The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations
Abstract
:1. Introduction
2. Contemporary Types of AOPs
2.1. Fenton Oxidation
2.2. Ozone Oxidation
2.3. Electrochemical Oxidation
2.4. Photolysis or Photocatalysis
2.5. Radiation
2.6. Sonolysis
3. General Limitations in AOPs
4. Categoric Limitations of Specific AOPs
5. Advancements Addressing Current Limitations
6. Advancement in Reactor Design for AOPs
6.1. Configurations and Innovations in Electro-Oxidation Reactors
6.1.1. Plate-Frame (Filter-Press) Reactors
6.1.2. Tubular Plug-Flow Reactors
6.1.3. Flow-Through vs. Flow-By Modes
6.2. Configurations and Innovations in Photocatalytic Reactors
6.2.1. Cylindrical Reactors
6.2.2. Flat-Plate Reactors
6.2.3. Innovative Photocatalyst Modifications
6.2.4. Hybrid Photoreactors
7. Recent Studies on Innovative AOPs for Sustainable Wastewater Treatment
8. Scope and Types of AI/ML Algorithm Used in AOPs
8.1. XGBoost
8.2. ANNs
8.3. SVR
8.4. ANFIS
8.5. Metaheuristic Algorithms
8.6. Recent Advancements in AOP Using AI/ML
8.7. Regulatory and Environmental Impact of AI in AOP Systems (Authors View)
9. Factors Influencing Scalability of AOP-Based Treatment Techniques for Industrial Upscale
9.1. Half-Life of Radicals and Transport Considerations
9.2. Material Innovations for Radical Delivery
9.3. Conversion Efficiency and Reactor Design
9.4. Cost and Economic Considerations
10. Challenges and Approaches for Standardized Evaluation and Optimization of AOPs
11. Future Perspective
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oriji, A.Y.; Isaac, G.O.; Ojo, R.F. Emerging Contaminants in Drinking Water. Emerg. Contam. Food Food Prod. 2024, 44–60. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003438236-5 (accessed on 20 March 2025).
- Zhang, C.; Liu, L.; Pan, Y.; Qin, R.; Wang, W.; Zhou, M.; Zhang, Y. Detection Methodologies and Mechanisms of Reactive Oxygen Species Generated in Fenton/Fenton-like Processes. Sep. Purif. Technol. 2025, 355, 129578. [Google Scholar] [CrossRef]
- Dong, C.; Fang, W.; Yi, Q.; Zhang, J. A Comprehensive Review on Reactive Oxygen Species (ROS) in Advanced Oxidation Processes (AOPs). Chemosphere 2022, 308, 136205. [Google Scholar] [CrossRef] [PubMed]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Ait Akbour, R.; Nidheesh, P.V.; Hamdani, M. Removal of Organic Pollutants from Wastewater by Advanced Oxidation Processes and Its Combination with Membrane Processes. Chem. Eng. Process.-Process Intensif. 2021, 169, 108631. [Google Scholar] [CrossRef]
- Vieira, W.T.; De Farias, M.B.; Spaolonzi, M.P.; Da Silva, M.G.C.; Vieira, M.G.A. Latest Advanced Oxidative Processes Applied for the Removal of Endocrine Disruptors from Aqueous Media—A Critical Report. J. Environ. Chem. Eng. 2021, 9, 105748. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, Z.; Duan, X.; Long, M.; Spinney, R.; Dionysiou, D.D.; Xiao, R.; Alvarez, P.J.J. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. Environ. Sci. Technol. 2023, 57, 12153–12179. [Google Scholar] [CrossRef]
- Zhang, X.; Kamali, M.; Uleners, T.; Symus, J.; Zhang, S.; Liu, Z.; Costa, M.E.V.; Appels, L.; Cabooter, D.; Dewil, R. UV/TiO2/Periodate System for the Degradation of Organic Pollutants—Kinetics, Mechanisms and Toxicity Study. Chem. Eng. J. 2022, 449, 137680. [Google Scholar] [CrossRef]
- Mukherjee, J.; Lodh, B.K.; Sharma, R.; Mahata, N.; Shah, M.P.; Mandal, S.; Ghanta, S.; Bhunia, B. Advanced Oxidation Process for the Treatment of Industrial Wastewater: A Review on Strategies, Mechanisms, Bottlenecks and Prospects. Chemosphere 2023, 345, 140473. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Cüce, H.; Özçelik, D. Application of Machine Learning (ML) and Artificial Intelligence (AI)-Based Tools for Modelling and Enhancing Sustainable Optimization of the Classical/Photo-Fenton Processes for the Landfill Leachate Treatment. Sustainability 2022, 14, 11261. [Google Scholar] [CrossRef]
- Esfahani, K.N.; Pérez-Moya, M.; Graells, M. A Hybrid Model Coupling Advanced Oxidation Processes (AOP) and Conventional Bio-Processes for the Removal of Recalcitrant Contaminants in Wastewaters. Comput. Aided Chem. Eng. 2021, 50, 883–889. [Google Scholar] [CrossRef]
