Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case
Abstract
:1. Introduction
2. Open Issues in Ultrathin Nanoporous Films
2.1. Mechanical Properties
2.2. Synthesis Routes and Pore Dimension
3. The Ag Ultrathin Porous Films
3.1. Synthesis
3.2. Morphology
3.3. Virtual Film Reconstruction
3.4. Chemical State
3.5. Mechanical Properties
4. Applications
4.1. Gas Membrane
4.2. Nanofluidic Sensing
4.3. Flexible Multilayers for Solar Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rebbecchi, T.A.; Chen, Y. Template-Based Fabrication of Nanoporous Metals. J. Mater. Res. 2018, 33, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Shpigel, N.; Sigalov, S.; Malchik, F.; Levi, M.D.; Girshevitz, O.; Khalfin, R.L.; Aurbach, D. Quantification of Porosity in Extensively Nanoporous Thin Films in Contact with Gases and Liquids. Nat. Commun. 2019, 10, 4394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarantino, W.; Colombo, L. Modeling Resistive Switching in Nanogranular Metal Films. Phys. Rev. Res. 2020, 2, 043389. [Google Scholar] [CrossRef]
- Mirigliano, M.; Borghi, F.; Podestà, A.; Antidormi, A.; Colombo, L.; Milani, P. Non-Ohmic Behavior and Resistive Switching of Au Cluster-Assembled Films beyond the Percolation Threshold. Nanoscale Adv. 2019, 1, 3119–3130. [Google Scholar] [CrossRef] [Green Version]
- Ruestes, C.J.; Schwen, D.; Millán, E.N.; Aparicio, E.; Bringa, E.M. Mechanical Properties of Au Foams under Nanoindentation. Comput. Mater. Sci. 2018, 147, 154–167. [Google Scholar] [CrossRef]
- Jalas, D.; Shao, L.-H.; Canchi, R.; Okuma, T.; Lang, S.; Petrov, A.; Weissmüller, J.; Eich, M. Electrochemical Tuning of the Optical Properties of Nanoporous Gold. Sci. Rep. 2017, 7, 44139. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, G.; Cavaliere, E.; Banfi, F.; Benetti, G.; Raciti, R.; Gavioli, L.; Terrasi, A. Ag Cluster Beam Deposition for TCO/Ag/TCO Multilayer. Sol. Energy Mater. Sol. Cells 2019, 199, 114–121. [Google Scholar] [CrossRef]
- Torrisi, G.; Crupi, I.; Mirabella, S.; Terrasi, A. Robustness and Electrical Reliability of AZO/Ag/AZO Thin Film after Bending Stress. Sol. Energy Mater. Sol. Cells 2017, 165, 88–93. [Google Scholar] [CrossRef]
- Bontempi, N.; Cavaliere, E.; Cappello, V.; Pingue, P.; Gavioli, L. Ag@TiO2 Nanogranular Films by Gas Phase Synthesis as Hybrid SERS Platforms. Phys. Chem. Chem. Phys. 2019, 21, 25090–25097. [Google Scholar] [CrossRef]
- Chauvin, A.; Lafuente, M.; Mevellec, J.Y.; Mallada, R.; Humbert, B.; Pina, M.P.; Tessier, P.-Y.; El Mel, A. Lamellar Nanoporous Gold Thin Films with Tunable Porosity for Ultrasensitive SERS Detection in Liquid and Gas Phase. Nanoscale 2020, 12, 12602–12612. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, X.J.; Wang, H.; Wu, Y.; Chu, X.M.; Lu, Z.P. Nanoporous Silver with Tunable Pore Characteristics and Superior Surface Enhanced Raman Scattering. Corros. Sci. 2014, 84, 159–164. [Google Scholar] [CrossRef]
- Scaglione, F.; Xue, Y.; Celegato, F.; Rizzi, P.; Battezzati, L. Amorphous Molybdenum Sulphide @ Nanoporous Gold as Catalyst for Hydrogen Evolution Reaction in Acidic Environment. J. Mater. Sci. 2018, 53, 12388–12398. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H. Nanoporous Gold: Preparation and Applications to Catalysis and Sensors. Curr. Appl. Phys. 2018, 18, 810–818. [Google Scholar] [CrossRef]
- Ruffino, F.; Grimaldi, M.G. Nanoporous Gold-Based Sensing. Coatings 2020, 10, 899. [Google Scholar] [CrossRef]
