Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = ultrathin porous films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 8692 KiB  
Review
Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
by Lianlu Wan, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu and Xiangdong Huo
Polymers 2025, 17(9), 1237; https://doi.org/10.3390/polym17091237 - 30 Apr 2025
Viewed by 828
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct [...] Read more.
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm−1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid–liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg−1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3715 KiB  
Article
Carbon Nitride Nanosheets as an Adhesive Layer for Stable Growth of Vertically-Ordered Mesoporous Silica Film on a Glassy Carbon Electrode and Their Application for CA15-3 Immunosensor
by Jun Xing, Hongxin Wang and Fei Yan
Molecules 2024, 29(18), 4334; https://doi.org/10.3390/molecules29184334 - 12 Sep 2024
Cited by 9 | Viewed by 1130
Abstract
Vertically ordered mesoporous silica films (VMSF) are a class of porous materials composed of ultrasmall pores and ultrathin perpendicular nanochannels, which are attractive in the areas of electroanalytical sensors and molecular separation. However, VMSF easily falls off from the carbonaceous electrodes and thereby [...] Read more.
Vertically ordered mesoporous silica films (VMSF) are a class of porous materials composed of ultrasmall pores and ultrathin perpendicular nanochannels, which are attractive in the areas of electroanalytical sensors and molecular separation. However, VMSF easily falls off from the carbonaceous electrodes and thereby impacts their broad applications. Herein, carbon nitride nanosheets (CNNS) were served as an adhesive layer for stable growth of VMSF on the glassy carbon electrode (GCE). CNNS bearing plentiful oxygen-containing groups can covalently bind with silanol groups of VMSF, effectively promoting the stability of VMSF on the GCE surface. Benefiting from numerous open nanopores of VMSF, modification of VMSF’s external surface with carbohydrate antigen 15-3 (CA15-3)-specific antibody allows the target-controlled transport of electrochemical probes through the internal silica nanochannels, yielding sensitive quantitative detection of CA15-3 with a broad detection range of 1 mU/mL to 1000 U/mL and a low limit of detection of 0.47 mU/mL. Furthermore, the proposed VMSF/CNNS/GCE immunosensor is capable of highly selective and accurate determination of CA15-3 in spiked serum samples, which offers a simple and effective electrochemical strategy for detection of various practical biomarkers in complicated biological specimens. Full article
(This article belongs to the Special Issue Two-Dimensional Materials: From Synthesis to Applications)
Show Figures

Figure 1

12 pages, 5023 KiB  
Article
Carbon Nanotube–Carbon Nanocoil Hybrid Film Decorated by Amorphous Silicon as Anodes for Lithium-Ion Batteries
by Huan Chen, Chen Wang, Zeng Fan, Chuanhui Cheng, Liang Hao and Lujun Pan
J. Compos. Sci. 2024, 8(9), 350; https://doi.org/10.3390/jcs8090350 - 6 Sep 2024
Cited by 1 | Viewed by 1453
Abstract
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion [...] Read more.
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion of Si coated on Cu (copper) foil during cycles. In order to solve this problem, researchers have used an ultra-thin Si deposition layer as the electrode, which improves cyclic stability and obtains high initial coulomb efficiency of LIBs. However, suitable substrate selection is crucial to fabricate an ultrathin Si deposition layer electrode with excellent performance, and a substrate with a three-dimensional porous structure is desirable to ensure the deposition of an ultrathin Si layer on the whole surface of the substrate. In this paper, the Si thin layer has been deposited on a binder-free hybrid film of carbon nanotubes (CNTs) and carbon nanocoils (CNCs) by magnetron sputtering. Compared with densely packed CNT film and flat Cu foil, the loose and porous film provides a large surface area and space for Si deposition, and Si can be deposited not only on the surface but also in the interior part of the film. The film provides a large number of channels for the diffusion and transmission of Li+, resulting in the rapid diffusion rate of Li+, which improves the effective lithium storage utilization of Si. Furthermore, the CNC itself is super elastic, and film provides an elastic skeleton for the Si deposition layer, which eases its volume expansion during charge and discharge processes. Electrochemical tests have showed that the Si/CNT–CNC film electrode has excellent performance as anode for LIBs. After 200 cycles, the Si/CNT–CNC film electrode still had possessed a specific capacity of 2500 mAh/g, a capacity retention of 92.8% and a coulomb efficiency of 99%. This paper provides an effective way to fabricate high performance Si-nanocarbon composite electrodes for LIBs. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