- Yu, C.; Xiong, Z.; Zhou, H.; Zhou, P.; Zhang, H.; Huang, R.; Yao, G.; Lai, B. Marriage of Membrane Filtration and Sulfate Radical-Advanced Oxidation Processes (SR-AOPs) for Water Purification: Current Developments, Challenges and Prospects. Chem. Eng. J. 2022, 433, 133802. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Waclawek, S.; Černík, M.; Dionysiou, D.D. The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. In A New Paradigm for Environmental Chemistry and Toxicology; Springer: Singapore, 2020; pp. 131–152. [Google Scholar] [CrossRef]
- Mahbub, P.; Duke, M. Scalability of Advanced Oxidation Processes (AOPs) in Industrial Applications: A Review. J. Environ. Manag. 2023, 345, 118861. [Google Scholar] [CrossRef]
- Meyerstein, D. Re-Examining Fenton and Fenton-like Reactions. Nat. Rev. Chem. 2021, 5, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Niu, Q.; Wu, S.; Lin, Y.; Biswas, J.K.; Yang, C. Hydroxyl Radicals in Ozone-Based Advanced Oxidation of Organic Contaminants: A Review. Environ. Chem. Lett. 2024, 22, 3059–3106. [Google Scholar] [CrossRef]
- Najafinejad, M.S.; Chianese, S.; Fenti, A.; Iovino, P.; Musmarra, D. Application of Electrochemical Oxidation for Water and Wastewater Treatment: An Overview. Molecules 2023, 28, 4208. [Google Scholar] [CrossRef]
- Singh, G.; Ubhi, M.K.; Jeet, K.; Singla, C.; Kaur, M. A Review on Impacting Parameters for Photocatalytic Degradation of Organic Effluents by Ferrites and Their Nanocomposites. Processes 2023, 11, 1727. [Google Scholar] [CrossRef]
- Bojanowska-Czajka, A.; Swiatla-Wojcik, D.; Katsumura, Y.; Wach, R.A. Application of Radiation Technology in Removing Endocrine Micropollutants from Waters and Wastewaters—A Review. Appl. Sci. 2021, 11, 12032. [Google Scholar] [CrossRef]
- de Andrade, F.V.; Augusti, R.; de Lima, G.M. Ultrasound for the Remediation of Contaminated Waters with Persistent Organic Pollutants: A Short Review. Ultrason. Sonochem. 2021, 78, 105719. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M. A Critical Review of the Application of Chelating Agents to Enable Fenton and Fenton-like Reactions at High PH Values. J. Hazard. Mater. 2019, 362, 436–450. [Google Scholar] [CrossRef]
- Mousset, E.; Loh, W.H.; Lim, W.S.; Jarry, L.; Wang, Z.; Lefebvre, O. Cost Comparison of Advanced Oxidation Processes for Wastewater Treatment Using Accumulated Oxygen-Equivalent Criteria. Water Res. 2021, 200, 117234. [Google Scholar] [CrossRef] [PubMed]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Fernandes, J.R.; Peres, J.A.; Tavares, P.B.; Lucas, M.S. Wireless UV-A LEDs-Driven AOP in the Treatment of Agro-Industrial Wastewaters. Environ. Res. 2021, 200, 111430. [Google Scholar] [CrossRef] [PubMed]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced Oxidation Processes (AOPs) Based Wastewater Treatment—Unexpected Nitration Side Reactions—A Serious Environmental Issue: A Review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Manna, M.; Sen, S. Advanced Oxidation Process: A Sustainable Technology for Treating Refractory Organic Compounds Present in Industrial Wastewater. Environ. Sci. Pollut. Res. 2022, 30, 25477–25505. [Google Scholar] [CrossRef]
- Kanafin, Y.N.; Makhatova, A.; Zarikas, V.; Arkhangelsky, E.; Poulopoulos, S.G. Photo-Fenton-like Treatment of Municipal Wastewater. Catalysts 2021, 11, 1206. [Google Scholar] [CrossRef]
- El-Saeid, M.H.; Alotaibi, M.O.; Alshabanat, M.; Alharbi, K.; Altowyan, A.S.; Al-Anazy, M. Photo-Catalytic Remediation of Pesticides in Wastewater Using UV/TiO2. Water 2021, 13, 3080. [Google Scholar] [CrossRef]
- Zhang, B.; Fang, Z.; Wang, S.; Shi, X.; Guo, B.; Gao, J.; Wang, D.; Zong, W. Effect of Bromide on Molecular Transformation of Dissolved Effluent Organic Matter during Ozonation, UV/H2O2, UV/Persulfate, and UV/Chlorine Treatments. Sci. Total Environ. 2022, 811, 152328. [Google Scholar] [CrossRef]
- Ghavi, A.; Bagherian, G.; Rezaei-Vahidian, H. Degradation of Paraquat Herbicide Using Hybrid AOP Process: Statistical Optimization, Kinetic Study, and Estimation of Electrical Energy Consumption. Environ. Sci. Eur. 2021, 33, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Yao, Y.; Lu, J.; Zhou, J.; Chen, Q. Catalytic Activity and Mechanism of Typical Iron-Based Catalysts for Fenton-like Oxidation. Chemosphere 2023, 311, 136972. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef] [PubMed]
