Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (199)

Search Parameters:
Keywords = unconventional shale gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 13458 KB  
Article
Damage Mechanism and Sensitivity Analysis of Cement Sheath Integrity in Shale Oil Wells During Multi-Stage Fracturing Based on the Discrete Element Method
by Xuegang Wang, Shiyuan Xie, Hao Zhang, Zhigang Guan, Shengdong Zhou, Jiaxing Mu, Weiguo Sun and Wei Lian
Eng 2026, 7(1), 48; https://doi.org/10.3390/eng7010048 - 15 Jan 2026
Viewed by 231
Abstract
As the retrieval of unconventional oil and gas resources extends to the deep and ultra-deep domains, the issue of cement sheath failure in shale oil wellbores seriously endangers wellbore safety, making it imperative to uncover the relevant damage mechanism and develop effective assessment [...] Read more.
As the retrieval of unconventional oil and gas resources extends to the deep and ultra-deep domains, the issue of cement sheath failure in shale oil wellbores seriously endangers wellbore safety, making it imperative to uncover the relevant damage mechanism and develop effective assessment approaches. In response to the limitations of conventional finite element methods in representing mesoscopic damage, in this study, we determined the mesoscopic parameters of cement paste via laboratory calibrations; constructed a 3D casing–cement sheath–formation composite model using the discrete element method; addressed the restriction of the continuum assumption; and numerically simulated the microcrack initiation, propagation, and interface debonding behaviors of cement paste from a mesomechanical viewpoint. The model’s reliability was validated using a full-scale cement sheath sealing integrity assessment apparatus, while the influences of fracturing location, stage count, and internal casing pressure on cement sheath damage were analyzed systematically. Our findings indicate that the DEM model can precisely capture the dynamic evolution features of microcracks under cyclic loading, and the results agree well with the results of the cement sheath sealing integrity evaluation. During the first internal casing pressure loading phase, the microcracks generated account for 84% of the total microcracks formed during the entire loading process. The primary interface (casing–cement sheath interface) is fully debonded after the second internal pressure loading, demonstrating that the initial stage of cyclic internal casing pressure exerts a decisive impact on cement sheath integrity. The cement sheath in the horizontal well section is subjected to high internal casing pressure and high formation stress, resulting in more frequent microcrack coalescence and a rapid rise in the interface debonding rate, whereas the damage progression in the vertical well section is relatively slow. Full article
Show Figures

Figure 1

24 pages, 11307 KB  
Article
Study of Response Pattern of Casing Under the Condition of Nonuniform Creep Loading of Shale Gas Reservoir
by Xiaohua Zhu, Hanwen Sun, Jun Jing, Pansheng Xu and Lingxu Kong
Processes 2026, 14(2), 234; https://doi.org/10.3390/pr14020234 - 9 Jan 2026
Viewed by 222
Abstract
With unconventional oil–gas reservoir exploration and oil and gas theory development, more and more importance is attached to the wellbore integrity. The casing deformation and damage is an integral part of the wellbore integrity theory. In the shale gas block in southwestern China, [...] Read more.
With unconventional oil–gas reservoir exploration and oil and gas theory development, more and more importance is attached to the wellbore integrity. The casing deformation and damage is an integral part of the wellbore integrity theory. In the shale gas block in southwestern China, the casing deformation is grave because of the nonuniform stress of the reservoir, posing a significant influence on the productivity and economic efficiency of the shale gas development. In order to clarify the causes and mechanisms of the casing deformation caused by the nonuniform stress, the author of this paper has established the mechanical properties mathematical model of the casing under the nonuniform load as well as the casing–cement ring–stratum assembly numerical model based on the data of in situ multi-arm well logger and reservoir geological characteristics. Such models are established to study the response pattern of the casing under the nonuniform creep ground stress of the shale gas reservoir. The study herein serves as a reference for the optimization of casing design and target-specific exploration technology adjustments and lays the foundation for promoting the cost-effective development of shale gas reservoirs. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

