Inorganic Constituents in Shale Gas Wastewater: Full-Scale Fate and Regulatory Implications
Abstract
1. Introduction
2. Samples and Methods
2.1. Study Site and Sampling Strategy
2.2. Analytical Methods
2.3. Geochemical Indices and Mixing Models
3. Results and Discussion
3.1. Persistence of Inorganic Constituents Across the Treatment Train
3.2. Variable Behavior of Ammonium and Divalent Cations
3.3. Geochemical Indicators of Salinity Sources and Rock-Water Interaction
3.4. Environmental and Regulatory Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zou, C.; Zhao, Q.; Wang, H.; Xiong, W.; Dong, D.; Yu, R. Principal characteristics of marine shale gas, and the theory and technology of its exploration and development in China. Nat. Gas Ind. B 2023, 10, 1–13. [Google Scholar] [CrossRef]
- Zhao, T. Treatment technology of shale gas fracturing flowback fluid: A mini review. Front. Energy Res. 2023, 11, 1245552. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Tsang, D.C.W.; Wang, L.; Ok, Y.S.; Feng, Y. A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. Environ. Int. 2019, 125, 452–469. [Google Scholar] [CrossRef] [PubMed]
- Vengosh, A.; Jackson, R.B.; Warner, N.; Darrah, T.H.; Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef] [PubMed]
- Warner, N.R.; Jackson, R.B.; Darrah, T.H.; Osborn, S.G.; Down, A.; Zhao, K.; White, A.; Vengosh, A. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc. Natl. Acad. Sci. USA 2012, 109, 11961–11966. [Google Scholar] [CrossRef]
- Parker, K.M.; Zeng, T.; Harkness, J.; Vengosh, A.; Mitch, W.A. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies. Environ. Sci. Technol. 2014, 48, 11161–11169. [Google Scholar] [CrossRef]
- Gao, J.; Zou, C.; Zhang, X.; Guo, W.; Yu, R.; Ni, Y.; Liu, D.; Kang, L.; Liu, Y.; Kondash, A.; et al. The water footprint of hydraulic fracturing for shale gas extraction in China. Sci. Total Environ. 2024, 907, 168135. [Google Scholar] [CrossRef]
- Zou, C.; Ni, Y.; Li, J.; Kondash, A.; Coyte, R.; Lauer, N.; Cui, H.; Liao, F.; Vengosh, A. The water footprint of hydraulic fracturing in Sichuan Basin, China. Sci. Total Environ. 2018, 630, 349–356. [Google Scholar] [CrossRef]
- Haluszczak, L.O.; Rose, A.W.; Kump, L.R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Appl. Geochem. 2013, 28, 55–61. [Google Scholar] [CrossRef]
- Ni, Y.; Zou, C.; Cui, H.; Li, J.; Lauer, N.E.; Harkness, J.S.; Kondash, A.J.; Coyte, R.M.; Dwyer, G.S.; Liu, D.; et al. The origin of flowback and produced waters from Sichuan Basin, China. Environ. Sci. Technol. 2018, 52, 14519–14527. [Google Scholar] [CrossRef] [PubMed]
- Rowan, E.; Engle, M.; Kraemer, T.; Schroeder, K.; Hammack, R.; Doughten, M. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian Basin, Pennsylvania. AAPG Bull. 2015, 99, 181–206. [Google Scholar] [CrossRef]
- Warner, N.R.; Darrah, T.H.; Jackson, R.B.; Millot, R.; Kloppmann, W.; Vengosh, A. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Environ. Sci. Technol. 2014, 48, 12552–12560. [Google Scholar] [CrossRef] [PubMed]
- Harkness, J.S.; Dwyer, G.S.; Warner, N.R.; Parker, K.M.; Mitch, W.A.; Vengosh, A. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: Environmental implications. Environ. Sci. Technol. 2015, 49, 1955–1963. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Yao, L.; Sui, J.; Chen, J.; Liu, F.; Wang, F.; Zhu, G.; Vengosh, A. Shale gas wastewater geochemistry and impact on the quality of surface water in Sichuan Basin. Sci. Total Environ. 2022, 851, 158371. [Google Scholar] [CrossRef]
- GB3838-2002; Environmental Quality Standards for Surface Water. State Environmental Protection Administration, State Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2002.