- Al-Rubaiey, N.A. Trends in Sonochemical Treatment of Oily Wastewater. Pet. Chem. 2024, 64, 1039–1047. [Google Scholar] [CrossRef]
- Radjenovic, J.; Duinslaeger, N.; Avval, S.S.; Chaplin, B.P. Facing the Challenge of Poly- And Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer? Environ. Sci. Technol. 2020, 54, 14815–14829. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, G.; Jeyakumar, R.B.; Somanathan, A. Challenges and Emerging Trends in Advanced Oxidation Technologies and Integration of Advanced Oxidation Processes with Biological Processes for Wastewater Treatment. Sustainability 2023, 15, 4235. [Google Scholar] [CrossRef]
- Pandey, S.; Mandari, K.K.; Kim, J.; Kang, M.; Fosso-Kankeu, E. Recent Advancement in Visible-Light-Responsive Photocatalysts in Heterogeneous Photocatalytic Water Treatment Technology. In Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment; Fosso-Kankeu, E., Pandey, S., Sinha Ray, S., Eds.; John Wiley & Sons, Ltd: Beverly, CA, USA, 2020; pp. 167–196. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Geng, J.; Song, R.; Liu, X.; Fu, C.; Li, S. Current Advances in UV-Based Advanced Oxidation Processes for the Abatement of Fluoroquinolone Antibiotics in Wastewater. Chin. Chem. Lett. 2024, 36, 110138. [Google Scholar] [CrossRef]
- Gupta, P.; Bhardwaj, G.; Dubey, S.; Tayal, T.; Sengupta, A.; Narad, P. AI-Enabled Process Optimization for Sustainable Wastewater Treatment Solutions. In The AI Cleanse: Transforming Wastewater Treatment Through Artificial Intelligence: Harnessing Data-Driven Solutions; Garg, M.C., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 141–164. [Google Scholar] [CrossRef]
- Dhamorikar, R.S.; Lade, V.G.; Kewalramani, P.V.; Bindwal, A.B. Review on Integrated Advanced Oxidation Processes for Water and Wastewater Treatment. J. Ind. Eng. Chem. 2024, 138, 104–122. [Google Scholar] [CrossRef]
- Dong, G.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.; Stoyanov, S.R.; Yang, M.; Zhang, B. Advanced Oxidation Processes in Microreactors for Water and Wastewater Treatment: Development, Challenges, and Opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef]
- Long, F.; Ghani, D.; Huang, R.; Zhao, C. Versatile Electrode Materials Applied in the Electrochemical Advanced Oxidation Processes for Wastewater Treatment: A Systematic Review. Sep. Purif. Technol. 2025, 354, 128725. [Google Scholar] [CrossRef]
- Wachter, N.; Bocchi, N.; Rocha-Filho, R.C. Use of a Turbulence Promoter in an Electrochemical Filter-Press Reactor: Consolidated Evidence of Significant Enhancement of Organics Mass Transport and Degradation Rates. Sep. Purif. Technol. 2021, 276, 119292. [Google Scholar] [CrossRef]
- Ni, J.; Shi, H.; Xu, Y.; Wang, Q. A Comparison of the Mechanism of TOC and COD Degradation in Rhodamine B Wastewater by a Recycling-Flow Two- and Three-Dimensional Electro-Reactor System. Water 2020, 12, 1853. [Google Scholar] [CrossRef]
- Zhou, B.; Yu, Z.; Wei, Q.; Long, H.Y.; Xie, Y.; Wang, Y. Electrochemical Oxidation of Biological Pretreated and Membrane Separated Landfill Leachate Concentrates on Boron Doped Diamond Anode. Appl. Surf. Sci. 2016, 377, 406–415. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Chen, F.; Wang, J. Three-Dimensional CFD Simulation of the Tubular Electrochemical Reactor with Meshed Plate Electrodes. J. Electrochem. Soc. 2014, 161, E81–E86. [Google Scholar] [CrossRef]
- Wang, J.; Li, T.; Zhou, M.; Li, X.; Yu, J. Characterization of Hydrodynamics and Mass Transfer in Two Types of Tubular Electrochemical Reactors. Electrochim. Acta 2015, 173, 698–704. [Google Scholar] [CrossRef]
- Guo, X.; You, S. Characterization of Hydrodynamics and Electrochemical Treatment of Dye Wastewater in Two Types of Tubular Electrochemical Reactors. IOP Conf. Ser. Earth Environ. Sci. 2017, 81, 012008. [Google Scholar] [CrossRef]
- Reis, R.M.H.; Baio, J.A.F.; Migliorini, F.L.; Rocha, R.D.S.; Baldan, M.R.; Ferreira, N.G.; Lanza, M.R.D.V. Degradation of Dipyrone in an Electrochemical Flow-by Reactor Using Anodes of Boron-Doped Diamond (BDD) Supported on Titanium. J. Electroanal. Chem. 2013, 690, 89–95. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Zhao, X.; Wang, Y.; Zhang, W.; Chen, Z.; Meng, X.; Luo, J.; Crittenden, J. Development of a Highly Efficient Electrochemical Flow-through Anode Based on Inner in-Site Enhanced TiO2-Nanotubes Array. Environ. Int. 2020, 140, 105813. [Google Scholar] [CrossRef]
