23 Sep 2025
Viewed by 638
Abstract
Being a greenhouse gas, SF6 has significant potential to cause global warming. No alternative gas has been found so far that meets the required criteria. Ongoing research has narrowed down the candidates to some relatively environmentally friendly elementary gases such as N [...] Read more.
Being a greenhouse gas, SF6 has significant potential to cause global warming. No alternative gas has been found so far that meets the required criteria. Ongoing research has narrowed down the candidates to some relatively environmentally friendly elementary gases such as N2, CO2, and their mixtures with a small percentage of SF6 (10–20%). Streamers are important and play a deterministic role in the breakdown phenomenon. The inception and growth of streamer discharge depend on the generation of free electrons. Various ionization sources, including field ionization, Auger release of electrons, photoionization, and electron detachment from negative ions, have been employed in dielectric media. In this work, field ionization is considered a free-electron generation mechanism for streamer initiation. In field ionization, neutral molecules produce free electrons when extremely high electric fields are present near the needle electrode. A 3D particle model with field ionization is then used to investigate positive streamer initiation in SF6/N2 and SF6/CO2 for different mixing ratios at 1 and 5 bar. It was observed that for both mixtures, the number and the apparent length of streamer branching decreased with increasing SF6 concentration and were minimal at 100% SF6. The number of branches and the apparent length of streamers were higher in the case of SF6/CO2 compared with SF6/N2 mixtures, indicating a higher ionization rate for the SF6/CO2 mixture. With increasing pressure, the branching and length of the streamers for both mixtures decreased significantly. Although the field-ionization model is only suitable for very high electric fields in the vicinity of the needle tip, its validity is still questionable for uniform fields and at lower pressures. Full article
(This article belongs to the Special Issue Plasma–Surface Interaction: Theory, Simulation and Application)
Show Figures

Figure 1

18 pages, 3207 KB  
Article
Development of an Efficient Micropropagation Protocol for Philodendron erubescens ‘Pink Princess’ Using a Temporary Immersion System and Assessment of Genetic Fidelity
by Bui Khanh Vy, Preekamol Klanrit, Sudarat Thanonkeo and Pornthap Thanonkeo
Horticulturae 2025, 11(9), 1085; https://doi.org/10.3390/horticulturae11091085 - 9 Sep 2025
Viewed by 1720
Abstract
Conventional propagation of the highly sought-after ornamental Philodendron erubescens ‘Pink Princess’ is constrained by slow multiplication rates, the risk of unstable variegation, and the limited availability of elite mother stock, making advanced in vitro techniques essential for large-scale production. This research aimed to [...] Read more.
Conventional propagation of the highly sought-after ornamental Philodendron erubescens ‘Pink Princess’ is constrained by slow multiplication rates, the risk of unstable variegation, and the limited availability of elite mother stock, making advanced in vitro techniques essential for large-scale production. This research aimed to establish an efficient micropropagation protocol by optimizing the shoot multiplication phase in a twin-flask Temporary Immersion Bioreactor (TIB) system (RITA-type) and subsequently assessing the genetic fidelity of the regenerated plants. Shoot induction was evaluated in a TIB system with an immersion frequency of 4 min every 8 h. Among the tested cytokinins, liquid Murashige and Skoog (MS) medium containing 1.0 mg/L 6-benzylaminopurine (BAP) provided the optimal conditions for shoot proliferation, accounting for approximately 21 shoots/explant. While the TIB system was highly effective for shoot multiplication, it proved suboptimal for root induction. Therefore, rooting was optimized on a semi-solid medium, where MS medium supplemented with 0.5 mg/L indole-3-acetic acid (IAA) was identified as the most effective treatment, yielding an average of 3.0 well-developed roots per explant (1.1 cm in length) within 30 days. For acclimatization, a substrate mix of peat moss, perlite, and vermiculite (2:1:1, v/v/v) ensured a 100% survival rate. Critically, genetic fidelity analysis using RAPD markers revealed monomorphic banding patterns between the micropropagated plantlets and the mother plant (100% similarity), confirming their genetic uniformity and true-to-type nature. The established protocol provides a robust and reliable method for the in vitro propagation of P. erubescens ‘Pink Princess’. This work offers a foundation for developing large-scale commercial production strategies and effectively overcomes many limitations of classical propagation techniques. Full article
Show Figures

