Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (276)

Search Parameters:
Keywords = ultraviolet light-emitting diodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1684 KiB  
Article
Effectiveness of Implementing Hospital Wastewater Treatment Systems as a Measure to Mitigate the Microbial and Antimicrobial Burden on the Environment
by Takashi Azuma, Miwa Katagiri, Takatoshi Yamamoto, Makoto Kuroda and Manabu Watanabe
Antibiotics 2025, 14(8), 807; https://doi.org/10.3390/antibiotics14080807 - 7 Aug 2025
Abstract
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from [...] Read more.
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from medical facilities. Methods: In this study, a continuous-flow wastewater treatment system using ozone and ultraviolet light, which has excellent inactivation effects, was implemented in a hospital in an urban area of Japan. Results: The results showed that 99% (2 log10) of Gram-negative rods and more than 99.99% (>99.99%) of ARB comprising ESBL-producing Enterobacterales were reduced by ozone treatment from the first day after treatment, and ultraviolet light-emitting diode (UV-LED) irradiation after ozone treatment; UV-LED irradiation after ozonation further inactivated the bacteria to below the detection limit. Inactivation effects were maintained throughout the treatment period in this study. Metagenomic analysis showed that the removal of these microorganisms at the DNA level tended to be gradual in ozone treatment; however, the treated water after ozone/UV-LED treatment showed a 2 log10 (>99%) removal rate at the end of the treatment. The residual antimicrobials in the effluent were benzylpenicillin, cefpodoxime, ciprofloxacin, levofloxacin, azithromycin, clarithromycin, doxycycline, minocycline, and vancomycin, which were removed by ozone treatment on day 1. In contrast, the removal of ampicillin and cefdinir ranged from 19% to 64% even when combined with UV-LED treatment. Conclusions: Our findings will help to reduce the discharge of ARB and antimicrobials into rivers and maintain the safety of aquatic environments. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater Treatment Plants)
Show Figures

Figure 1

10 pages, 1588 KiB  
Article
385 nm AlGaN Near-Ultraviolet Micro Light-Emitting Diode Arrays with WPE 30.18% Realized Using an AlN-Inserted Hole Spreading Enhancement S Electron Blocking Layer
by Qi Nan, Shuhan Zhang, Jiahao Yao, Yun Zhang, Hui Ding, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2025, 15(8), 910; https://doi.org/10.3390/coatings15080910 - 3 Aug 2025
Viewed by 168
Abstract
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays [...] Read more.
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays in this work comprise 228 chips in parallel with wavelengths at 385 nm, and each single chip size is 15 × 30 μm2. Compared with conventional bulk AlGaN-based EBL structures, the NUV-Micro LED arrays that implemented the new hole spreading enhanced superlattice electrical blocking layer (HSESL-EBL) structure proposed in this work had a remarkable increase in light output power (LOP) at current density, increasing the range down from 0.02 A/cm2 to as high as 97 A/cm2. The array’s light output power is increased up to 1540% at the lowest current density 0.02 A/cm2, and up to 58% at the highest current density 97 A/cm2, measured under room temperature (RT); consequently, the WPE is increased from 13.4% to a maximum of 30.18%. This AlN-inserted HESEL-EBL design significantly enhances both the lateral expansion efficiency and the hole injection efficiency into the multi quantum well (MQW) in the arrays, improving the concentration distribution of the holes in MQW while maintaining good suppression of electron leakage. The array’s efficiency droop has also been greatly reduced. Full article
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Comparison of the Trueness of Complete Dentures Fabricated Using Liquid Crystal Display 3D Printing According to Build Angle and Natural Light Exposure
by Haeri Kim, KeunBaDa Son, So-Yeun Kim and Kyu-Bok Lee
J. Funct. Biomater. 2025, 16(8), 277; https://doi.org/10.3390/jfb16080277 - 30 Jul 2025
Viewed by 340
Abstract
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration [...] Read more.
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration on the intaglio surface trueness of maxillary complete denture bases. Standardized denture base designs (2 mm uniform thickness) were fabricated using an LCD 3D printer (Lilivis Print; Huvitz, Seoul, Republic of Korea) at build angles of 0°, 45°, and 90° (n = 7 per group). All specimens were printed using the same photopolymer resin (Tera Harz Denture; Graphy, Seoul, Republic of Korea) and identical printing parameters, followed by ultrasonic cleaning and ultraviolet post-curing. Specimens were stored under controlled light-emitting diode lighting and exposed to natural light (400–800 lux) for 0, 14, or 30 days. The intaglio surfaces were scanned and superimposed on the original design data, following the International Organization for Standardization 12836. Quantitative assessment included root mean square deviation, mean deviation, and tolerance percentage. Statistical analyses were performed using one-way analysis of variance and paired t-tests (α = 0.05). Build angle and light exposure duration significantly affected surface trueness (p < 0.05). The 90° build angle group exhibited the highest accuracy and dimensional stability, while the 0° group showed the greatest deviations (p < 0.05). These findings underscore the importance of optimizing build orientation and storage conditions in denture 3D printing. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