- Zeng, W.; Liang, H.; Zhang, H.; Luo, X.; Lin, D.; Li, G. Efficient Electrochemical Oxidation of Sulfamethoxazole by a Novel Reduced TiO2 Nanotube Arrays-Based Flow-through Electrocatalytic Membrane. Sep. Purif. Technol. 2022, 289, 120720. [Google Scholar] [CrossRef]
- Ochoa-Gutiérrez, K.S.; Tabares-Aguilar, E.; Mueses, M.Á.; Machuca-Martínez, F.; Li Puma, G. A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for Solar Photocatalytic Degradation of Water Contaminants. Chem. Eng. J. 2018, 341, 628–638. [Google Scholar] [CrossRef]
- Sundar, K.P.; Kanmani, S. Progression of Photocatalytic Reactors and It’s Comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Sacco, O. UV-LEDs Floating-Bed Photoreactor for the Removal of Caffeine and Paracetamol Using ZnO Supported on Polystyrene Pellets. Chem. Eng. J. 2018, 350, 703–713. [Google Scholar] [CrossRef]
- Bahmani, M.; Dashtian, K.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. UiO-66(Ti)-Fe3O4-WO3 Photocatalyst for Efficient Ammonia Degradation from Wastewater into Continuous Flow-Loop Thin Film Slurry Flat-Plate Photoreactor. J. Hazard. Mater. 2020, 393, 122360. [Google Scholar] [CrossRef] [PubMed]
- Mesgari, Z.; Saien, J. Pollutant Degradation over Dye Sensitized Nitrogen Doped Titania Substances in Different Configurations of Visible Light Helical Flow Photoreactor. Sep. Purif. Technol. 2017, 185, 129–139. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of Heterostructured G-C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405–14414. [Google Scholar] [CrossRef]
- Ye, L.; Wang, D.; Chen, S. Fabrication and Enhanced Photoelectrochemical Performance of MoS2/S-Doped g-C3N4 Heterojunction Film. ACS Appl. Mater. Interfaces 2016, 8, 5280–5289. [Google Scholar] [CrossRef]
- Moon, H.S.; Hsiao, K.C.; Wu, M.C.; Yun, Y.; Hsu, Y.J.; Yong, K. Spatial Separation of Cocatalysts on Z-Scheme Organic/Inorganic Heterostructure Hollow Spheres for Enhanced Photocatalytic H2 Evolution and In-Depth Analysis of the Charge-Transfer Mechanism. Adv. Mater. 2023, 35, 2200172. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhang, Y.; Zhang, Z.; Zhou, L.; Yu, G.; Wen, X.; Chi, T.; Wang, G.; Su, Y.; Deng, F.; et al. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Organic Pollutants Removal via Photo-Fenton: A Review. Chem. Eng. J. 2022, 431, 133932. [Google Scholar] [CrossRef]
- Huo, Z.Y.; Lee, D.M.; Kim, Y.J.; Kim, S.W. Solar-Induced Hybrid Energy Harvesters for Advanced Oxidation Water Treatment. iScience 2021, 24, 102808. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Divyapriya, G.; Ezzahra Titchou, F.; Hamdani, M. Treatment of Textile Wastewater by Sulfate Radical Based Advanced Oxidation Processes. Sep. Purif. Technol. 2022, 293, 121115. [Google Scholar] [CrossRef]
- Kore, V.S.; Manjare, S.D.; Taralkar, S.V. Intensified Degradation of Reactive Blue 222 (RB222) Textile Dye by a Hybrid AOP System of Hydrodynamic Cavitation Coupled with Inline UV and PMS Oxidant. J. Water Process Eng. 2023, 56, 104472. [Google Scholar] [CrossRef]
- Husein, D.Z.; Hassanien, R.; Al-Hakkani, M.F. Green-Synthesized Copper Nano-Adsorbent for the Removal of Pharmaceutical Pollutants from Real Wastewater Samples. Heliyon 2019, 5, e02339. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, Y.; Xia, W.; Almatrafi, E.; Song, B.; Wang, Z.; Zeng, Y.; Yang, Y.; Shang, Y.; Wang, C.; et al. Single Atom Mn Anchored on N-Doped Porous Carbon Derived from Spirulina for Catalyzed Peroxymonosulfate to Degradation of Emerging Organic Pollutants. J. Hazard. Mater. 2023, 441, 129871. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Eghbali, P.; Mahdipour, F.; Wacławek, S.; Lin, K.Y.A.; Ghanbari, F. Insights into the Synergistic Role of Photocatalytic Activation of Peroxymonosulfate by UVA-LED Irradiation over CoFe2O4-RGO Nanocomposite towards Effective Bisphenol A Degradation: Performance, Mineralization, and Activation Mechanism. Chem. Eng. J. 2023, 453, 139556. [Google Scholar] [CrossRef]
- Shi, H.; Chiang, S.Y.; Wang, Y.; Wang, Y.; Liang, S.; Zhou, J.; Fontanez, R.; Gao, S.; Huang, Q. An Electrocoagulation and Electrooxidation Treatment Train to Remove and Degrade Per- and Polyfluoroalkyl Substances in Aqueous Solution. Sci. Total Environ. 2021, 788, 147723. [Google Scholar] [CrossRef] [PubMed]