30 pages, 3627 KB  
Article
A Multi-Parameter Integrated Model for Shale Gas Re-Fracturing Candidate Selection
by Wei Liu, Yanchao Li, Pinghua Shu, Cai Deng, Hao Jiang, Haobo Feng, Dechun Chen and Liangliang Wang
Energies 2026, 19(1), 23; https://doi.org/10.3390/en19010023 - 19 Dec 2025
Viewed by 317
Abstract
With the continuous advancement of shale gas field development, well productivity following initial hydraulic fracturing often declines due to mechanisms such as proppant embedment and fracture conductivity degradation. However, such wells may still retain significant development potential, making re-fracturing crucial for restoring production [...] Read more.
With the continuous advancement of shale gas field development, well productivity following initial hydraulic fracturing often declines due to mechanisms such as proppant embedment and fracture conductivity degradation. However, such wells may still retain significant development potential, making re-fracturing crucial for restoring production and highlighting the critical importance of accurate candidate selection for re-fracturing. To improve the precision of candidate well selection for re-fracturing in shale gas wells, this study focuses on a shale gas block in the Southern Chuan Basin. Through comparative analysis of existing selection methods, 14 key parameters were finalized. The threshold values for some of these key parameters were recalibrated based on the specific geological, engineering, and production characteristics of the target block in the Southern Chuan Basin. Furthermore, the AHP-GRA (Analytic Hierarchy Process-Gray Relational Analysis) weighting method was integrated to achieve a balance between empirical knowledge and quantitative objectivity. Ultimately, a more targeted, comprehensive, and combined subjective–objective methodology for selecting re-fracturing candidate wells was developed. A computational tool developed in Python 3.9 was utilized to evaluate 13 candidate wells in the block, successfully identifying three high-priority wells for re-fracturing implementation. The reliability of this selection result was validated by analyzing production data before and after re-fracturing, confirming that the production performance of the selected wells showed relatively significant improvement post re-fracturing, with a notable increase in recovery factor. This model provides critical decision-making support for the low-cost and large-scale development of shale gas. It holds significant theoretical and practical value for promoting the secondary development of mature shale gas wells and contributes positively to the efficient utilization of unconventional natural gas resources and energy security. Full article
Show Figures

Figure 1

25 pages, 2636 KB  
Article
Quantifying the Multidimensional Benefits of Sustainable Shale Gas Development: A Copula–Monte Carlo Integrated Framework
by Tianxiang Yang, Fan Wei, Ying Guo and Yuan Liang
Appl. Sci. 2025, 15(24), 13013; https://doi.org/10.3390/app152413013 - 10 Dec 2025
Viewed by 256
Abstract
Although shale gas is an important energy source in the energy transition, its development faces multidimensional challenges across economic, environmental, social and technological domains. Traditional evaluation methods struggle to quantify interdependencies among indicators or capture their overall benefits. To address this, we propose [...] Read more.
Although shale gas is an important energy source in the energy transition, its development faces multidimensional challenges across economic, environmental, social and technological domains. Traditional evaluation methods struggle to quantify interdependencies among indicators or capture their overall benefits. To address this, we propose a sustainable development evaluation framework for shale gas that integrates 25 indicators across four dimensions: economic, environmental, social and technical. Entropy weighting is used to determine indicator weights, and principal component analysis (PCA) is applied to reduce dimensionality, Gaussian copula functions are then used to model inter-indicator dependencies, and Monte Carlo simulation (10,000 iterations) is used to quantify the distribution of comprehensive benefits under uncertainty. The key findings are as follows: (1) the environmental and technological dimensions carry the highest weights at 29% and 28%, respectively; (2) the PCA–Monte Carlo (PMC) development model achieves a comprehensive benefit score of 0.567, and 22% higher than the traditional model’s score of 0.467 with a 90% confidence interval of [2%, 46%]; and (3) sensitivity analysis identifies the most influential drivers as the hazardous waste compliance rate (impact coefficient 0.92), the community conflict resolution rate (0.367), and community satisfaction (0.26). The marginal benefits of environmental compliance and social governance substantially exceed those of traditional economic indicators, offering scientific guidance for the green transformation of the shale gas industry. The integrated PCA–copula–Monte Carlo framework also provides a methodological reference for the sustainable assessment of other unconventional resources. Full article
Show Figures