19 pages, 4270 KiB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley III and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Viewed by 315
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

11 pages, 2203 KiB  
Article
Superlattice Structure for High Performance AlGaN Deep Ultraviolet LEDs
by Mano Bala Sankar Muthu, Ravi Teja Velpula, Barsha Jain and Hieu Pham Trung Nguyen
Photonics 2025, 12(8), 752; https://doi.org/10.3390/photonics12080752 - 26 Jul 2025
Viewed by 264
Abstract
This study presents a novel approach to mitigate electron overflow in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs) by integrating engineered quantum barriers (QBs) with a concave shape and an optimized AlGaN superlattice (SL) electron blocking layer (EBL). The concave QBs reduce electron [...] Read more.
This study presents a novel approach to mitigate electron overflow in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs) by integrating engineered quantum barriers (QBs) with a concave shape and an optimized AlGaN superlattice (SL) electron blocking layer (EBL). The concave QBs reduce electron leakage by lowering the electron thermal velocity and mean free path, enhancing electron capture in the active region. The SL EBL further reduces electron overflow without compromising hole transport. At a wavelength of ~253.7 nm, the proposed LED demonstrates a 2.67× improvement in internal quantum efficiency (IQE) and a 2.64× increase in output power at 150 mA injection, with electron leakage reduced by ~4 orders of magnitude compared to conventional LEDs. The efficiency droop is found to be just 2.32%. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

36 pages, 4816 KiB  
Article
Inactivation of Continuously Released Airborne Virus by Upper-Room UVC LED Irradiation Under Realistic Testing Conditions
by Andreas Schmohl, Anna Nagele-Renzl and Michael Buschhaus
Environments 2025, 12(7), 233; https://doi.org/10.3390/environments12070233 - 9 Jul 2025
Viewed by 664
Abstract
Ultraviolet (UV) radiation can be used to inactivate microorganisms, with upper-room UV germicidal irradiation (UR-UVGI) representing a promising approach. This study investigated the inactivation of the airborne surrogate virus Phi6 by a UR-UVGI system based on light-emitting diodes (LEDs) in a realistic test [...] Read more.
Ultraviolet (UV) radiation can be used to inactivate microorganisms, with upper-room UV germicidal irradiation (UR-UVGI) representing a promising approach. This study investigated the inactivation of the airborne surrogate virus Phi6 by a UR-UVGI system based on light-emitting diodes (LEDs) in a realistic test setup. Two test scenarios were used, one with continuous Phi6 release, simulating a source located in the room and leading to a dynamic equilibrium, and the second simulating a situation in which the source has left the room and an exponential decay is evaluated. The “Incremental Evaluation Model” was adapted and used to evaluate the dynamic equilibrium measurement. At a position in the breathing direction 5 m away from the Phi6 source, the loss coefficient (air exchange rate) was 25 h−1 in the first scenario and 30 h−1 in the second. These results show that UR-UVGI systems can effectively inactivate microorganisms. However, at 1 m distance from the Phi6 source perpendicular to the breathing direction, only minimal inactivation was observed due to short-circuit airflow. At this position, the loss coefficient was <2 h−1 in the first scenario and 17 h−1 in the second scenario, indicating that short-circuit airflows can only be detected by dynamic equilibrium measurements. Full article
Show Figures