- Maher, E.K.; O’Malley, K.N.; Dollhopf, M.E.; Mayer, B.K.; McNamara, P.J. Removal of Estrogenic Compounds from Water via Energy Efficient Sequential Electrocoagulation-Electrooxidation. Environ. Eng. Sci. 2020, 37, 99–108. [Google Scholar] [CrossRef]
- Aseman-Bashiz, E.; Sayyaf, H. Synthesis of Nano-FeS2 and Its Application as an Effective Activator of Ozone and Peroxydisulfate in the Electrochemical Process for Ofloxacin Degradation: A Comparative Study. Chemosphere 2021, 274, 129772. [Google Scholar] [CrossRef]
- Bahadur, N.; Bhargava, N. TERI Advanced Oxidation Technology (TADOX®) to Treat Industrial Wastewater with Integration at Pre- and Post-Biological Stage: Case Studies from India. Water Pract. Technol. 2022, 17, 1692–1705. [Google Scholar] [CrossRef]
- Mehdaoui, R.; Agren, S.; El Haskouri, J.; Beyou, E.; Lahcini, M.; Baouab, M.H.V. An Optimized Sono-Heterogeneous Fenton Degradation of Olive-Oil Mill Wastewater Organic Matter by New Magnetic Glutarlaldehyde-Crosslinked Developed Cellulose. Environ. Sci. Pollut. Res. 2023, 30, 20450–20468. [Google Scholar] [CrossRef]
- Giraldo-Loaiza, C.; Salazar-Loaiza, A.M.; Sandoval-Barrera, M.A.; Macías-Quiroga, I.F.; Ocampo-Serna, D.M.; Sanabria-González, N.R. Integration of Ion Exchange—AOP—Biological System for the Treatment of Real Textile Wastewater. ChemEngineering 2024, 8, 76. [Google Scholar] [CrossRef]
- Senthil Rathi, B.; Senthil Kumar, P.; Sanjay, S.; Prem Kumar, M.; Rangasamy, G. Artificial Intelligence Integration in Conventional Wastewater Treatment Techniques: Techno-Economic Evaluation, Recent Progress and Its Future Direction. Int. J. Environ. Sci. Technol. 2024, 22, 633–658. [Google Scholar] [CrossRef]
- Joy, V.M.; Feroz, S.; Dutta, S. Artificial Intelligence-Based Multiobjective Optimization of Reverse Osmosis Desalination Pretreatment Using a Hybrid ZnO-Immobilized/Photo-Fenton Process. J. Chemom. 2022, 36, e3434. [Google Scholar] [CrossRef]
- Behera, S.K.; Karthika, S.; Mahanty, B.; Meher, S.K.; Zafar, M.; Baskaran, D.; Rajamanickam, R.; Das, R.; Pakshirajan, K.; Bilyaminu, A.M.; et al. Application of Artificial Intelligence Tools in Wastewater and Waste Gas Treatment Systems: Recent Advances and Prospects. J. Environ. Manag. 2024, 370, 122386. [Google Scholar] [CrossRef]
- Dong, J.; Chen, Y.; Yao, B.; Zhang, X.; Zeng, N. A Neural Network Boosting Regression Model Based on XGBoost. Appl. Soft Comput. 2022, 125, 109067. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, Y.; Shang, Y. Research and Application of XGBoost in Imbalanced Data. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221. [Google Scholar] [CrossRef]
- Liu, S.; Long, Z.; Liu, H.; Zhang, J.; Zhang, G.; Liang, J. Machine Learning Predict the Degradation Efficiency of Aqueous Refractory Organic Pollutants by Ultrasound-Based Advanced Oxidation Processes. J. Water Process Eng. 2024, 66, 106022. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.M.; Suhail Hussain, S.M.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Huang, R.; Ma, C.; Ma, J.; Huangfu, X.; He, Q. Machine Learning in Natural and Engineered Water Systems. Water Res. 2021, 205, 117666. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Montes-Pena, K.D.; Romero-Cano, L.A.; Zarate-Guzman, A.I. Development of an Artificial Neural Network (ANN) for the Prediction of a Pilot Scale Mobile Wastewater Treatment Plant Performance. J. Environ. Manag. 2024, 366, 121612. [Google Scholar] [CrossRef]
- Rather, I.H.; Kumar, S.; Gandomi, A.H. Breaking the Data Barrier: A Review of Deep Learning Techniques for Democratizing AI with Small Datasets. Artif. Intell. Rev. 2024, 57, 1–61. [Google Scholar] [CrossRef]
- Tran, N.K.; Kühle, L.C.; Klau, G.W. A Critical Review of Multi-Output Support Vector Regression. Pattern Recognit. Lett. 2024, 178, 69–75. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Achak, M.; Chennouk, H.; Dewil, R.; Barka, N. The State of Art on the Prediction of Efficiency and Modeling of the Processes of Pollutants Removal Based on Machine Learning. Sci. Total Environ. 2022, 807, 150554. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, Y.J.; Wang, Y.T.; Li, J.G.; Zeng, Y.N.; Guo, H.W.; Liu, H.; Dong, K.L.; Zhang, L.Y. Application and Innovation of Artificial Intelligence Models in Wastewater Treatment. J. Contam. Hydrol. 2024, 267, 104426. [Google Scholar] [CrossRef] [PubMed]