- Valerini, D.; Tammaro, L.; Vigliotta, G.; Picariello, E.; Banfi, F.; Cavaliere, E.; Ciambriello, L.; Gavioli, L. Ag Functionalization of Al-Doped ZnO Nanostructured Coatings on PLA Substrate for Antibacterial Applications. Coatings 2020, 10, 1238. [Google Scholar] [CrossRef]
- Benetti, G.; Cavaliere, E.; Banfi, F.; Gavioli, L. Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective. Materials 2020, 13, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavaliere, E.; De Cesari, S.; Landini, G.; Riccobono, E.; Pallecchi, L.; Rossolini, G.M.; Gavioli, L. Highly Bactericidal Ag Nanoparticle Films Obtained by Cluster Beam Deposition. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.X.; Zhang, Y.; Gan, J.B. Nanoporous Metals Processed by Dealloying and Their Applications. AIMS Mater. Sci. 2018, 5, 1141–1183. [Google Scholar] [CrossRef]
- Mangipudi, K.R. Topology-Dependent Scaling Laws for the Stiffness and Strength of Nanoporous Gold. Acta Mater. 2016, 119, 115–122. [Google Scholar] [CrossRef]
- Viswanath, R.N.; Polaki, S.R.; Rajaraman, R.; Abhaya, S.; Chirayath, V.A.; Amarendra, G.; Sundar, C.S. On the Scaling Behavior of Hardness with Ligament Diameter of Nanoporous-Au: Constrained Motion of Dislocations along the Ligaments. Appl. Phys. Lett. 2014, 104, 233108. [Google Scholar] [CrossRef]
- Donadio, D.; Colombo, L.; Milani, P.; Benedek, G. Growth of Nanostructured Carbon Films by Cluster Assembly. Phys. Rev. Lett. 1999, 83, 776–779. [Google Scholar] [CrossRef]
- Podestà, A.; Borghi, F.; Indrieri, M.; Bovio, S.; Piazzoni, C.; Milani, P. Nanomanufacturing of Titania Interfaces with Controlled Structural and Functional Properties by Supersonic Cluster Beam Deposition. J. Appl. Phys. 2015, 118, 234309. [Google Scholar] [CrossRef] [Green Version]
- Borghi, F.; Podestà, A.; Piazzoni, C.; Milani, P. Growth Mechanism of Cluster-Assembled Surfaces: From Submonolayer to Thin-Film Regime. Phys. Rev. Appl. 2018, 9, 044016. [Google Scholar] [CrossRef] [Green Version]
- Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; et al. Direct Synthesis of Antimicrobial Coatings Based on Tailored Bi-Elemental Nanoparticles. APL Mater. 2017, 5, 036105. [Google Scholar] [CrossRef] [Green Version]
- Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; Van Bael, M.J.; Cavaliere, E.; Gavioli, L.; et al. Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films. J. Phys. Chem. C 2017, 121, 22434–22441. [Google Scholar] [CrossRef]
- Cellini, F.; Gao, Y.; Riedo, E. Å-Indentation for Non-Destructive Elastic Moduli Measurements of Supported Ultra-Hard Ultra-Thin Films and Nanostructures. Sci. Rep. 2019, 9, 4075. [Google Scholar] [CrossRef] [Green Version]
- Mathur, A.; Erlebacher, J. Size Dependence of Effective Young’s Modulus of Nanoporous Gold. Appl. Phys. Lett. 2007, 90, 061910. [Google Scholar] [CrossRef]
- Bürckert, M.; Briot, N.J.; Balk, T.J. Uniaxial Compression Testing of Bulk Nanoporous Gold. Philos. Mag. 2017, 97, 1157–1178. [Google Scholar] [CrossRef]
- Mi, C.; Kouris, D. Surface Mechanics Implications for a Nanovoided Metallic Thin-Plate under Uniform Boundary Loading. Math. Mech. Solids 2017, 22, 401–419. [Google Scholar] [CrossRef]
- Lamuta, C. Elastic Constants Determination of Anisotropic Materials by Depth-Sensing Indentation. SN Appl. Sci. 2019, 1, 1263. [Google Scholar] [CrossRef] [Green Version]
- Biener, J.; Hodge, A.M.; Hamza, A.V. Microscopic Failure Behavior of Nanoporous Gold. Appl. Phys. Lett. 2005, 87, 121908. [Google Scholar] [CrossRef] [Green Version]