Figure 1

24 pages, 5588 KB  
Article
Prediction of Fluid Pressure Dynamics in Deflagration Fracturing for Unconventional Reservoir Stimulation Based on Physics-Guided Graph Neural Network
by Xin Yang, Tian Gao, Tiankui Guo, Haiyang Wang and Jinfeng Zhou
Energies 2025, 18(23), 6144; https://doi.org/10.3390/en18236144 - 24 Nov 2025
Viewed by 437
Abstract
Deflagration fracturing is a gas-dominated, water-free reservoir stimulation technology that has shown strong potential in unconventional, low-permeability, or water-sensitive reservoirs such as coalbed methane and shale gas formations. Accurate prediction of fluid pressure variations, critical for optimizing fracture propagation and stimulation performance, is [...] Read more.
Deflagration fracturing is a gas-dominated, water-free reservoir stimulation technology that has shown strong potential in unconventional, low-permeability, or water-sensitive reservoirs such as coalbed methane and shale gas formations. Accurate prediction of fluid pressure variations, critical for optimizing fracture propagation and stimulation performance, is challenging. While field experiments and numerical simulations offer reliable predictions, they are hindered by high risks, costs, and computational complexity due to multi-physics coupling, Moreover, purely data-driven machine learning methods often exhibit poor generalization and may produce predictions that deviate from fundamental physical principles. To address these challenges, a physics-guided graph neural network (PG-GNN) is proposed in this study to predict the evolution of fluid pressure, the key driving factor governing fracture propagation, from a mechanistic perspective. The proposed method integrates governing equations and physical constraints to construct geometric, physical, and hybrid features and employs a graph neural network encoder to capture the spatial correlations among these features, thereby forming a deep learning framework with strong physical consistency. A multi-task loss function is further employed to balance predictive accuracy and physical rationality. Finally, the proposed model is validated using a high-resolution dataset generated by a CDEM-based numerical simulator, achieving a minimum MAPE of 0.313% and a minimum MSE of 2.309 × 10−4 on the test dataset, outperforming baseline models in both accuracy and stability and demonstrating strong extrapolation capability. Full article
Show Figures

Figure 1

30 pages, 20231 KB  
Article
Effect of Sedimentary Environment on Mudrock Lithofacies and Organic Matter Enrichment in a Freshwater Lacustrine Basin: Insight from the Triassic Chang 7 Member in the Ordos Basin, China
by Meizhou Zhang, Xiaomin Zhu, Wenming Ji, Xingyue Lin and Lei Ye
Sustainability 2025, 17(22), 10248; https://doi.org/10.3390/su172210248 - 16 Nov 2025
Cited by 1 | Viewed by 561
Abstract
Gradually replacing fossil fuels with renewable energy constitutes a long-term strategy for achieving sustainable development. In the short term, it is necessary to explore unconventional oil and gas resources to support current economic sustainability and to secure essential time for the energy transition. [...] Read more.
Gradually replacing fossil fuels with renewable energy constitutes a long-term strategy for achieving sustainable development. In the short term, it is necessary to explore unconventional oil and gas resources to support current economic sustainability and to secure essential time for the energy transition. With the continuous growth in global energy demand, unconventional resources such as shale oil and shale gas have become important alternative energy sources. Lacustrine mudrock successions demonstrate significant potential for unconventional oil and gas resources. However, the unclear understanding of how paleoenvironmental evolution influences lithofacies and organic matter enrichment restricts the optimization of shale oil reservoirs and evaluation of shale oil resources, thereby hindering the progress of lacustrine shale oil exploration and development. The mudrocks in the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, were deposited in a pro-delta to a deep lacustrine environment and are rich in shale oil resources. Through petrographic, sedimentological, sequence stratigraphic, and geochemical analyses, this study reveals how the evolution of the paleoenvironment controlled the development of mudrocks and the enrichment of organic matter, and establishes a sedimentary model for freshwater lacustrine systems. Six lithofacies have been identified within the mudrock interval of the Chang 7 Member. According to the T-R (transgressive–regressive) sequence model, the Chang 7 Member can be subdivided into three fourth-order sequences, termed Parasequence Set 1–3 (PPS1–3). Mudrock is predominantly developed in the fourth-order sequences PSS1 and PSS2. The PSS1 and the lower part of PSS2 consist of lithofacies 1–4, representing semi-deep to deep lacustrine deposits. The upper part of PSS2 develops lithofacies 5, representing shallow lacustrine to pro-delta deposits. Fluctuations of the lake level controlled the vertical stacking of lithofacies and the transition in depositional mechanisms. During lake-level rise, bottom currents shifted to suspension settling, whereas the opposite occurred during lake-level fall. The organic matter is derived from algae, and its enrichment is jointly controlled by productivity and the redox conditions. Volcanic–hydrothermal activity and a humid climate promoted high productivity in the water body. This high productivity promotes dyoxic conditions in the bottom water. Fourth-order relative lake-level fluctuations also influence organic matter enrichment. During lake-level rise, increased productivity coupled with reduced consumption and dilution favors organic matter enrichment. Conversely, organic matter accumulation is inhibited during lake-level fall. Ultimately, a depositional model for a freshwater lacustrine basin under a humid to semi-humid climatic background was established. This paper elucidates the influence of sedimentary environment on mudrock lithofacies and organic matter enrichment, providing a theoretical basis for optimizing shale oil reservoir selection and resource assessment, thereby promoting efficient exploration and low-carbon development of shale oil in lacustrine basins. Full article
Show Figures