- Ismail, U.M.; Bani-Melhem, K.; Khan, M.F.; Elnakar, H. Optimizing Membrane Bioreactor Performance in Wastewater Treatment Using Machine Learning and Meta-Heuristic Techniques. Results Eng. 2025, 25, 104626. [Google Scholar] [CrossRef]
- Acosta-Angulo, B.; Diaz-Angulo, J.; Lara-Ramos, J.; Torres-Palma, R.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Machuca-Martínez, F. Analysis of the Applications of Particle Swarm Optimization and Genetic Algorithms on Reaction Kinetics: A Prospective Study for Advanced Oxidation Processes. ChemElectroChem 2022, 9, e202200229. [Google Scholar] [CrossRef]
- Shirkoohi, M.G.; Tyagi, R.D.; Vanrolleghem, P.A.; Drogui, P. Artificial Intelligence Techniques in Electrochemical Processes for Water and Wastewater Treatment: A Review. J. Environ. Health Sci. Eng. 2022, 20, 1089–1109. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Tong, H.; Sun, B.; Liu, Y.; Ren, N.; You, S. Machine Learning Models for Inverse Design of the Electrochemical Oxidation Process for Water Purification. Environ. Sci. Technol. 2023, 57, 17990–18000. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, J.; Shao, X.; Jiang, Y.; Yu, J.; Deng, S.; Li, P. Interpretable Artificial Intelligence for Advanced Oxidation Systems: Principle, Operations and Performance. Process Saf. Environ. Prot. 2023, 180, 242–259. [Google Scholar] [CrossRef]
- Serna-Carrizales, J.C.; Zárate-Guzmán, A.I.; Flores-Ramírez, R.; Díaz de León-Martínez, L.; Aguilar-Aguilar, A.; Warren- Vega, W.M.; Bailón-García, E.; Ocampo-Pérez, R. Application of Artificial Intelligence for the Optimization of Advanced Oxidation Processes to Improve the Water Quality Polluted with Pharmaceutical Compounds. Chemosphere 2024, 351, 141216. [Google Scholar] [CrossRef]
- Wang, R.; Chen, H.; He, Z.; Zhang, S.; Wang, K.; Ren, N.; Ho, S.H. Discovery of an End-to-End Pattern for Contaminant-Oriented Advanced Oxidation Processes Catalyzed by Biochar with Explainable Machine Learning. Environ. Sci. Technol. 2024, 58, 16867–16876. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, W.; Wei, H.; Sun, C. Application of Artificial Intelligence for Predicting Reaction Results in Advanced Oxidation Processes. Environ. Technol. Innov. 2021, 23, 101550. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Singh, K.; Choudhary, A.; Brighu, U.; Singh, S.K.; Bhattacharya, S. Combined Advanced Oxidation Dye-Wastewater Treatment Plant: Design and Development with Data-Driven Predictive Performance Modeling. NPJ Clean. Water 2024, 7, 15. [Google Scholar] [CrossRef]
- Hübner, U.; Spahr, S.; Lutze, H.; Wieland, A.; Rüting, S.; Gernjak, W.; Wenk, J. Advanced Oxidation Processes for Water and Wastewater Treatment—Guidance for Systematic Future Research. Heliyon 2024, 10, e30402. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, P.; Smallridge, A.; Irtassam, A.; Yeager, T. Scalable Production of Hydroxyl Radicals (.OH) via Homogeneous Photolysis of Hydrogen Peroxide Using a Continuous-Flow Photoreactor. Chem. Eng. J. 2022, 427, 131762. [Google Scholar] [CrossRef]
- Xia, X.; Zhu, F.; Li, J.; Yang, H.; Wei, L.; Li, Q.; Jiang, J.; Zhang, G.; Zhao, Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front. Chem. 2020, 8, 592056. [Google Scholar] [CrossRef]
- Sharma, V.K. Oxidative Transformations of Environmental Pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): Kinetics Assessment. Chemosphere 2008, 73, 1379–1386. [Google Scholar] [CrossRef]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Amaeze, N.; Richardson, K.; Mackay, W.; Rateb, M.E.; Yaseen, M. Stabilisation of Ozone in Water for Microbial Disinfection. Environments 2022, 9, 45. [Google Scholar] [CrossRef]
- Ntelane, T.S.; Feleni, U.; Mthombeni, N.H.; Kuvarega, A.T. Sulfate Radical-Based Advanced Oxidation Process (SR-AOP) on Titania Supported Mesoporous Dendritic Silica (TiO2/MDS) for the Degradation of Carbamazepine and Other Water Pollutants. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130276. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Yan, W.; Yang, S.; Wu, K.; Wang, G.; Jin, P.; Wei, J. Peroxymonosulfate Activation by Mesoporous CuO Nanocage for Organic Pollutants Degradation via a Singlet Oxygen-Dominated Pathway. J. Environ. Chem. Eng. 2021, 9, 106757. [Google Scholar] [CrossRef]