- GB5749-2022; Standards for Drinking Water Quality. Ministry of Health of People’s Republic of China, Standardization Administration of China: Beijing, China, 2022.
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization (WHO): Geneva, Switzerland, 2017. [Google Scholar]
- Luek, J.L.; Gonsior, M. Organic compounds in hydraulic fracturing fluids and wastewaters: A review. Water Res. 2017, 123, 536–548. [Google Scholar] [CrossRef]
- Consolazio, N.; Hakala, J.A.; Lowry, G.V.; Karamalidis, A.K. Sorption and transformation of biocides from hydraulic fracturing in the Marcellus Shale: A review. Environ. Chem. Lett. 2022, 20, 773–795. [Google Scholar] [CrossRef]
- Golding, L.A.; Kumar, A.; Adams, M.S.; Binet, M.T.; Gregg, A.; King, J.; McKnight, K.S.; Nidumolu, B.; Spadaro, D.A.; Kirby, J.K. The influence of salinity on the chronic toxicity of shale gas flowback wastewater to freshwater organisms. J. Hazard. Mater. 2022, 428, 128219. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Qureshi, A.; Cheraghi, S. Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad. Dev. 2008, 19, 214–227. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Jiang, W.; Sheng, Y.; Wang, G.; Shi, Z.; Liu, F.; Zhang, J.; Chen, D. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: A review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Wu, K.; Cui, W.; Ren, G.; An, J.; Zheng, K.; Zeng, X.; Ouyang, M.; Yu, Z. Organoiodines in effluents of a shale-fracturing wastewater treatment plant. Environ. Chem. Lett. 2023, 21, 1943–1949. [Google Scholar] [CrossRef]
- Tasker, T.L.; Burgos, W.D.; Ajemigbitse, M.A.; Lauer, N.E.; Gusa, A.V.; Kuatbek, M.; May, D.; Landis, J.D.; Alessi, D.S.; Johnsen, A.M.; et al. Accuracy of methods for reporting inorganic element concentrations and radioactivity in oil and gas wastewaters from the Appalachian Basin, U.S. based on an inter-laboratory comparison. Environ. Sci. Process. Impacts 2019, 21, 224–241. [Google Scholar] [CrossRef]
- Gao, J.L.; Zou, C.N.; Li, W.; Ni, Y.Y.; Liao, F.R.; Yao, L.M.; Sui, J.L.; Vengosh, A. Hydrochemistry of flowback water from Changning shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality. Sci. Total Environ. 2020, 713, 136591. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Zou, C.N.; Cui, H.Y.; Ni, Y.Y.; Liu, J.Q.; Wu, W.; Zhang, L.; Coyte, R.; Kondash, A.; et al. Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water. Fuel 2020, 272, 117621. [Google Scholar] [CrossRef]
- Osselin, F.; Nightingale, M.; Hearn, G.; Kloppmann, W.; Gaucher, E.; Clarkson, C.R.; Mayer, B. Quantifying the extent of flowback of hydraulic fracturing fluids using chemical and isotopic tracer approaches. Appl. Geochem. 2018, 93, 20–29. [Google Scholar] [CrossRef]
- Liu, X.; Xu, C.; Chen, P.; Li, K.; Zhou, Q.; Ye, M.; Zhang, L.; Lu, Y. Advances in technologies for boron removal from water: A comprehensive review. Int. J. Environ. Res. Public Health 2022, 19, 10671. [Google Scholar] [CrossRef] [PubMed]
- Hanson, A.J.; Luek, J.L.; Tummings, S.S.; McLaughlin, M.C.; Blotevogel, J.; Mouser, P.J. High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. Sci. Total Environ. 2019, 668, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- European Council. Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). Off. J. Eur. Union 1991, 135, 40–52. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01991L0271-20140101 (accessed on 5 July 2025).
- GB8978-2002; Integrated Wastewater Discharge Standard. State Department of Environmental Conservation: Beijing, China, 2002.