14 pages, 3115 KiB  
Article
Addition of a Polar, Porous Phase-Inversion-PVDF Membrane to Lithium–Sulfur Cells (LSBs) Already with a Microporous Polypropylene Separator Enhances the Battery Performance
by Irshad Mohammad, Luke D. J. Barter, Carol Crean and Robert C. T. Slade
Batteries 2024, 10(8), 293; https://doi.org/10.3390/batteries10080293 - 21 Aug 2024
Viewed by 2327
Abstract
Lithium–sulfur batteries (LSBs) are widely studied as an alternative to lithium-ion batteries, this emphasis being due to their high theoretical energy density and low cost, and to the high natural abundance of sulfur. Lithium polysulfide shuttling and lithium dendrite growth have limited their [...] Read more.
Lithium–sulfur batteries (LSBs) are widely studied as an alternative to lithium-ion batteries, this emphasis being due to their high theoretical energy density and low cost, and to the high natural abundance of sulfur. Lithium polysulfide shuttling and lithium dendrite growth have limited their commercialization. Porous polyvinylidene fluoride (PVDF) separators have shown improved performance (relative to hydrocarbon separators) in lithium-ion batteries due to faster lithium-ion migration and higher Li+ transference number. A thin polar PVDF membrane has now been fabricated via phase inversion (an immersion-precipitation method) yielding a β (polar) phase concentration of 72%. Preparation from commercial PVDF used dimethylformamide (DMF) solvent at the optimized crystallizing temperature of 70 °C, and pores in the membrane were generated by exchange of DMF with deionized water as non-solvent. The polar PVDF film produced has the advantages of being ultrathin (15 µm), lightweight (1.15 mg cm−2), of high porosity (75%) and high wettability (84%), and it shows enhanced thermal stability relative to polypropylene (PP). The porous, polar PVDF membrane was combined with a commercially available PP membrane to give a hybrid, two-layer, separator combination for LSBs. A synergy was created in the two-layer separator, providing high sulfur utilization and curbing polysulfide shuttling. The electrochemical performance with the hybrid separator (PP–β-PVDF) was evaluated in LSB cells and showed good cyclability and rate capability: those LSB cells showed a stable capacity of 750 mA h g−1 after 100 cycles at 0.1 C, much higher than that for otherwise-identical cells using a commercial PP-only separator (480 mA h g−1). Full article
(This article belongs to the Special Issue Energy-Dense Metal–Sulfur Batteries)
Show Figures

Figure 1

14 pages, 3715 KiB  
Article
Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application
by Masato Imai, Tadahiko Kubota, Atsushi Miyazawa, Masahiro Aoki, Haruna Mori, Yuta Komaki and Kenji Yoshino
Crystals 2024, 14(2), 195; https://doi.org/10.3390/cryst14020195 - 17 Feb 2024
Cited by 1 | Viewed by 1835
Abstract
Aluminum oxide (Al2O3) films have been investigated for use in various applications, and numerous deposition techniques have been reported. The spray synthesis method has the advantage of forming a thin layer of crystal at low temperatures using the appropriate [...] Read more.
Aluminum oxide (Al2O3) films have been investigated for use in various applications, and numerous deposition techniques have been reported. The spray synthesis method has the advantage of forming a thin layer of crystal at low temperatures using the appropriate precursors. A precursor prepared by diluting Methylaluminoxane with N-methyl pyrrolidone was sprayed onto a porous membrane while varying conditions such as the substrate temperature, feeding speed, and spray amount. The solution penetrated the film during spray application, and the ultra-thin layers deposited on the side wall of the internal pores were observed using a cross-sectional transmission electron microscope (XTEM). The lattice image obtained using the TEM and the composition analysis conducted using a scanning TEM and an energy-dispersive X-ray spectroscope suggest that this thin layer is a layer of Al2O3. The formation of Al2O3 occurred at lower temperatures than in previous reports. This is a major advantage for applications with low-melting-point materials. The most suitable spraying conditions were determined based on the state of deposition on the surface and inside the membrane. These conditions were applied to a three-layer separator for lithium-ion batteries and their effect on thermal stability was investigated. Through heating experiments and XRD analysis, it was confirmed that the shrinkage and melting of the separator are suppressed by spraying. This process can be expected to have wide applications in low-melting-point materials such as polyolefin. Full article
Show Figures