- Peng, H.; Tong, J.; Huang, J.; Yang, Z.; Xiong, W.; Yao, Y.; Xiang, Y.; Xu, Z. In-Situ Immobilization of MIL-100(Fe) on the Microchannels in Wood Aerogel: Efficient Persulfate Activation toward Antibiotic Removal. Sep. Purif. Technol. 2023, 321, 124195. [Google Scholar] [CrossRef]
- Wang, J.S.; Yi, X.H.; Xu, X.; Ji, H.; Alanazi, A.M.; Wang, C.C.; Zhao, C.; Kaneti, Y.V.; Wang, P.; Liu, W.; et al. Eliminating Tetracycline Antibiotics Matrix via Photoactivated Sulfate Radical-Based Advanced Oxidation Process over the Immobilized MIL-88A: Batch and Continuous Experiments. Chem. Eng. J. 2022, 431, 133213. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical Review of the Science and Sustainability of Persulphate Advanced Oxidation Processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced Oxidation Processes: Performance, Advantages, and Scale-up of Emerging Technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef] [PubMed]
- Feijoo, S.; Yu, X.; Kamali, M.; Appels, L.; Dewil, R. Generation of Oxidative Radicals by Advanced Oxidation Processes (AOPs) in Wastewater Treatment: A Mechanistic, Environmental and Economic Review. Rev. Environ. Sci. Bio/Technol. 2023, 22, 205–248. [Google Scholar] [CrossRef]
- Mahbub, P.; Sharma, A. Investigation of Alternative Water Sources for Fish Farming Using Life Cycle Costing Approach: A Case Study in North West Tasmania. J. Hydrol. (Amst.) 2019, 579, 124215. [Google Scholar] [CrossRef]
- Keen, O.; Bolton, J.; Litter, M.; Bircher, K.; Oppenländer, T. Standard Reporting of Electrical Energy per Order (EEO) for UV/H2O2 Reactors (IUPAC Technical Report). Pure Appl. Chem. 2018, 90, 1487–1499. [Google Scholar] [CrossRef]
- Prisciandaro, M.; Innocenzi, V. Advanced Wastewater Oxidation Processes and Their Role in Water Reuse for a Circular Economy. In Water Management and Circular Economy; Zamparas, M.G., Kyriakopoulos, G.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 81–102. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment—A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Barndõk, H.; Hermosilla, D.; Negro, C.; Blanco, Á. Comparison and Predesign Cost Assessment of Different Advanced Oxidation Processes for the Treatment of 1,4-Dioxane-Containing Wastewater from the Chemical Industry. ACS Sustain. Chem. Eng. 2018, 6, 5888–5894. [Google Scholar] [CrossRef]
- Fabregat, V.; Pagán, J.M. Technical–Economic Feasibility of a New Method of Adsorbent Materials and Advanced Oxidation Techniques to Remove Emerging Pollutants in Treated Wastewater. Water 2024, 16, 814. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Sable, S.; Gamal El-Din, M. Advanced Oxidation Processes for the Degradation of Dissolved Organics in Produced Water: A Review of Process Performance, Degradation Kinetics and Pathway. Chem. Eng. J. 2022, 429, 132492. [Google Scholar] [CrossRef]
- Cornejo, O.M.; Murrieta, M.F.; Aguilar, Z.G.; Rodríguez, J.F.; Márquez, A.A.; León, M.I.; Nava, J.L. Recent Advances in Electrochemical Flow Reactors Used in Advanced Oxidation Processes: A Critical Review. Chem. Eng. J. 2024, 496, 153935. [Google Scholar] [CrossRef]
- Pattnaik, A.; Sahu, J.N.; Poonia, A.K.; Ghosh, P. Current Perspective of Nano-Engineered Metal Oxide Based Photocatalysts in Advanced Oxidation Processes for Degradation of Organic Pollutants in Wastewater. Chem. Eng. Res. Des. 2023, 190, 667–686. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Rosales, E.; Pazos, M.; Sanroman, A. Metal–Organic Frameworks as Powerful Heterogeneous Catalysts in Advanced Oxidation Processes for Wastewater Treatment. Appl. Sci. 2022, 12, 8240. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Zhang, Y.; Guo, G.; Yang, J.; Yuan, S.; Van der Bruggen, B. Efficient Activity of CoCu@SiC Catalytic Ceramic Membrane via H2 Reduction Treatment for Pollutants Degradation. Chem. Eng. J. 2024, 496, 154017. [Google Scholar] [CrossRef]
- Nagpal, M.; Siddique, M.A.; Sharma, K.; Sharma, N.; Mittal, A. Optimizing Wastewater Treatment through Artificial Intelligence: Recent Advances and Future Prospects. Water Sci. Technol. 2024, 90, 731–757. [Google Scholar] [CrossRef] [PubMed]