Figure 1

15 pages, 1505 KiB  
Article
The Effects of UV-LED Technology on the Quality of Ready-to-Eat Pomegranates: Epigenetic Indicators and Metabolomic Analysis
by Aihemaitijiang Aihaiti, Yuanpeng Li, Xinmeng Huang, Yuting Yang, Ailikemu Mulati and Jiayi Wang
Foods 2025, 14(13), 2192; https://doi.org/10.3390/foods14132192 - 23 Jun 2025
Viewed by 393
Abstract
Pomegranates are rich in nutrients and classified among ready-to-eat fruits and vegetables. Although this ready-to-eat produce offers convenience, it presents risks associated with pathogenic microorganisms, highlighting the need for pre-sale disinfection. Ultraviolet light-emitting diodes (UV-LEDs) constitute an innovative non-thermal processing technology for food [...] Read more.
Pomegranates are rich in nutrients and classified among ready-to-eat fruits and vegetables. Although this ready-to-eat produce offers convenience, it presents risks associated with pathogenic microorganisms, highlighting the need for pre-sale disinfection. Ultraviolet light-emitting diodes (UV-LEDs) constitute an innovative non-thermal processing technology for food products, offering reduced heat generation and lower energy consumption compared to traditional ultraviolet (UV) irradiation methods. This study analyzed the effects of UV-LED technology on pomegranate seed quality over 0 to 5 days of storage. The results demonstrated significant increases in anthocyanins, polyphenols, ascorbic acid, and the antioxidant capacity in pomegranate following treatment, peaking on day 3. In contrast, the control group showed declining trends. After treatment, the aerobic mesophilic counts and counts of mold and yeast levels during storage measured between 2.73–3.23 log CFU/g and 2.56–3.29 log CFU/g, respectively, significantly lower than the control group. Non-targeted metabolomic analysis showed that UV-LED treatment prompted modifications in the biosynthetic pathways of flavonoids, flavonols, and anthocyanins. The expression of peonidin-3-O-rutinoside chloride increased by 46.46-fold within the anthocyanin biosynthesis pathway. In conclusion, UV-LED treatment represents a potential approach to the disinfection of ready-to-eat fruits and vegetables. Full article
Show Figures

Figure 1

16 pages, 856 KiB  
Article
Inactivation of Aerosolized Hepatitis A Viral Droplets on Food Contact Surfaces by Ultraviolet-Light-Emitting Diodes at 255 nm and 279 nm
by Breanna Polen, Ankit Patras, Brahmaiah Pendyala and Doris H. D’Souza
Foods 2025, 14(11), 1899; https://doi.org/10.3390/foods14111899 - 27 May 2025
Viewed by 517
Abstract
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses [...] Read more.
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses for aerosolized HAV inactivation. This study evaluates the UV-C LED doses for the inactivation of aerosolized hepatitis A virus (HAV) deposited on stainless-steel and glass discs. HAV was aseptically deposited onto stainless-steel or glass discs (1.27 cm diameter) using a nebulizer within a chamber followed by treatments for up to 1.5 min with 255 nm (surface dose = 0–76.5 mJ/cm2) or 279 nm (surface dose = 0–8.1 mJ/cm2) UV-C LED. Plaque assays were used to enumerate infectious titers of recovered viruses and data from three replicates were statistically analyzed. The calculated linear D10-value (UV-C dose for a 1-log reduction in aerosolized deposits) for HAV by 255 nm UV-C LED was 47.39 ± 7.40 and 40.0 ± 2.94 mJ/cm2 (R2 = 0.94 and 0.91) and using 279 nm UV-C LED were 6.60 ± 0.27 and 5.57 ± 0.74 mJ/cm2 (R2 = 0.98 and 0.94) on stainless-steel and glass discs, respectively. The non-linear Weibull model showed δ (dose needed for a 1-log reduction in aerosolized HAV deposits) values for HAV of 29.69 ± 5.49 and 35.25 ± 15.01 mJ/cm2 by 255 nm UV-C LED (R2 = 0.99 and 0.92) and 6.67 ± 0.63 and 5.21 ± 1.25 mJ/cm2 by 279 nm UV-C LED (R2 = 0.98 and 0.95) on stainless-steel and glass discs, respectively. These data indicate that 279 nm UV-C LED showed higher efficiency for HAV inactivation than 255 nm UV-C LED, and that Weibull models were a better fit when tailing was observed. This study provides the inactivation data needed to aid in designing UV-C LED systems for delivering doses required to inactivate bio-aerosolized HAV deposits on stainless-steel and glass. Full article
(This article belongs to the Special Issue Antimicrobial Strategies in Food Processing, Production and Storage)
Show Figures