Figure 1

34 pages, 7127 KiB  
Article
On the Measurements of the Surface-Enhanced Raman Scattering Spectrum: Effective Enhancement Factor, Optical Configuration, Spectral Distortion, and Baseline Variation
by Yiping Zhao
Nanomaterials 2023, 13(23), 2998; https://doi.org/10.3390/nano13232998 - 22 Nov 2023
Cited by 9 | Viewed by 2224
Abstract
In this paper, a comprehensive theoretical framework for understanding surface-enhanced Raman scattering (SERS) measurements in both solution and thin-film setups, focusing on electromagnetic enhancement principles, was presented. Two prevalent types of SERS substrates found in the literature were investigated: plasmonic colloidal particles, including [...] Read more.
In this paper, a comprehensive theoretical framework for understanding surface-enhanced Raman scattering (SERS) measurements in both solution and thin-film setups, focusing on electromagnetic enhancement principles, was presented. Two prevalent types of SERS substrates found in the literature were investigated: plasmonic colloidal particles, including spherical and spheroid nanoparticles, nanoparticle diameters, and thin-film-based SERS substrates, like ultra-thin substrates, bundled nanorods, plasmonic thin films, and porous thin films. The investigation explored the impact of analyte adsorption, orientation, and the polarization of the excitation laser on effective SERS enhancement factors. Notably, it considered the impact of analyte size on the SERS spectrum by examining scenarios where the analyte was significantly smaller or larger than the hot spot dimensions. The analysis also incorporated optical attenuations arising from the optical properties of the analyte and the SERS substrates. The findings provide possible explanations for many observations made in SERS measurements, such as variations in relative peak intensities during SERS assessments, reductions in SERS intensity at high analyte concentrations, and the occurrence of significant baseline fluctuations. This study offers valuable guidance for optimizing SERS substrate design, enhancing SERS measurements, and improving the quantification of SERS detection. Full article
Show Figures

Figure 1

18 pages, 7822 KiB  
Article
A Study on the Synthesis and Proton Transport Behavior of Multilayered ZSM-5 Zeolite Nanosheet Membranes Laminated on Polymer Substrates
by Zishu Cao, Landysh Iskhakova, Xinhui Sun and Junhang Dong
Membranes 2023, 13(3), 305; https://doi.org/10.3390/membranes13030305 - 6 Mar 2023
Cited by 1 | Viewed by 2272
Abstract
Single crystalline ZSM-5 ZNs with thicknesses around 6 nm were obtained by secondary growth of silicalite nanoparticles using diquaternary bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC5) as a structure-directing agent (SDA). The dC5 could be effectively removed from the ZN pores by [...] Read more.
Single crystalline ZSM-5 ZNs with thicknesses around 6 nm were obtained by secondary growth of silicalite nanoparticles using diquaternary bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC5) as a structure-directing agent (SDA). The dC5 could be effectively removed from the ZN pores by either high-temperature calcination or UV irradiation in air at room temperature but not by the piranha solution treatment. Ultrathin ZN-laminated membranes (ZNLMs) were fabricated by sandwiching a UV-activated multilayered ZN film between two recast Nafion® layers (ZNLM-Nafion) and by filtration coating from a suspension of thermally activated ZNs on a nonionic porous PVDF (ZNLM-PVDF). The ZNLMs on both supports demonstrated the ability of highly proton-selective ion conduction with low resistances in aqueous electrolyte solutions. The ZNLM-PVDF with PVDF binder was structurally stable, and it achieved a comparably low ASR but much higher proton selectivity compared with a Nafion membrane of same overall thickness. However, detachment between the ZNLM and Nafion layers occurred when the ZNLM-Nafion operated in aqueous electrolyte solutions. Results of this study show the potential for developing ZNLMs as efficient proton-conducting membranes without using expensive ionic polymer matrices. However, the development of polymer-supported ZNLMs is hindered by the current inefficiency in preparing well-dispersed suspensions of open-pore ZNs. Future development of efficient methods for synthesizing open-pore ZNs in dispersed states is key to realizing high-performance ZNLMs on polymers. Full article
(This article belongs to the Special Issue Recent Progress in Synthesis and Application of Zeolite Membrane)
Show Figures