Figure 1

19 pages, 8255 KB  
Article
Performance and Mixing Characterization of a New Type of Venturi Reactor for Hydrazine Hydrate Production
by Suli Yang, Zhihao Wang, Haibin Wu, Xiaojing Wang and Shengting Li
Processes 2025, 13(9), 2839; https://doi.org/10.3390/pr13092839 - 4 Sep 2025
Viewed by 889
Abstract
In this paper, a novel venturi jet reactor is innovatively proposed for the process of hydrazine hydrate production using the urea method. In order to investigate the performance of this reactor in depth, we used the computational fluid dynamics method to optimize the [...] Read more.
In this paper, a novel venturi jet reactor is innovatively proposed for the process of hydrazine hydrate production using the urea method. In order to investigate the performance of this reactor in depth, we used the computational fluid dynamics method to optimize the design of the structure of the new venturi jet reactor based on the flow field condition, the degree of mixing uniformity, and the efficiency of the reactor using the component transport model. The results showed that the moderate increase of the distance of mixing tube to nozzle and nozzle diameter seven could help to improve the efficiency of the jet reactor; however, in terms of the mixing effect, the increase of the distance of mixing tube to nozzle led to the mixing effect to be enhanced and then weakened, while the increase in the nozzle diameter was not conducive to the full mixing of the two fluids. In addition, the effects of ratio of throat length to diameter and constriction angle on the efficiency of the jet reactor showed nonlinear characteristics, and the optimal values existed in the study range. Based on the above analysis, this paper determines the optimal range of structural parameters, i.e., the distance of mixing tube to nozzle of 7–13 mm, the nozzle outlet diameter of 5–7 mm, the ratio of throat length to diameter of 3–5, and the constriction angle of 30–40°, and the study provides guidance for the industrial application of the venturi jet reactor. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 11740 KB  
Article
Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades
by Julita Krassowska
Materials 2025, 18(17), 4105; https://doi.org/10.3390/ma18174105 - 1 Sep 2025
Cited by 2 | Viewed by 1097
Abstract
This study examines the effects of incorporating recycled carbon fibers obtained from decommissioned wind turbine blades into cementitious composites. An extensive experimental program was carried out, varying fiber content (0–8 kg/m3), fiber length (25, 38, 50 mm), water-to-cement ratio (0.4, 0.5), [...] Read more.
This study examines the effects of incorporating recycled carbon fibers obtained from decommissioned wind turbine blades into cementitious composites. An extensive experimental program was carried out, varying fiber content (0–8 kg/m3), fiber length (25, 38, 50 mm), water-to-cement ratio (0.4, 0.5), and cement type (CEM I 42.5, CEM II 42.5R/A-V). The mechanical properties of the fiber-reinforced concretes, including compressive strength, flexural strength, splitting tensile strength, and modulus of elasticity, were evaluated. The addition of recycled carbon fibers significantly improved flexural and splitting tensile strengths, with increases exceeding 60% and 100%, respectively, at the highest fiber dosage (8 kg/m3), attributed to efficient crack-bridging capability. Compressive strength was mainly influenced by the water-to-cement ratio, while the modulus of elasticity showed slight reductions in some mixes due to fiber clustering and increased micro-porosity. Regression analysis indicated that shorter fibers (25 mm) were more effective in enhancing flexural strength, whereas longer fibers (50 mm) improved splitting tensile strength. Classical predictive models generally underestimated the flexural capacity of recycled-carbon-fiber-reinforced concretes, highlighting the need for recalibration. Optical microscopy confirmed uniform fiber dispersion at lower dosages and a dominant pull-out failure mechanism. The findings demonstrate the feasibility of using recycled carbon fibers to enhance the mechanical performance of concrete while supporting sustainability through waste diversion and circular economy strategies. Full article
Show Figures

Figure 1

16 pages, 2159 KB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Cited by 1 | Viewed by 762
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