Figure 1

17 pages, 1084 KiB  
Article
Understanding the Potential of Mixed Photocatalysis for Optimization of Water Disinfection
by Abdul-Rahaman Afitiri, Ernest Kofi Amankwa Afrifa and Marion Martienssen
Pollutants 2025, 5(2), 13; https://doi.org/10.3390/pollutants5020013 - 19 May 2025
Viewed by 1133
Abstract
The use of ultraviolet (UV) for water disinfection is known for its chemical-free process and with no harmful disinfection by-products. Yet, the disinfection process remains time-consuming, and many studies are limited to disinfection of one or two microbial species. Direct photolytic and glass-embedded [...] Read more.
The use of ultraviolet (UV) for water disinfection is known for its chemical-free process and with no harmful disinfection by-products. Yet, the disinfection process remains time-consuming, and many studies are limited to disinfection of one or two microbial species. Direct photolytic and glass-embedded TiO2 photocatalytic disinfection of four different bacterial species (Staphylococcus aureus, Salmonella senftenberg, Bacillus subtilis, and Escherichia coli) were assessed using UV-LED radiation with wavelengths of 365 nm. The optimization of the UV disinfection under different masses of the TiO2 photocatalyst was evaluated. Additionally, the order of disinfection of the different bacteria species was assessed. The disinfection effects were measured based on the potential to reduce the number of bacteria species, calculated in colony-forming units/mL and log reduction units. The disinfection of Staphylococcus aureus was enhanced from 1.46 log reduction units in the UV-alone treatment to a high of 5.65 log reduction units in the UV + 0.08 g TiO2 treatment. Regarding Salmonella senftenberg, disinfection was enhanced from 1.26 log reduction units to 3.85 log reduction units in UV-alone experimental treatments and UV + 0.04 g TiO2, respectively. Similarly, an increase in Bacillus subtilis reduction was achieved from a low of 0.69 log reduction units to a high of 2.98 log reduction units in UV-alone treatments and UV + 0.08 g TiO2, respectively. The disinfection of Escherichia coli was enhanced from 2.49 log reduction units (UV-alone treatment) to a high of 6.35 log reduction units (UV + 0.02 g TiO2). The findings provide key implications and new insights into the studied bacteria species and the future application of porous glass-embedded TiO2 photocatalysts to enhance bacteria disinfection using UV light for improved water. Full article
Show Figures

Graphical abstract

11 pages, 791 KiB  
Article
Bactericidal Effects of Ultraviolet-C Light-Emitting Diode Prototype Device Through Thin Optical Fiber
by Mi-Jeong Jeon, Yu-Sung Choi and Deog-Gyu Seo
Appl. Sci. 2025, 15(8), 4504; https://doi.org/10.3390/app15084504 - 19 Apr 2025
Viewed by 570
Abstract
The purpose of this study was to evaluate the bactericidal effect of 270 nm UV-C light-emitting diode (LED) light delivered through a newly designed prototype device with thin optical fiber against Enterococcus faecalis (E. faecalis). The prototype device, developed to integrate [...] Read more.
The purpose of this study was to evaluate the bactericidal effect of 270 nm UV-C light-emitting diode (LED) light delivered through a newly designed prototype device with thin optical fiber against Enterococcus faecalis (E. faecalis). The prototype device, developed to integrate UV-C light into a thin optic fiber (diameter 124 µm) connected to a UV-C LED (Luminous Device; Sunnyvale, CA, USA) via a specialized double-lens system that focuses divergent light to achieve a 65 mm working distance and a numerical aperture of 0.22. E. faecalis, was cultured at 37 °C under aerobic conditions for 24 h. The UV-C LED optical fiber was positioned 10 mm above the bacterial culture prepared in the wells of a 96-well plate. The E. faecalis cells were exposed to UV-C irradiation for 0, 10, 30, 60, 90, 120 and 180 s. Following irradiation, the OD600 values were measured after incubation at 37 °C for an additional 24 h. The data were statistically analyzed using one-way ANOVA, followed by Tukey’s honestly significant difference (HSD) test at a significance level of 0.05. UV irradiation at 270 nm significantly reduced E. faecalis growth in a time-dependent manner (p < 0.05). No significant changes were observed at 0 and 10 s, while peak reductions occurred at 120 and 180 s, with effects beginning at 30 s and increasing over time. The 270 nm UV-C wavelength was highly effective in bactericidal action against E. faecalis. The custom-designed UV-C delivery system effectively integrated the light source into a thin optical fiber, allowing for efficient UV-C light transmission and demonstrating its potential for application in narrow spaces such as root canals. Full article
(This article belongs to the Special Issue Technological Innovations and Tools in Dental Practice)
Show Figures