Figure 1

17 pages, 7174 KiB  
Article
Mitigating of Thin-Film Composite PTMSP Membrane Aging by Introduction of Porous Rigid and Soft Branched Polymeric Additives
by Danila S. Bakhtin, Alexander O. Malakhov, Alexey V. Volkov, Leonid A. Kulikov, Inna V. Petrova, Ilya L. Borisov and Stepan D. Bazhenov
Membranes 2023, 13(1), 21; https://doi.org/10.3390/membranes13010021 - 23 Dec 2022
Cited by 6 | Viewed by 2670
Abstract
This work was focused on the mitigation of physical aging in thin-film composite (TFC) membranes (selective layer ~1 μm) based on polymer intrinsic microporosity (PTMSP) by the introduction of both soft, branched polyethyleneimine (PEI), and rigid, porous aromatic framework PAF-11, polymer additives. Self-standing [...] Read more.
This work was focused on the mitigation of physical aging in thin-film composite (TFC) membranes (selective layer ~1 μm) based on polymer intrinsic microporosity (PTMSP) by the introduction of both soft, branched polyethyleneimine (PEI), and rigid, porous aromatic framework PAF-11, polymer additives. Self-standing mixed-matrix membranes of thicknesses in the range of 20–30 μm were also prepared with the same polymer and fillers. Based on 450 days of monitoring, it was observed that the neat PTMSP composite membrane underwent a severe decline of its gas transport properties, and the resultant CO2 permeance was 14% (5.2 m3 (STP)/(m2·h·bar)) from the initial value measured for the freshly cast sample (75 m3 (STP)/(m2·h·bar)). The introduction of branched polyethyleneimine followed by its cross-linking allowed to us to improve the TFC performance maintaining CO2 permeance at the level of 30% comparing with day zero. However, the best results were achieved by the combination of porous, rigid and soft, branched polymeric additives that enabled us to preserve the transport characteristics of TFC membrane as 43% (47 m3 (STP)/(m2·h·bar) after 450 days) from its initial values (110 m3 (STP)/(m2·h·bar)). Experimental data were fitted using the Kohlrausch–Williams–Watts function, and the limiting (equilibrium) values of the CO2 and N2 permeances of the TFC membranes were estimated. The limit value of CO2 permeance for neat PTMSP TFC membrane was found to be 5.2 m3 (STP)/(m2·h·bar), while the value of 34 m3(STP)/(m2·h·bar) or 12,600 GPU was achieved for TFC membrane containing 4 wt% cross-linked PEI, and 30 wt% PAF-11. Based on the N2 adsorption isotherms data, it was calculated that the reduction of the free volume was 1.5–3 times higher in neat PTMSP compared to the modified one. Bearing in mind the pronounced mitigation of physical aging by the introduction of both types of fillers, the developed high-performance membranes have great potential as support for the coating of an ultrathin, selective layer for gas separation. Full article
Show Figures