24 pages, 13010 KB  
Article
Dual-Vortex Aerosol Mixing Chamber for Micrometer Aerosols: Parametric CFD Analysis and Experimentally Validated Design Improvements
by Ziran Xu, Junjie Liu, Yue Liu, Jiazhen Lu and Xiao Xu
Processes 2025, 13(8), 2322; https://doi.org/10.3390/pr13082322 - 22 Jul 2025
Viewed by 1082
Abstract
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol [...] Read more.
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol sample during evaluation, a portable mixing chamber, where the sample and clean air were dual-vortex turbulent mixed, was designed. By using computational fluid dynamics (CFD), particle motion within the mixing chamber was illustrated or explained. By adjusting critical structure parameters of chamber such as height and diameter, the flow field structure was optimized to improve particle mixing characteristics. Accordingly, a novel portable aerosol mixing chamber with length and inner diameter of 0.7 m and 60 mm was developed. Through a combination of simulations and experiments, the operating conditions, including working flow rate, ratio of carrier/dilution clean air, and mixture duration, were studied. Finally, by using the optimized parameters, a mixing chamber with high spatial uniformity where variation is less than 4% was obtained for aerosol particles ranging from 0.3 μm to 10 μm. Based on this chamber, a standardized testing platform was established to verify the sampling efficiency of aerosol samplers with high flow rate (28.3 L·min−1). The obtained results were consistent with the reference values in the sampler’s manual, confirming the reliability of the evaluation system. The testing platform developed in this study can provide test aerosol particles ranging from sub-micrometers to micrometers and has significant engineering applications, such as atmospheric pollution monitoring and occupational health assessment. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

23 pages, 2820 KB  
Article
Optimized Spectral and Spatial Design of High-Uniformity and Energy-Efficient LED Lighting for Italian Lettuce Cultivation in Miniature Plant Factories
by Zihan Wang, Haitong Huang, Mingming Shi, Yuheng Xiong, Jiang Wang, Yilin Wang and Jun Zou
Horticulturae 2025, 11(7), 779; https://doi.org/10.3390/horticulturae11070779 - 3 Jul 2025
Cited by 1 | Viewed by 1244
Abstract
Optimizing artificial lighting in controlled-environment agriculture is crucial for enhancing crop productivity and resource efficiency. This study presents a spectral–spatial co-optimization strategy for LED lighting tailored to the physiological needs of Italian lettuce (Lactuca sativa L. var. italica). A miniature plant factory [...] Read more.
Optimizing artificial lighting in controlled-environment agriculture is crucial for enhancing crop productivity and resource efficiency. This study presents a spectral–spatial co-optimization strategy for LED lighting tailored to the physiological needs of Italian lettuce (Lactuca sativa L. var. italica). A miniature plant factory system was developed with dimensions of 400 mm × 400 mm × 500 mm (L × W × H). Seven customized spectral treatments were created using 2835-packaged LEDs, incorporating various combinations of blue and violet LED chips with precisely controlled concentrations of red phosphor. The spectral configurations were aligned with the measured absorption peaks of Italian lettuce (450–470 nm and 640–670 nm), achieving a spectral mixing uniformity exceeding 99%, while the spatial light intensity uniformity surpassed 90%. To address spatial light heterogeneity, a particle swarm optimization (PSO) algorithm was employed to determine the optimal LED arrangement, which increased the photosynthetic photon flux density (PPFD) uniformity from 83% to 93%. The system operates with a fixture-level power consumption of only 75 W. Experimental evaluations across seven treatment groups demonstrated that the E-spectrum group—comprising two violet chips, one blue chip, and 0.21 g of red phosphor—achieved the highest agronomic performance. Compared to the A-spectrum group (three blue chips and 0.19 g of red phosphor), the E-spectrum group resulted in a 25% increase in fresh weight (90.0 g vs. 72.0 g), a 30% reduction in SPAD value (indicative of improved light-use efficiency), and compared with Group A, Group E exhibited significant improvements in plant morphological parameters, including a 7.05% increase in plant height (15.63 cm vs. 14.60 cm), a 25.64% increase in leaf width (6.37 cm vs. 5.07 cm), and a 6.35% increase in leaf length (10.22 cm vs. 9.61 cm). Furthermore, energy consumption was reduced from 9.2 kWh (Group A) to 7.3 kWh (Group E). These results demonstrate that integrating spectral customization with algorithmically optimized spatial distribution is an effective and scalable approach for enhancing both crop yield and energy efficiency in vertical farming systems. Full article
Show Figures