Figure 1

21 pages, 5890 KB  
Article
Quantitative Assessment of Free and Adsorbed Shale Oil in Kerogen Pores Using Molecular Dynamics Simulations and Experiment Characterization
by Yuhao Guo, Liqiang Sima, Liang Wang, Song Tang, Jun Li, Wujun Jin, Bowen Liu and Bojie Li
Energies 2025, 18(21), 5695; https://doi.org/10.3390/en18215695 - 29 Oct 2025
Cited by 1 | Viewed by 544
Abstract
Understanding the microscopic occurrence states of shale oil—particularly the distribution between adsorbed and free phases—is essential for optimizing the development of unconventional reservoirs. In this study, we propose an integrated methodology that combines experimental techniques with molecular dynamics simulations to investigate shale oil [...] Read more.
Understanding the microscopic occurrence states of shale oil—particularly the distribution between adsorbed and free phases—is essential for optimizing the development of unconventional reservoirs. In this study, we propose an integrated methodology that combines experimental techniques with molecular dynamics simulations to investigate shale oil behavior within kerogen nanopores. Specifically, pyrolysis–gas chromatography–mass spectrometry (PY-GC-MS), solid-state 13C nuclear magnetic resonance (13C NMR), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were performed to construct a representative kerogen molecular model based on shale samples from the Lianggaoshan Formation in the Sichuan Basin. Grand Canonical Monte Carlo (GCMC) simulations and a theoretical occurrence model were applied to quantify the adsorption characteristics of n-dodecane under varying pore sizes, temperatures, and pressure. The results show that temperature exerts a stronger influence than pore diameter on adsorption capacity, with adsorption decreasing by over 50% at higher temperatures, and pressure has a limited effect on the adsorption amount of dodecane molecules. This study offers a robust workflow for evaluating shale oil occurrence states in complex pore systems and provides guidance for thermal stimulation strategies in tight oil reservoirs. Full article
Show Figures

Figure 1

23 pages, 6340 KB  
Article
Flow–Solid Coupled Analysis of Shale Gas Production Influenced by Fracture Roughness Evolution in Supercritical CO2–Slickwater Systems
by Xiang Ao, Yuxi Rao, Honglian Li, Beijun Song and Peng Li
Energies 2025, 18(21), 5569; https://doi.org/10.3390/en18215569 - 23 Oct 2025
Viewed by 632
Abstract
With the increasing global demand for energy, the development of unconventional resources has become a focal point of research. Among these, shale gas has drawn considerable attention due to its abundant reserves. However, its low permeability and complex fracture networks present substantial challenges. [...] Read more.
With the increasing global demand for energy, the development of unconventional resources has become a focal point of research. Among these, shale gas has drawn considerable attention due to its abundant reserves. However, its low permeability and complex fracture networks present substantial challenges. This study investigates the composite fracturing technology combining supercritical CO2 and slickwater for shale gas extraction, elucidating the mechanisms by which it influences shale fracture roughness and conductivity through an integrated approach of theory, experiments, and numerical modeling. Experimental results demonstrate that the surface roughness of shale fractures increases markedly after supercritical CO2–slickwater treatment. Moreover, the dynamic evolution of permeability and porosity is governed by roughness strain, adsorption expansion, and corrosion compression strain. Based on fluid–solid coupling theory, a mathematical model was developed and validated via numerical simulations. Sensitivity analysis reveals that fracture density and permeability have a pronounced impact on shale gas field productivity, whereas fracture dip angle exerts a comparatively minor effect. The findings provide a theoretical basis for optimizing composite fracturing technology, thereby enhancing shale gas extraction efficiency and promoting effective resource utilization. Full article
Show Figures