Figure 1

13 pages, 5384 KiB  
Article
Synthesis and Electrochemical Performance of V6O13 Nanosheets Film Cathodes for LIBs
by Fei Li, Haiyan Xu, Fanglin Liu, Dongcai Li, Aiguo Wang and Daosheng Sun
Materials 2022, 15(23), 8574; https://doi.org/10.3390/ma15238574 - 1 Dec 2022
Cited by 3 | Viewed by 1993
Abstract
V6O13 thin films were deposited on indium-doped tin oxide (ITO) conductive glass by a concise low-temperature liquid-phase deposition method and through heat treatment. The obtained films were directly used as electrodes without adding any other media. The results indicate that [...] Read more.
V6O13 thin films were deposited on indium-doped tin oxide (ITO) conductive glass by a concise low-temperature liquid-phase deposition method and through heat treatment. The obtained films were directly used as electrodes without adding any other media. The results indicate that the film annealed at 400 °C exhibited an excellent cycling performance, which remained at 82.7% of capacity after 100 cycles. The film annealed at 400 °C with diffusion coefficients of 6.08 × 10−12 cm2·s−1 (Li+ insertion) and 5.46 × 10−12 cm2·s−1 (Li+ extraction) in the V6O13 film electrode. The high diffusion coefficients could be ascribed to the porous morphology composed of ultrathin nanosheets. Moreover, the film endured phase transitions during electrochemical cycling, the V6O13 partially transformed to Li0.6V1.67O3.67, Li3VO4, and VO2 with the insertion of Li+ into the lattice, and Li0.6V1.67O3.67, Li3VO4, and VO2 partially reversibly transformed backwards to V6O13 with the extraction of Li+ from the lattice. The phase transition can be attributed to the unique structure and morphology with enough active sites and ions diffusion channels during cycles. Such findings reveal a bright idea to prepare high-performance cathode materials for LIBs. Full article
(This article belongs to the Special Issue Anode and Energy Storage Mechanism of Battery)
Show Figures

Figure 1

29 pages, 6975 KiB  
Article
Development and Investigation of Hierarchically Structured Thin-Film Nanocomposite Membranes from Polyamide/Chitosan Succinate Embedded with a Metal-Organic Framework (Fe-BTC) for Pervaporation
by Tatiana Plisko, Katsiaryna Burts, Andrey Zolotarev, Alexandr Bildyukevich, Mariia Dmitrenko, Anna Kuzminova, Sergey Ermakov and Anastasia Penkova
Membranes 2022, 12(10), 967; https://doi.org/10.3390/membranes12100967 - 2 Oct 2022
Cited by 7 | Viewed by 2677
Abstract
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still [...] Read more.
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal–organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12–30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197–826 g·m−2·h−1 and 98.50–99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12–30 wt % water). Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes)
Show Figures

Figure 1

12 pages, 1918 KiB  
Article
MicroRaman Study of Nanostructured Ultra-Thin AlGaN/GaN Thin Films Grown on Hybrid Compliant SiC/Por-Si Substrates
by Aleksandr Lenshin, Pavel Seredin, Dmitry Goloshchapov, Ali O. Radam and Andrey Mizerov
Coatings 2022, 12(5), 626; https://doi.org/10.3390/coatings12050626 - 3 May 2022
Cited by 3 | Viewed by 2211
Abstract
In our study, for the first time we demonstrate the advantages of using a compliant hybrid substrate of porSi/SiC to grow high-quality ultra-thin nanostructured AlxGa1−xN/GaN heterostructures using molecular beam epitaxy with plasma-activated nitrogen. Comparison of our experimental results [...] Read more.
In our study, for the first time we demonstrate the advantages of using a compliant hybrid substrate of porSi/SiC to grow high-quality ultra-thin nanostructured AlxGa1−xN/GaN heterostructures using molecular beam epitaxy with plasma-activated nitrogen. Comparison of our experimental results obtained by micro-Raman spectroscopy, deconvolution, and the fitting of the experimental Raman spectra and subsequent calculations with information from already established literature sources show that the use of such a hybrid SiC/porSi substrate has a number of undeniable advantages for the growth of ultra-thin AlxGa1−xN/GaN nanoheterostructures without requiring the use of thick AIIIN buffer layers. Direct growth on a hybrid compliant substrate of SiC/porSi leads to a substantial relaxation in the elastic stresses between the epitaxial film, porous silicon, and silicon carbide, which consequently affects the structural quality of the ultra-thin AlxGa1−xN/GaN epitaxial layers. The experimental and computational data obtained in our work are important for understanding the physics and technology of AlxGa1−xN/GaN nanoheterostructures and will contribute to their potential applications in optoelectronics. Full article
(This article belongs to the Special Issue Recent Progress in Surface and Interface Properties of Nanostructures)
Show Figures