Figure 1

14 pages, 2199 KB  
Article
Microscopic Air–Water Properties in Non-Uniform Self-Aerated Flows
by Caiyong Yang and Wangru Wei
Water 2025, 17(11), 1587; https://doi.org/10.3390/w17111587 - 24 May 2025
Viewed by 662
Abstract
Supercritical open channel flows contribute substantially to the air–water transfer process in spillways, rivers, and streams. They are characterized by strong turbulent mixing and a substantial amount of air entrainment. The microscopic air–water properties in non-uniform self-aerated flows are investigated experimentally with various [...] Read more.
Supercritical open channel flows contribute substantially to the air–water transfer process in spillways, rivers, and streams. They are characterized by strong turbulent mixing and a substantial amount of air entrainment. The microscopic air–water properties in non-uniform self-aerated flows are investigated experimentally with various chute slopes, including air chord size and air–water transfer frequency. Microscopic air–water structures are primarily affected by chute slope, whereas the approach flow Reynolds number hardly influences them, resulting in self-similarity of the probability distribution of air chord length and air–water transfer frequency distribution in the self-aerated region. The distribution of bubble chord length is more continuous from the small to large scale in the high-air-concentration region for a greater chute slope, and the position of maximum air frequency moves to the higher-aeration zone and gets closely to the free surface. Moreover, empirical relationships are provided to predict the microscopic air–water properties in non-uniform self-aerated flows. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Figure 1

17 pages, 2210 KB  
Article
Exploring Microbial Diversity in Forest Litter-Based Fermented Bioproducts and Their Effects on Tomato (Solanum lycopersicum L.) Growth in Senegal
by Alexandre Mahougnon Aurel Zoumman, Paula Fernandes, Mariama Gueye, Clémence Chaintreuil, Laurent Cournac, Aboubacry Kane and Komi Assigbetse
Int. J. Plant Biol. 2025, 16(2), 55; https://doi.org/10.3390/ijpb16020055 - 23 May 2025
Cited by 1 | Viewed by 1101
Abstract
Reducing the use of chemical inputs (fertilizers, pesticides) in agriculture while maintaining crop productivity is the main challenge facing sub-Saharan African family farming systems. The use of effective microorganisms (EM) is among the various innovative approaches for minimizing chemical inputs and the environmental [...] Read more.
Reducing the use of chemical inputs (fertilizers, pesticides) in agriculture while maintaining crop productivity is the main challenge facing sub-Saharan African family farming systems. The use of effective microorganisms (EM) is among the various innovative approaches for minimizing chemical inputs and the environmental impact of agricultural production and protecting soil health while enhancing crop yields and improving food security. This study sought to characterize the microbial biodiversity of local beneficial microorganisms (BMs) products from locally fermented forest litter and investigate their ability to enhance tomato plant growth and development. Beneficial microorganisms (BMs) were obtained by anaerobic fermentation of forest litter collected in four agroecological regions of Senegal mixed with sugarcane molasses and various types of carbon sources (groundnut shells, millet stovers, and rice bran in different proportions). The microbial community composition was analyzed using next-generation rDNA sequencing, and their effects on tomato growth traits were tested in greenhouse experiments. Results show that regardless of the litter geographical collection site, the dominant bacterial taxa in the BMs belonged to the phyla Firmicutes (27.75–97.06%) and Proteobacteria (2.93–72.24%). Within these groups, the most prevalent classes were Bacilli (14.41–89.82%), α-proteobacteria (2.83–72.09%), and Clostridia (0.024–13.34%). Key genera included Lactobacillus (13–65.83%), Acetobacter (8.91–72.09%), Sporolactobacillus (1.40–43.35%), and Clostridium (0.08–13.34%). Fungal taxa were dominated by the classes Leotiomycetes and Sordariomycetes, with a prevalence of the acidophilic genus Acidea. Although microbial diversity is relatively uniform across samples, the relative abundance of microbial taxa is influenced by the litter’s origin. This is illustrated by the PCoA analysis, which clusters microbial communities based on their litter source. Greenhouse experiments revealed that five BMs (DK-M, DK-G, DK-GM, NB-R, and NB-M) significantly (p < 0.05) enhanced tomato growth traits, including plant height (+10.75% for DK-G and +9.44% for NB-R), root length (+56.84–62.20%), root volume (+84.32–97.35%), root surface area (+53.16–56.72%), and both fresh and dry shoot biomass when compared to untreated controls. This study revealed that forest-fermented litter products (BMs), produced using litter collected from various regions in Senegal, contain beneficial microorganisms known as plant growth-promoting microorganisms (PGPMs), which enhanced tomato growth. These findings highlight the potential of locally produced BMs as an agroecological alternative to inorganic inputs, particularly within Senegal’s family farming systems. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