Figure 1

14 pages, 3070 KiB  
Article
Zero-Dimensional Organic Amine-Copper Bromide Hybrid Crystal with Highly Efficient Yellow Emission
by Yanxi Chen, Ye Tian, Tao Huang, Shangfei Yao, Hui Peng and Bingsuo Zou
Crystals 2025, 15(4), 312; https://doi.org/10.3390/cryst15040312 - 27 Mar 2025
Viewed by 507
Abstract
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their [...] Read more.
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their application in solid-state lighting due to the low excitation efficiency at about 400 nm in devices. Here, we report a new zero-dimensional organic cuprous bromide of (C13H30N)2Cu5Br7 single crystals, which can be excited by visible light (390–400 nm) and give a bright yellow and broad self-trapped exciton emission band with the photoluminescence quantum yield (PLQY) of 92.3% at room temperature. The experimental and theoretical results show that the existence of Cu-Br-Cu metal bonds in a Cu5Br7 cluster package produces three components of self-trapped excitons (STE) that emit at room temperature but merge into one at 80 K. This occurs because of the anomalously enhanced electron–phonon coupling and electron–electron coupling in the coupled clusters in this system. These effects cause the excitation near visible light and emission broader at higher temperature. Additionally, their remarkable anti-water emission stability was demonstrated even after soaking in water for 6 h. Finally, a highly efficient white-light-emitting diode (WLED) based on (C13H30N)2Cu5Br7 was fabricated. Full article
(This article belongs to the Special Issue Synthesis, Structure and Application of Metal Halides)
Show Figures

Figure 1

29 pages, 6092 KiB  
Review
The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations
by Satyam Satyam and Sanjukta Patra
Processes 2025, 13(4), 987; https://doi.org/10.3390/pr13040987 - 26 Mar 2025
Cited by 5 | Viewed by 4053
Abstract
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals [...] Read more.
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals and reactive oxygen species (ROS) to mineralize complex pollutants. Homogeneous systems such as Fenton’s reagent show high degradation efficiency. However, challenges like pH sensitivity, catalyst recovery issues, sludge generation, and energy-intensive operations limit their scalability. Heterogeneous catalysts, such as TiO2-based photocatalysts and Fe3O4 composites, offer improved pH adaptability, visible-light activation, and recyclability. Emerging innovations like ultraviolet light emitting diode (UV-LED)-driven systems, plasma-assisted oxidation, and artificial intelligence (AI)-enhanced hybrid reactors demonstrate progress in energy efficiency and process optimization. Nevertheless, key challenges remain, including secondary byproduct formation, mass transfer constraints, and economic feasibility for large-scale applications. Integrating AOPs with membrane filtration or biological treatments enhances treatment synergy, while advances in materials science and computational modeling refine catalyst design and reaction mechanisms. Addressing barriers in energy use, catalyst durability, and practical adaptability requires multidisciplinary collaboration. This review highlights AOPs as pivotal solutions for water security amid growing environmental pollution, urging targeted research to bridge gaps between laboratory success and real-world implementation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

16 pages, 1491 KiB  
Article
Advancing Waterborne Fungal Spore Control: UV-LED Disinfection Efficiency and Post-Treatment Reactivation Analysis
by Paola Duque-Sarango, Nicole Delgado-Armijos, Leonardo Romero-Martínez, Darío Cruz and Verónica Pinos-Vélez
Water 2025, 17(7), 922; https://doi.org/10.3390/w17070922 - 21 Mar 2025
Cited by 1 | Viewed by 1409
Abstract
The presence of fungal spores in water poses a significant risk to public health, requiring effective inactivation strategies. Ultraviolet (UV) radiation is a widely used approach, traditionally employing mercury vapor lamps. However, these lamps have efficiency limitations and contain hazardous materials. As an [...] Read more.
The presence of fungal spores in water poses a significant risk to public health, requiring effective inactivation strategies. Ultraviolet (UV) radiation is a widely used approach, traditionally employing mercury vapor lamps. However, these lamps have efficiency limitations and contain hazardous materials. As an alternative, ultraviolet light-emitting diodes (UV-LEDs) have emerged as a safer and more sustainable option. Despite their advantages, research on their efficacy against fungal spores remains limited. This study investigates the inactivation and post-exposure response of Aspergillus niger and Penicillium sp. spores using a collimated UV-LED system. The impact of two different wavelengths (265 nm and 280 nm) and post-treatment conditions (light and darkness for 24 h) on fungal viability was analyzed. Kinetic modeling was applied to assess the resistance of the spores and their capacity for photoreactivation. The results demonstrate that both the UV wavelength and the environmental conditions after exposure significantly influence disinfection outcomes. Penicillium sp. exhibited greater susceptibility to UV radiation but also higher photoreactivation potential, while A. niger showed stronger resistance and lower recovery capacity. The UV dose required for 99% inactivation, considering photoreactivation effects, was 323.7 ± 90.0 mJ cm−2 and 321.9 ± 43.8 mJ cm−2 for A. niger, whereas for Penicillium sp., it was 167.7 ± 13.0 mJ cm−2 and 146.5 ± 29.2 mJ cm−2 at 265 nm and 280 nm, respectively. These findings emphasize the necessity of tailoring UV-LED disinfection strategies based on the specific characteristics of the target organisms and post-treatment environmental factors. Full article
Show Figures