- Clímaco Cunha, I.L.; Machado, P.G.; de Oliveira Ribeiro, C.; Kulay, L. Bibliometric Analysis of Advanced Oxidation Processes Studies with a Focus on Life Cycle Assessment and Costs. Environ. Sci. Pollut. Res. 2024, 31, 22319–22338. [Google Scholar] [CrossRef]
AOP Type | Unique Advantages | Unique Limitations |
---|---|---|
Ozone Oxidation | Leaves no harmful residues; effective disinfection | High energy consumption |
Electrochemical Oxidation | Environmentally friendly; precise control over conditions | High energy consumption; electrode degradation; influenced by wastewater conductivity |
Fenton Oxidation | Simple and rapid; uses inexpensive reagents | Requires acidic conditions; generates iron sludge; less effective with certain ions |
Photolysis/Photocatalysis | Potential for complete mineralization; no chemical additives | Energy-intensive UV light sources; reduced efficiency in turbid waters; catalyst recovery challenges |
Radiation | Treats a wide range of contaminants; simultaneous disinfection | High operational costs; safety concerns; regulatory challenges |
Sonolysis | Operates under ambient conditions; no chemical additives | Energy intensive |
Category | Process | Key Limitations |
---|---|---|
Solar-Driven AOPs | Solar Photo-Fenton | Requires acidic conditions for Fe2+ conversion, leading to acid usage and sludge formation, reducing large-scale viability. |
Solar Photocatalysis | TiO2 has a wide band gap, limiting its activity to UV-A light; visible-light absorption improvements remain limited. | |
Radiation-Driven AOPs | UV/H2O2, UV/O3 | High energy consumption, limited UV penetration depth in water, and formation of harmful byproducts like bromates and chlorinated compounds. |
Catalytic AOPs | Fenton Process | Narrow operational pH range and high sludge generation. |
Heterogeneous Fenton | Issues with catalyst stability, leaching, and reduced long-term activity. | |
Catalytic Ozonation | Requires cost-effective and durable catalysts for industrial scalability. | |
Emerging AOPs | Sonolysis | High energy demand makes large-scale application economically unfeasible. |
Plasma-Based AOPs | Challenges in reactor design and energy efficiency limit widespread adoption. | |
Combined/Integrated AOPs | Peroxone, Sono-Photocatalysis, Photo-Fenton Coupling | Optimization for diverse wastewater streams is complex, requiring precise operational control. |
AOP-Biological Integration | Requires effective pretreatment, making it resource-intensive. |
AOP System | AI/ML Method | Application |
---|---|---|
Electrochemical Oxidation (EO) | XGBoost | Predicting reaction rate constants for optimizing pollutant degradation. |
Catalytic AOPs (CWAO, CAOP, EO) | ANN, SHAP | Modeling performance and analyzing operational parameters for optimization. |
UV/H2O2 and Ozonation | ANN | Predicting degradation efficiency of pharmaceutical pollutants. |
Biochar-Catalyzed Peroxymonosulfate (BC-PMS) | XGBoost | Predicting reaction rate constants and enabling contaminant-oriented strategies. |
CWAO, CWPO, and WEO | ANN | Optimizing TOC and COD removal efficiencies. |
Solar-Triggered AOP with Pre-Treatment Unit | MLR, ANN | Predicting water quality parameters for a zero liquid discharge system. |
ROS | Half-Life | Primary Precursors | Portability |
---|---|---|---|
Hydroxyl (•OH) | 10−10 s | H2O2, O3 + UV | In situ production only |
Sulfate (SO4•−) | 30–40 µs | Peroxymonosulfates, peroxydisulfates | In situ production only |
Hydrogen peroxide (H2O2) | Stable for hours | Chemical synthesis | Transportable |
Ozone (O3) | 11–39 min | Corona discharge | Transportable |
Hypochlorous acid (HClO) | 10 min–several hours | NaCl, NaOCl | Transportable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satyam, S.; Patra, S. The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations. Processes 2025, 13, 987. https://doi.org/10.3390/pr13040987
Satyam S, Patra S. The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations. Processes. 2025; 13(4):987. https://doi.org/10.3390/pr13040987
Chicago/Turabian StyleSatyam, Satyam, and Sanjukta Patra. 2025. "The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations" Processes 13, no. 4: 987. https://doi.org/10.3390/pr13040987
APA StyleSatyam, S., & Patra, S. (2025). The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations. Processes, 13(4), 987. https://doi.org/10.3390/pr13040987