Figure 1

13 pages, 5881 KB  
Article
Numerical Simulation on the Propagation Behaviour of Hydraulic Fractures in Sandstone–Shale Interbeds
by Shasha Li, Yunyang Li and Wan Cheng
Processes 2025, 13(10), 3318; https://doi.org/10.3390/pr13103318 - 16 Oct 2025
Viewed by 593
Abstract
In the shale oil reservoirs, sandstone and shale often overlie each other. This significantly affects the vertical propagation of hydraulic fractures (HFs); however, the underlying mechanisms still remain unclear. This study employs Xsite software to investigate the influence of rock fracture toughness, tensile [...] Read more.
In the shale oil reservoirs, sandstone and shale often overlie each other. This significantly affects the vertical propagation of hydraulic fractures (HFs); however, the underlying mechanisms still remain unclear. This study employs Xsite software to investigate the influence of rock fracture toughness, tensile strength, elastic modulus, Poisson’s ratio, interlayer stress contrast, and the flow rate and viscosity of fracturing fluid on the propagation behaviour of HFs in sandstone–shale interbeds. As the type-I fracture toughness of the shale layer increases, the area of the vertical HF decreases and the average HF width becomes smaller. As the tensile strength of the sandstone layer increases, the distribution range of fluid pressure at the interface expands. The HF prefers to propagate in the softer rock rather than the harder one. A relatively narrower HF width is created in the layer with a higher elastic modulus resulting in a higher flow resistance to fracturing fluid. A shale layer with a high Poisson’s ratio is more likely to undergo a lateral expansion, causing stress at the fracture tip to be dispersed. When the effect of lithological interfaces is considered, an increasing interlayer stress contrast causes HFs to gradually transition from penetrating the interfaces to becoming confined between the two interfaces. When the influence of the lithological interface is not considered, an increasing interlayer stress contrast causes the HF to gradually transition from a penny-shaped fracture to a blade-shaped fracture. The HF penetrates the interfaces more easily at a higher injection rate and fluid viscosity, because most of the injected energy is used to create new fractures rather than leakoff into the interfaces. Understanding the influence of these factors on the HF propagation behaviour is of great significance for optimising hydraulic fracturing design. Full article
(This article belongs to the Special Issue Advances in Oil and Gas Reservoir Modeling and Simulation)
Show Figures