- Cortés-Lorenzo, C.; Rodríguez-Díaz, M.; Sipkema, D.; Juárez-Jiménez, B.; Rodelas, B.; Smidt, H.; González-López, J. Effect of salinity on nitrification efficiency and structure of ammonia-oxidizing bacterial communities in a submerged fixed bed bioreactor. Chem. Eng. J. 2015, 266, 233–240. [Google Scholar] [CrossRef]
- Juliastuti, S.; Baeyens, J.; Creemers, C. Inhibition of nitrification by heavy metals and organic compounds: The ISO 9509 test. Environ. Eng. Sci. 2003, 20, 79–90. [Google Scholar] [CrossRef]
- Appelo, C.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: London, UK, 2004; p. 683. [Google Scholar]
- McCaffrey, M.A.; Lazar, B.; Holland, H.D. The evaporation path of seawater and the coprecipitation of Br− and K+ with halite. J. Sediment. Res. 1987, 57, 928–937. [Google Scholar] [CrossRef]
- Chen, Y. Sequence of salt separation and regularity of some trace elements distribution during isothermal evaporation (25 °C) of the Huanghai sea water. Acta Geol. Sin. 1983, 57, 379–390. [Google Scholar]
- Khatoon, R.; Raksasat, R.; Ho, Y.C.; Lim, J.W.; Jumbri, K.; Ho, C.-D.; Chan, Y.J.; Abdelfattah, E.A.; Khoo, K.S. Reviewing advanced treatment of hydrocarbon-contaminated oilfield-produced water with recovery of lithium. Sustainability 2023, 15, 16016. [Google Scholar] [CrossRef]
- Machel, H.-G.; Mountjoy, E.W. Chemistry and Environments of Dolomitization —A Reappraisal. Earth-Sci. Rev. 1986, 23, 175–222. [Google Scholar] [CrossRef]
- Chapman, E.C.; Capo, R.C.; Stewart, B.W.; Kirby, C.S.; Hammack, R.W.; Schroeder, K.T.; Edenborn, H.M. Geochemical and strontium isotope characterization of produced waters from Marcellus shale natural gas extraction. Environ. Sci. Technol. 2012, 46, 3545–3553. [Google Scholar] [CrossRef]
- Phan, T.T.; Hakala, J.A.; Lopano, C.L.; Sharma, S. Rare earth elements and radiogenic strontium isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian Basin. Chem. Geol. 2019, 509, 194–212. [Google Scholar] [CrossRef]
- Huang, T.; Li, Z.; Long, Y.; Zhang, F.; Pang, Z. Role of desorption-adsorption and ion exchange in isotopic and chemical (Li, B, and Sr) evolution of water following water–rock interaction. J. Hydrol. 2022, 610, 127800. [Google Scholar] [CrossRef]
- Olsson, O.; Weichgrebe, D.; Rosenwinkel, K.-H. Hydraulic fracturing wastewater in Germany: Composition, treatment, concerns. Environ. Earth Sci. 2013, 70, 3895–3906. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.-J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef]
- Eisler, R. Boron Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review; Patuxent Wildlife Research Center: Laurel, MD, USA, 1990; p. 39.
- Grynpas, M.D.; Marie, P.J. Effects of low doses of strontium on bone quality and quantity in rats. Bone 1990, 11, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-H.; Gopalakrishnan, A.; Dong, Q.; Schäfer, A.I. Removal of strontium by nanofiltration: Role of complexation and speciation of strontium with organic matter. Water Res. 2024, 253, 121241. [Google Scholar] [CrossRef] [PubMed]
- GB5084-2021; Standard for Irrigation Water Quality. Ministry of Ecological Environment, State Administration for Market Regulation: Beijing, China, 2021.
- EPA. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2023.
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union 2020, 2020, 435. [Google Scholar]
- Health Canada. Guidelines for Canadian Drinking Water Quality—Summary Tables; Health Canada: Ottawa, ON, Canada, 2024.