28 pages, 9701 KB  
Article
Impact of Pore Structure and Hydrate Distribution on CO2-CH4 Replacement in CH4 Hydrate: A Pore-Scale Numerical Analysis
by Yingfei Wang, Xiangen Wu, Yujie Zhang, Chunlin Yin, Bo Dong and Weizhong Li
Energies 2025, 18(10), 2519; https://doi.org/10.3390/en18102519 - 13 May 2025
Cited by 2 | Viewed by 707
Abstract
The mining of CH4 hydrate through the CO2-CH4 replacement method mostly occurs within CH4 hydrate-bearing sediments. Therefore, it is crucial to investigate the replacement process on the pore scale. This study aims to explore the impacts of pore [...] Read more.
The mining of CH4 hydrate through the CO2-CH4 replacement method mostly occurs within CH4 hydrate-bearing sediments. Therefore, it is crucial to investigate the replacement process on the pore scale. This study aims to explore the impacts of pore microstructure and the CH4 hydrate non-uniform distribution on the replacement of CO2 for CH4. A two-dimensional numerical model has been adopted to investigate this issue. A pore-scale numerical simulation is conducted in a physical model of real porous media. Then, the replacement process in a comparative model, in which the pore microstructure and the non-uniform distribution of the CH4 hydrate are not considered, is simulated. The findings indicate that the CH4 hydrate dissociation and the CO2-CH4 mixed hydrate generation are affected by the effective throat length of pores. When the pore microstructure and CH4 hydrate heterogeneous distribution are ignored, the replacement rate and CO2 storage rate are underestimated. However, the effective throat length does not exert a significant impact on the pure CO2 hydrate generation, which is produced by the reaction of water with dissolved CO2. In addition, in terms of gas migration, ignoring the heterogeneous distribution of CH4 hydrate will underestimate the impact of initial water on the relative permeability of gas. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 8478 KB  
Article
Tribological Performance of Electrochemically Textured EN-GJS 400-15 Spheroidal Cast Iron
by Peng Jiang, Jonathon Mitchell-Smith and John Christopher Walker
Lubricants 2025, 13(5), 203; https://doi.org/10.3390/lubricants13050203 - 2 May 2025
Viewed by 985
Abstract
This paper presents an experimental study of uniform and variable texture patterns on a honed EN-GJS 400-15 spheroidal graphite cast iron surface. Textured samples were fabricated using a CNC electrochemical jet machining technique and tested against a 52100 G5 roller countersurface featuring a [...] Read more.
This paper presents an experimental study of uniform and variable texture patterns on a honed EN-GJS 400-15 spheroidal graphite cast iron surface. Textured samples were fabricated using a CNC electrochemical jet machining technique and tested against a 52100 G5 roller countersurface featuring a rectangular 1 mm × 13 mm contact area. Tribological tests were conducted in a fully flooded PAO4 lubricant bath at 30 °C on a TE-77 reciprocating sliding tribometer with a 25 mm stroke length. Frictional behaviour was assessed at test frequencies from 12 to 18 Hz under two loads, 11 N and 50 N, covering mixed and hydrodynamic lubrication regimes. Experimental results demonstrated that EJM textured surfaces were accurately fabricated within a ±2.50 µm standard error in depth, with chemical etching effects reducing the Rq roughness of initial grinding marks by 0.223 µm. Textured surfaces exhibited a more pronounced friction performance at 50 N than at 11 N, exhibiting a consistent friction reduction of up to 18.8% compared to the untextured surface. The variable textured surface outperformed the uniform textured surface under the mixed lubrication regime due to the enhanced secondary lubrication effect. Optical and SEM analyses revealed that textured surfaces reduced plastic deformation and two-body abrasion. Full article
(This article belongs to the Special Issue Cast Iron as a Tribological Material)
Show Figures

Figure 1

Back to TopTop