Figure 1

12 pages, 2217 KiB  
Article
Subtractive Low-Temperature Preparation Route for Porous SiO2 Used for the Catalyst-Assisted Growth of ZnO Field Emitters
by Stefanie Haugg, Carina Hedrich, Robert H. Blick and Robert Zierold
Nanomaterials 2021, 11(12), 3357; https://doi.org/10.3390/nano11123357 - 10 Dec 2021
Cited by 1 | Viewed by 2659
Abstract
The possibility to gradually increase the porosity of thin films facilitates a variety of applications, such as anti-reflective coatings, diffusion membranes, and the herein investigated tailored nanostructuring of a substrate for subsequent self-assembly processes. A low-temperature (<160 °C) preparation route for porous silicon [...] Read more.
The possibility to gradually increase the porosity of thin films facilitates a variety of applications, such as anti-reflective coatings, diffusion membranes, and the herein investigated tailored nanostructuring of a substrate for subsequent self-assembly processes. A low-temperature (<160 °C) preparation route for porous silicon oxide (porSiO2) thin films with porosities of about 60% and effective refractive indices down to 1.20 is tailored for bulk as well as free-standing membranes. Subsequently, both substrate types are successfully employed for the catalyst-assisted growth of nanowire-like zinc oxide (ZnO) field emitters by metal organic chemical vapor deposition. ZnO nanowires can be grown with a large aspect ratio and exhibit a good thermal and chemical stability, which makes them excellent candidates for field emitter arrays. We present a method that allows for the direct synthesis of nanowire-like ZnO field emitters on free-standing membranes using a porSiO2 template. Besides the application of porSiO2 for the catalyst-assisted growth of nanostructures and their use as field emission devices, the herein presented general synthesis route for the preparation of low refractive index films on other than bulk substrates—such as on free-standing, ultra-thin membranes—may pave the way for the employment of porSiO2 in micro-electro-mechanical systems. Full article
(This article belongs to the Special Issue The Research Related to Nanomaterial Cold Cathode)
Show Figures

Figure 1

24 pages, 3007 KiB  
Review
Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case
by Giulio Benetti, Francesco Banfi, Emanuele Cavaliere and Luca Gavioli
Nanomaterials 2021, 11(11), 3116; https://doi.org/10.3390/nano11113116 - 18 Nov 2021
Cited by 9 | Viewed by 3264
Abstract
Nanoporous ultrathin films, constituted by a slab less than 100 nm thick and a certain void volume fraction provided by nanopores, are emerging as a new class of systems with a wide range of possible applications, including electrochemistry, energy storage, gas sensing and [...] Read more.
Nanoporous ultrathin films, constituted by a slab less than 100 nm thick and a certain void volume fraction provided by nanopores, are emerging as a new class of systems with a wide range of possible applications, including electrochemistry, energy storage, gas sensing and supercapacitors. The film porosity and morphology strongly affect nanoporous films mechanical properties, the knowledge of which is fundamental for designing films for specific applications. To unveil the relationships among the morphology, structure and mechanical response, a comprehensive and non-destructive investigation of a model system was sought. In this review, we examined the paradigmatic case of a nanoporous, granular, metallic ultrathin film with comprehensive bottom-up and top-down approaches, both experimentals and theoreticals. The granular film was made of Ag nanoparticles deposited by gas-phase synthesis, thus providing a solvent-free and ultrapure nanoporous system at room temperature. The results, bearing generality beyond the specific model system, are discussed for several applications specific to the morphological and mechanical properties of the investigated films, including bendable electronics, membrane separation and nanofluidic sensing. Full article
(This article belongs to the Special Issue Thermal and Mechanical Dynamics in Nanosystems)
Show Figures