Treatment | Cl | Br | K | Na | Ca | Mg | NH4+ | Li | B | Sr | Na/Br | Cl/Br | Br/Cl | B/Cl | Li/Cl | Mg/Ca | Sr/Ca | CBE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/mg | mg/mg | mM/mM | µM/mM | µM/mM | mM/mM | mM/mM | % | |
Equalization-1 | 14,180 | 73 | 206 | 8743 | 315 | 42 | 110 | 24.4 | 43.4 | 95.9 | 120 | 194 | 0.0023 | 10.03 | 8.79 | 0.22 | 0.14 | 1.9 |
Equalization-2 | 13,490 | 66 | 213 | 8319 | 260 | 33 | 79 | 24.2 | 51.6 | 87.7 | 127 | 206 | 0.0022 | 12.55 | 9.16 | 0.21 | 0.15 | 1.5 |
Flocculation | 13,100 | 66 | 201 | 7956 | 264 | 29 | 97 | 24.5 | 53.2 | 84.1 | 121 | 199 | 0.0022 | 13.32 | 9.57 | 0.18 | 0.15 | 1.0 |
Flotation | 13,060 | 61 | 207 | 8001 | 265 | 31 | 101 | 22.5 | 49.4 | 77.9 | 131 | 213 | 0.0021 | 12.41 | 8.81 | 0.20 | 0.14 | 1.4 |
Anoxia | 13,760 | 70 | 220 | 8518 | 268 | 30 | 117 | 26.5 | 59.3 | 92.6 | 122 | 197 | 0.0023 | 14.13 | 9.83 | 0.19 | 0.16 | 1.9 |
Aerobic | 14,020 | 69 | 226 | 8588 | 266 | 30 | 122 | 26.7 | 58.9 | 92.6 | 125 | 204 | 0.0022 | 13.77 | 9.72 | 0.19 | 0.16 | 1.4 |
MBR | 13,890 | 67 | 224 | 8659 | 272 | 30 | 96 | 25.5 | 57.4 | 87.7 | 130 | 208 | 0.0021 | 13.55 | 9.37 | 0.18 | 0.15 | 2.1 |
Clarifiers | 13,760 | 70 | 232 | 8811 | 278 | 34 | 44 | 26.6 | 60.2 | 95.9 | 126 | 197 | 0.0023 | 14.36 | 9.86 | 0.20 | 0.16 | 3.2 |
Water/Standard/Guideline | TDS | Cl | Na | NH4+ | B | Br | Sr | Li |
---|---|---|---|---|---|---|---|---|
Mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
Treated wastewater (effluent) | >20,000 | 13,760 | 8811 | 44 | 60.2 | 70 | 95.9 | 26.6 |
Surface water—China GB3838–2022 | 150–2000 | 250 | ||||||
Irrigation water—China GB5084–2021 | 350 | 3 | ||||||
Drinking water—China GB5749–2022 | 1000 | 250 | 200 | 0.5 | 1 | |||
Drinking water—World Health Organization (WHO) | 50 | 2.4 | ||||||
Drinking water—European Union | 250 | 200 | 0.5 | 1.5 | ||||
Drinking water—USA EPA | 500 | 250 | ||||||
Drinking water—Canada | 500 | 250 | 200 | 5 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Y.; Zhang, Y.; Meng, C.; Yao, L.; Sui, J.; Zhang, J.; Zheng, Q.; Di, M.; Chen, J. Inorganic Constituents in Shale Gas Wastewater: Full-Scale Fate and Regulatory Implications. Water 2025, 17, 2772. https://doi.org/10.3390/w17182772
Ni Y, Zhang Y, Meng C, Yao L, Sui J, Zhang J, Zheng Q, Di M, Chen J. Inorganic Constituents in Shale Gas Wastewater: Full-Scale Fate and Regulatory Implications. Water. 2025; 17(18):2772. https://doi.org/10.3390/w17182772
Chicago/Turabian StyleNi, Yunyan, Ye Zhang, Chun Meng, Limiao Yao, Jianli Sui, Jinchuan Zhang, Quan Zheng, Mingxuan Di, and Jianping Chen. 2025. "Inorganic Constituents in Shale Gas Wastewater: Full-Scale Fate and Regulatory Implications" Water 17, no. 18: 2772. https://doi.org/10.3390/w17182772
APA StyleNi, Y., Zhang, Y., Meng, C., Yao, L., Sui, J., Zhang, J., Zheng, Q., Di, M., & Chen, J. (2025). Inorganic Constituents in Shale Gas Wastewater: Full-Scale Fate and Regulatory Implications. Water, 17(18), 2772. https://doi.org/10.3390/w17182772