Figure 1

20 pages, 4760 KB  
Article
Hybrid Supervised–Unsupervised Fusion Clustering for Intelligent Classification of Horizontal Gas Wells Leveraging Integrated Dynamic–Static Parameters
by Han Gao, Jia Wang, Tao Liu, Siyu Lai, Bo Wang, Ling Guo, Zhao Zhang, Guowei Wang and Ruiquan Liao
Processes 2025, 13(10), 3278; https://doi.org/10.3390/pr13103278 - 14 Oct 2025
Viewed by 404
Abstract
To address the decision-making requirements for drainage gas recovery in horizontal gas wells within low-permeability tight reservoirs, this study proposes an intelligent classification approach that integrates supervised and unsupervised learning techniques. Initially, the static and dynamic performance characteristics of gas wells are characterized [...] Read more.
To address the decision-making requirements for drainage gas recovery in horizontal gas wells within low-permeability tight reservoirs, this study proposes an intelligent classification approach that integrates supervised and unsupervised learning techniques. Initially, the static and dynamic performance characteristics of gas wells are characterized across multiple dimensions, including static performance, liquid production intensity, liquid drainage capacity, and liquid carrying efficiency. These features are then quantitatively categorized using Linear Discriminant Analysis (LDA). Subsequently, a hybrid classification framework is developed by integrating LDA with the K-means clustering algorithm. The effectiveness of this supervised–unsupervised fusion method is validated through comparative analysis against direct K-means clustering, demonstrating enhanced classification accuracy and interpretability. Key findings are summarized as follows: (1) Classification based on individual dynamic or static parameters exhibits low consistency, indicating that single-parameter approaches are insufficient to fully capture the complexity of actual production conditions. (2) By incorporating both dynamic and static parameters and applying a strategy combining LDA-based dimensionality reduction with K-means clustering, gas wells are precisely classified into five distinct categories. (3) Tailored optimization strategies are proposed for each well type, including production allocation optimization, continuous production (without the need for drainage gas production measures), mandatory drainage measures, foam-assisted drainage, and optimal tubing or plunger lift systems. The methodologies and findings of this study offer theoretical insights and technical guidance applicable to the classification and management of horizontal gas wells in other unconventional reservoirs, such as shale gas formations. Full article
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Experimental Investigation of Hydraulic Fracturing Damage Mechanisms in the Chang 7 Member Shale Reservoirs, Ordos Basin, China
by Weibo Wang, Lu Bai, Peiyao Xiao, Zhen Feng, Meng Wang, Bo Wang and Fanhua Zeng
Energies 2025, 18(20), 5355; https://doi.org/10.3390/en18205355 - 11 Oct 2025
Viewed by 592
Abstract
The Chang 7 member of the Ordos Basin hosts abundant shale oil and gas resources and plays a vital role in the development of unconventional energy. This study investigates differences in damage evolution and underlying mechanisms between representative shale oil and shale gas [...] Read more.
The Chang 7 member of the Ordos Basin hosts abundant shale oil and gas resources and plays a vital role in the development of unconventional energy. This study investigates differences in damage evolution and underlying mechanisms between representative shale oil and shale gas reservoir cores from the Chang 7 member under fracturing fluid hydration. A combination of high-temperature expansion tests, nuclear magnetic resonance (NMR), and micro-computed tomography (Micro-CT) was used to systematically characterize macroscopic expansion behavior and microscopic pore structure evolution. Results indicate that shale gas cores undergo faster expansion and higher imbibition rates during hydration (reaching stability in 10 h vs. 23 h for shale oil cores), making them more vulnerable to water-lock damage, while shale oil cores exhibit slower hydration but more pronounced pore structure reconstruction. After 72 h of immersion in fracturing fluid, both core types experienced reduced pore volumes and structural reorganization; however, shale oil cores demonstrated greater capacity for pore reconstruction, with a newly formed pore volume fraction of 34.5% compared to 24.6% for shale gas cores. NMR and Micro-CT analyses reveal that hydration is not merely a destructive process but a dynamic “damage–reconstruction” evolution. Furthermore, the addition of clay stabilizers effectively mitigates water sensitivity and preserves pore structure, with 0.7% identified as the optimal concentration. The research results not only reveal the differential response law of fracturing fluid damage in the Chang 7 shale reservoir but also provide a theoretical basis and technical support for optimizing fracturing fluid systems and achieving differential production increases. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Graphical abstract

19 pages, 2867 KB  
Article
Inorganic Constituents in Shale Gas Wastewater: Full-Scale Fate and Regulatory Implications
by Yunyan Ni, Ye Zhang, Chun Meng, Limiao Yao, Jianli Sui, Jinchuan Zhang, Quan Zheng, Mingxuan Di and Jianping Chen
Water 2025, 17(18), 2772; https://doi.org/10.3390/w17182772 - 19 Sep 2025
Viewed by 769
Abstract
Shale gas wastewater from hydraulic fracturing poses significant environmental risks due to its high salinity and complex inorganic composition. This study investigates the behavior of major and trace inorganic constituents across a full-scale treatment train in the Sichuan Basin, China. Despite multi-stage processes [...] Read more.
Shale gas wastewater from hydraulic fracturing poses significant environmental risks due to its high salinity and complex inorganic composition. This study investigates the behavior of major and trace inorganic constituents across a full-scale treatment train in the Sichuan Basin, China. Despite multi-stage processes including equalization, flocculation, flotation, biological reactors, membrane filtration, and clarification, key inorganic species such as Cl, Na, Br, Sr, Li, and B remained largely persistent in the final effluent with values of 13,760, 8811, 70, 95.9, 26.6, and 60.2 mg/L, respectively. Geochemical tracers including Br/Cl (average: 0.0022 mM/mM), Na/Br (average: 125 mg/mg), and Sr/Ca (average: 0.15 mM/mM) ratios, combined with halide endmember mixing models, revealed that salinity primarily originated from highly evaporated formation brines, with limited evidence for halite dissolution or external contamination. Elevated Sr (average: 89.3 mg/L) and Ca (average: 274 mg/L) levels relative to Mg (average: 32 mg/L) suggest significant water–rock interaction. Environmental risk assessments showed that concentrations of several elements in treated effluent greatly exceeded national and international discharge or reuse standards. These findings underscore the limitations of conventional treatment technologies and highlight the urgent need for advanced processes and regulatory frameworks that address the unique challenges of high-TDS (total dissolved solids) unconventional wastewater. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