Figure 1

10 pages, 2858 KiB  
Article
A Carbon Composite Film with Three-Dimensional Reticular Structure for Electromagnetic Interference Shielding and Electro-Photo-Thermal Conversion
by Na Lin, Hanning Chen, Xiaokang Mei, Shitong Chai and Longsheng Lu
Materials 2021, 14(9), 2423; https://doi.org/10.3390/ma14092423 - 6 May 2021
Cited by 4 | Viewed by 2724
Abstract
The design of flexible wearable electronic devices that can shield electromagnetic waves and work in all weather conditions remains a challenge. We present in this work a low-cost technology to prepare an ultra-thin carbon fabric–graphene (CFG) composite film with outstanding electromagnetic interference shielding [...] Read more.
The design of flexible wearable electronic devices that can shield electromagnetic waves and work in all weather conditions remains a challenge. We present in this work a low-cost technology to prepare an ultra-thin carbon fabric–graphene (CFG) composite film with outstanding electromagnetic interference shielding effectiveness (EMI SE) and electro-photo-thermal effect. The compatibility between flexible carbon fabric skeleton and brittle pure graphene matrix empowers this CFG film with adequate flexibility. The reticular fibers and porous structures play a vital role in multiple scattering and absorption of electromagnetic waves. In the frequency range of 30–1500 MHz, the CFG film can achieve a significantly high EMI SE of about 46 dB at tiny thickness (0.182 mm) and density (1.4 g cm−3) predominantly by absorption. At low safe voltages or only in sunlight, the film can self-heat to its saturation value rapidly in 40 s. Once the electricity or light supply is stopped, it can quickly dissipate heat in tens of seconds. A combination of the EMI SE and the prominent electro-photo-thermal effect further enables such a remarkable EMI shielding film to have more potential applications for communication devices in extreme zones. Full article
Show Figures

Graphical abstract

25 pages, 7382 KiB  
Article
Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration
by Mariia Dmitrenko, Andrey Zolotarev, Tatiana Plisko, Katsiaryna Burts, Vladislav Liamin, Alexandr Bildyukevich, Sergey Ermakov and Anastasia Penkova
Membranes 2020, 10(7), 153; https://doi.org/10.3390/membranes10070153 - 16 Jul 2020
Cited by 16 | Viewed by 4075
Abstract
The aim of the study is to improve the performance of thin-film composite (TFC) membranes with a thin selective layer based on chitosan (CS) via different approaches by: (1) varying the concentration of the CS solution; (2) changing the porosity of substrates from [...] Read more.
The aim of the study is to improve the performance of thin-film composite (TFC) membranes with a thin selective layer based on chitosan (CS) via different approaches by: (1) varying the concentration of the CS solution; (2) changing the porosity of substrates from polyacrylonitrile (PAN); (3) deposition of the additional ultrathin layers on the surface of the selective CS layer using interfacial polymerization and layer-by-layer assembly. The developed membranes were characterized by different methods of analyses (SEM and AFM, IR spectroscopy, measuring of water contact angles and porosity). The transport characteristics of the developed TFC membranes were studied in pervaporation separation of isopropanol/water mixtures. It was found that the application of the most porous PAN-4 substrate with combination of formation of an additional polyamide selective layer by interfacial polymerization on the surface of a dense selective CS layer with the subsequent layer-by-layer deposition of five bilayers of poly (sodium 4-styrenesulfonate)/CS polyelectrolyte pair led to the significant improvement of permeance and high selectivity for the entire concentration feed range. Thus, for TFC membrane on the PAN-4 substrate the optimal transport characteristics in pervaporation dehydration of isopropanol (12–90 wt.% water) were achieved: 0.22–1.30 kg/(m2h), 99.9 wt.% water in the permeate. Full article
(This article belongs to the Special Issue Progress in Manufacturing and Applications of Composite Membranes)
Show Figures

Graphical abstract

Back to TopTop