Graphical abstract

34 pages, 10137 KiB  
Review
Progress in Luminescent Materials Based on Europium(III) Complexes of β-Diketones and Organic Carboxylic Acids
by Qianting Chen, Jie Zhang, Quanfeng Ye, Shanqi Qin, Lingyi Li, Mingyu Teng and Wai-Yeung Wong
Molecules 2025, 30(6), 1342; https://doi.org/10.3390/molecules30061342 - 17 Mar 2025
Cited by 2 | Viewed by 1554
Abstract
Europium(III) β-diketone and organic carboxylic acid complexes are designable, easy to prepare, and easy to modify and have excellent fluorescence properties (narrow emission spectral band, high colour purity, long fluorescence lifetime, high quantum yield, and a spectral emission range covering both the visible [...] Read more.
Europium(III) β-diketone and organic carboxylic acid complexes are designable, easy to prepare, and easy to modify and have excellent fluorescence properties (narrow emission spectral band, high colour purity, long fluorescence lifetime, high quantum yield, and a spectral emission range covering both the visible and near-infrared regions). These complexes play important roles in popular fields such as laser and fibre-optic communications, medical diagnostics, immunoassays, fluorescent lasers, sensors, anticounterfeiting, and organic light-emitting diodes (OLEDs). In the field of light-emitting materials, europium complexes are especially widely used in OLED lamps, especially because of their high-efficiency emission of red (among the three primary colours); accordingly, these complexes can be mixed with blue and green phosphors to obtain high-efficiency white phosphors that can be excited by near-ultraviolet light. This paper reviews the red-light-emitting europium complexes with β-diketone and organic carboxylic acid as ligands that have been studied over the last five years, describes the current problems, and discusses their future application prospects. Full article
Show Figures

Figure 1

19 pages, 1836 KiB  
Article
The Effect of Resin Type and Placement Technique on the Hardness of Resin-Based Composites Polymerized with LED and UV Light-Curing Units
by Ayse Nurcan Duman and Arife Dogan
Polymers 2025, 17(6), 774; https://doi.org/10.3390/polym17060774 - 14 Mar 2025
Viewed by 542
Abstract
The aim of this in vitro study is to evaluate the effect of resin type and placement technique on the hardness of resin-based composites (RBCs). A total of 300 samples consisting of five RBCs (Filtek Z250 microhybrid, Filtek P60 packable, Tetric Ceram hybrid, [...] Read more.
The aim of this in vitro study is to evaluate the effect of resin type and placement technique on the hardness of resin-based composites (RBCs). A total of 300 samples consisting of five RBCs (Filtek Z250 microhybrid, Filtek P60 packable, Tetric Ceram hybrid, Admira ORMOCER, and Tetric Flow flowable RBCs) were prepared. Each RBC was placed into Teflon molds with a 4 mm diameter and 2 or 8 mm depths with standard, bulk and incremental techniques and was polymerized by second-generation LED (Hilux Ledmax 1055, 229.153 mW/cm2) and UV (ELC-410, 26.106 mW/cm2) light-curing units (LCUs) in standard mode (n = 10). The Vickers hardness number (VHN) was measured from the top and bottom surfaces of the RBCs. Data were statistically analyzed with a one-way ANOVA. Multiple comparisons were made using the Tukey, Scheffe, and t-tests (p < 0.05). The VHN of the RBCs polymerized with LED and UV LCUs varied between 110.33 and 25.16 and between 104.86 and 34.20, respectively. The Tetric Flow RBC did not polymerize with the LCUs on either surface. The RBCs placed using the bulk technique could not polymerize with the UV LCU on the top surface, except for the Filtek P60 RBC, but showed a higher VHN on the bottom surface. These significant findings highlight that the hardness is specific to the RBC material and placement technique. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

Back to TopTop