4 pages, 146 KB  
Editorial
New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition
by Daoyi Zhu
Energies 2025, 18(18), 4789; https://doi.org/10.3390/en18184789 - 9 Sep 2025
Viewed by 779
Abstract
Oil, gas, and geothermal resources, including conventional fossil fuels (oil and natural gas) and unconventional resources (geothermal, shale gas, and tight oil), are key to meeting global energy demands [...] Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs: 2nd Edition)
67 pages, 11035 KB  
Review
A Comprehensive Review of Well Integrity Challenges and Digital Twin Applications Across Conventional, Unconventional, and Storage Wells
by Ahmed Ali Shanshool Alsubaih, Kamy Sepehrnoori, Mojdeh Delshad and Ahmed Alsaedi
Energies 2025, 18(17), 4757; https://doi.org/10.3390/en18174757 - 6 Sep 2025
Cited by 3 | Viewed by 7964
Abstract
Well integrity is paramount for the safe, environmentally responsible, and economically viable operation of wells throughout their lifecycle, encompassing conventional oil and gas production, unconventional resource extraction (e.g., shale gas and tight oil), and geological storage applications (CO2, H2, [...] Read more.
Well integrity is paramount for the safe, environmentally responsible, and economically viable operation of wells throughout their lifecycle, encompassing conventional oil and gas production, unconventional resource extraction (e.g., shale gas and tight oil), and geological storage applications (CO2, H2, and natural gas). This review presents a comprehensive synthesis of well integrity challenges, failure mechanisms, monitoring technologies, and management strategies across these operational domains. Key integrity threats—including cement sheath degradation (chemical attack, debonding, cracking, microannuli), casing failures (corrosion, collapse, burst, buckling, fatigue, wear, and connection damage), sustained casing pressure (SCP), and wellhead leaks—are examined in detail. Unique challenges posed by hydraulic fracturing in unconventional wells and emerging risks in CO2 and hydrogen storage, such as corrosion, carbonation, embrittlement, hydrogen-induced cracking (HIC), and microbial degradation, are also highlighted. The review further explores the evolution of integrity standards (NORSOK, API, ISO), the implementation of Well Integrity Management Systems (WIMS), and the integration of advanced monitoring technologies such as fiber optics, logging tools, and real-time pressure sensing. Particular emphasis is placed on the role of digital technologies—including artificial intelligence, machine learning, and digital twin systems—in enabling predictive maintenance, early failure detection, and lifecycle risk management. The novelty of this review lies in its integrated, cross-domain perspective and its emphasis on digital twin applications for continuous, adaptive well integrity surveillance. It identifies critical knowledge gaps in modeling, materials qualification, and data integration—especially in the context of long-term CO2 and H2 storage—and advocates for a proactive, digitally enabled approach to lifecycle well integrity. Full article
Show Figures

Figure 1

22 pages, 3077 KB  
Review
Research Progress on the Pyrolysis Characteristics of Oil Shale in Laboratory Experiments
by Xiaolei Liu, Ruiyang Yi, Dandi Zhao, Wanyu Luo, Ling Huang, Jianzheng Su and Jingyi Zhu
Processes 2025, 13(9), 2787; https://doi.org/10.3390/pr13092787 - 30 Aug 2025
Viewed by 1327
Abstract
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale [...] Read more.
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale into recoverable hydrocarbons, and a detailed understanding of its behavior is crucial for improving development efficiency. This review systematically summarizes the research progress on the pyrolysis characteristics of oil shale under laboratory conditions. It focuses on the applications of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) in identifying pyrolysis stages, extracting kinetic parameters, and analyzing thermal effects; the role of coupled spectroscopic techniques (e.g., TG-FTIR, TG-MS) in elucidating the evolution of gaseous products; and the effects of key parameters such as pyrolysis temperature, heating rate, particle size, and reaction atmosphere on product distribution and yield. Furthermore, the mechanisms and effects of three distinct heating strategies—conventional heating, microwave heating, and autothermic pyrolysis—are compared, and the influence of inherent minerals and external catalysts on reaction pathways is discussed. Despite significant advances, challenges remain in quantitatively describing reaction mechanisms, accurately predicting product yields, and generalizing kinetic models. Future research should integrate multiscale experiments, in situ characterization, and molecular simulations to construct pyrolysis mechanism models tailored to various oil shale types, thereby providing theoretical support for the development of efficient and environmentally friendly oil shale conversion technologies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop