Advanced Oxidation Processes in Water Treatment

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Environmental and Green Processes".

Deadline for manuscript submissions: closed (6 February 2025) | Viewed by 3353

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Ingeniería Química, Industrial y de Alimentos, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe 01219, Mexico
Interests: Fenton-like processes; sustainable process; electrochemical advanced oxidation processes

E-Mail Website
Guest Editor
Facultad de Ingeniería Y Administración, Universidad Nacional de Colombia−Sede Palmira, Carrera 32 No. 12−00, Chapinero, Vía Candelaria, Palmira, Colombia
Interests: Fenton processes; environmental performance of Fenton processes; wastewater treatment

E-Mail Website
Guest Editor
Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
Interests: photoelectrocatalysis; electrochemical advanced oxidation processes; emerging composite sensors

Special Issue Information

Dear Colleagues,

Water resources are crucial and valuable for everyone. However, in recent years, due to industrial water use and serious water pollution, knowing how to achieve sustainable availability of water resources is becoming a heated topic for researchers. Advanced oxidation processes (AOPs) are important chemical treatment procedures which can be widely applied in water treatment, such as in the purification and remediation of water resources. A number of outstanding scholars have made contributions by exploring oxidation techniques to degrade organic pollutants, remove contaminants, and disinfect water. Water scarcity and high-efficiency utilization are under increasing threat. By exploring and improving AOPs, we aim to promote sustainable and effective water treatment solutions, addressing the growing global demand for clean and safe water resources.

This Special Issue aims to showcase the latest advancements in advanced oxidation processes (AOPs) and their applications in water treatment. Topics include, but are not limited to, advanced oxidation processes, wastewater treatment, and optimization strategies centred around sustainable water utilization. We look forward to receiving your contributions and fostering meaningful discussions in this important field.

Prof. Dr. Ruben Vasquez-Medrano
Dr. Dorian Prato-Garcia
Prof. Dr. Patricio J. Espinoza-Montero
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced oxidation processes (AOPs)
  • wastewater treatment
  • sustainable water treatment
  • homogeneous and heterogeneous AOPs
  • hydroxyl radical
  • Fenton-like processes
  • photo-Fenton-like processes
  • combination of AOPs
  • optimization strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 5031 KiB  
Article
The Electrooxidation of Synthetic Bipyridyl Herbicide Wastewaters with Boron-Doped Diamond Electrodes: A Technical and Economic Study to Boost Their Application for Pollution Prevention in the Agricultural Sector
by Elia Alejandra Teutli-Sequeira, Ruben Vasquez-Medrano, Dorian Prato-Garcia and Jorge G. Ibanez
Processes 2024, 12(11), 2486; https://doi.org/10.3390/pr12112486 - 8 Nov 2024
Cited by 1 | Viewed by 854
Abstract
Boron-doped diamond electrodes (BDDEs) offer a highly efficient pathway to mineralize recalcitrant compounds due to their reduced energy requirements, fewer chemical inputs, and mechanical stability. In this work, the electrochemical degradation of paraquat (PQ) and diquat (DQ) was studied using an undivided cell [...] Read more.
Boron-doped diamond electrodes (BDDEs) offer a highly efficient pathway to mineralize recalcitrant compounds due to their reduced energy requirements, fewer chemical inputs, and mechanical stability. In this work, the electrochemical degradation of paraquat (PQ) and diquat (DQ) was studied using an undivided cell (Condiacell®-type) at circumneutral pH, and under galvanostatic control. The roles of applied current density, volumetric flow rate, and herbicide concentration were systematically studied through a central composite design (CCD) using a closed-flow reaction setup. Under the best operating conditions (i.e., for PQ: 1.6 mA/cm2, 80 mL/min, and 70 mL/min, and 70 mg/L; and for DQ: 1.5 mA/cm2, 80 mL/min, and 73 mg/L), a spectrophotometric analysis evidenced that the herbicides were satisfactorily removed (ca. 100%) while mineralization degrees were above 90%. Furthermore, the produced effluents yielded significant increases in seed germination and root length, which suggest a reduction in toxicity. Energy consumptions of 0.13 and 0.18 kWh/g of TOC are reported with the electrochemical cells for the PQ and DQ treatments, respectively. The PQ and DQ treatments by electrooxidation are estimated to emit nearly 2.7 and 38.9 kg CO2/m3 of water treated, with a cost around USD 250/m3. Carbon emissions could be greatly decreased for PQ (0.28 kg CO2/m3) and DQ (0.40 kg CO2/m3) if electricity were generated from renewable resources. Although this study suggests that the use of BDDE can be considered as a green alternative for agrochemical removal due to lower carbon emissions, the environmental profile of the process is determined by the degree of renewability of the electrical grid of each country or region. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 6092 KiB  
Review
The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations
by Satyam Satyam and Sanjukta Patra
Processes 2025, 13(4), 987; https://doi.org/10.3390/pr13040987 - 26 Mar 2025
Viewed by 1081
Abstract
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals [...] Read more.
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals and reactive oxygen species (ROS) to mineralize complex pollutants. Homogeneous systems such as Fenton’s reagent show high degradation efficiency. However, challenges like pH sensitivity, catalyst recovery issues, sludge generation, and energy-intensive operations limit their scalability. Heterogeneous catalysts, such as TiO2-based photocatalysts and Fe3O4 composites, offer improved pH adaptability, visible-light activation, and recyclability. Emerging innovations like ultraviolet light emitting diode (UV-LED)-driven systems, plasma-assisted oxidation, and artificial intelligence (AI)-enhanced hybrid reactors demonstrate progress in energy efficiency and process optimization. Nevertheless, key challenges remain, including secondary byproduct formation, mass transfer constraints, and economic feasibility for large-scale applications. Integrating AOPs with membrane filtration or biological treatments enhances treatment synergy, while advances in materials science and computational modeling refine catalyst design and reaction mechanisms. Addressing barriers in energy use, catalyst durability, and practical adaptability requires multidisciplinary collaboration. This review highlights AOPs as pivotal solutions for water security amid growing environmental pollution, urging targeted research to bridge gaps between laboratory success and real-world implementation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

Back to TopTop