- Biener, J.; Hodge, A.M.; Hayes, J.R.; Volkert, C.A.; Zepeda-Ruiz, L.A.; Hamza, A.V.; Abraham, F.F. Size Effects on the Mechanical Behavior of Nanoporous Au. Nano Lett. 2006, 6, 2379–2382. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Santos, S.; Chiesa, M. Systematic Multidimensional Quantification of Nanoscale Systems from Bimodal Atomic Force Microscopy Data. ACS Nano 2016, 10, 6265–6272. [Google Scholar] [CrossRef]
- Kocun, M.; Labuda, A.; Meinhold, W.; Revenko, I.; Proksch, R. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode. ACS Nano 2017, 11, 10097–10105. [Google Scholar] [CrossRef] [Green Version]
- Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; et al. Novel Class of Nanostructured Metallic Glass Films with Superior and Tunable Mechanical Properties. Acta Mater. 2021, 213, 116955. [Google Scholar] [CrossRef]
- Ast, J.; Ghidelli, M.; Durst, K.; Göken, M.; Sebastiani, M.; Korsunsky, A.M. A Review of Experimental Approaches to Fracture Toughness Evaluation at the Micro-Scale. Mater. Des. 2019, 173, 107762. [Google Scholar] [CrossRef]
- Peli, S.; Cavaliere, E.; Benetti, G.; Gandolfi, M.; Chiodi, M.; Cancellieri, C.; Giannetti, C.; Ferrini, G.; Gavioli, L.; Banfi, F. Mechanical Properties of Ag Nanoparticle Thin Films Synthesized by Supersonic Cluster Beam Deposition. J. Phys. Chem. C 2016, 120, 4673–4681. [Google Scholar] [CrossRef]
- Benetti, G.; Gandolfi, M.; Van Bael, M.J.; Gavioli, L.; Giannetti, C.; Caddeo, C.; Banfi, F. Photoacoustic Sensing of Trapped Fluids in Nanoporous Thin Films: Device Engineering and Sensing Scheme. ACS Appl. Mater. Interfaces 2018, 10, 27947–27954. [Google Scholar] [CrossRef] [Green Version]
- Abad, B.; Knobloch, J.L.; Frazer, T.D.; Hernández-Charpak, J.N.; Cheng, H.Y.; Grede, A.J.; Giebink, N.C.; Mallouk, T.E.; Mahale, P.; Nova, N.N.; et al. Nondestructive Measurements of the Mechanical and Structural Properties of Nanostructured Metalattices. Nano Lett. 2020, 20, 3306–3312. [Google Scholar] [CrossRef]
- Shin, T. Femtosecond Reflectivity Study of Photoacoustic Responses in Bismuth Thin Films. Thin Solid Films 2018, 666, 108–112. [Google Scholar] [CrossRef]
- Hettich, M.; Bruchhausen, A.; Riedel, S.; Geldhauser, T.; Verleger, S.; Issenmann, D.; Ristow, O.; Chauhan, R.; Dual, J.; Erbe, A.; et al. Modification of Vibrational Damping Times in Thin Gold Films by Self-Assembled Molecular Layers. Appl. Phys. Lett. 2011, 98, 261908. [Google Scholar] [CrossRef] [Green Version]
- Pezeril, T.; Leon, F.; Chateigner, D.; Kooi, S.; Nelson, K.A. Picosecond Photoexcitation of Acoustic Waves in Locally Canted Gold Films. Appl. Phys. Lett. 2008, 92, 061908. [Google Scholar] [CrossRef]
- Nardi, D.; Murnane, M.; Kapteyn, H.; Travagliati, M.; Ferrini, G.; Giannetti, C.; Banfi, F. Impulsively Excited Surface Phononic Crystals: A Route towards Novel Sensing Schemes. In Proceedings of the IEEE SENSORS 2014 Proceedings; IEEE: Valencia, Spain, 2014; pp. 895–898. [Google Scholar]
- Frazer, T.D.; Knobloch, J.L.; Hernández-Charpak, J.N.; Hoogeboom-Pot, K.M.; Nardi, D.; Yazdi, S.; Chao, W.; Anderson, E.H.; Tripp, M.K.; King, S.W.; et al. Full Characterization of Ultrathin 5-Nm Low- k Dielectric Bilayers: Influence of Dopants and Surfaces on the Mechanical Properties. Phys. Rev. Mater. 2020, 4, 073603. [Google Scholar] [CrossRef]
- Ogi, H.; Nakamura, N.; Hirao, M. Picosecond Ultrasound Spectroscopy for Studying Elastic Modulus of Thin Films: A Review. Nondestruct. Test. Eval. 2011, 26, 267–280. [Google Scholar] [CrossRef]
- Hoogeboom-Pot, K.M.; Turgut, E.; Hernandez-Charpak, J.N.; Shaw, J.M.; Kapteyn, H.C.; Murnane, M.M.; Nardi, D. Nondestructive Measurement of the Evolution of Layer-Specific Mechanical Properties in Sub-10 Nm Bilayer Films. Nano Lett. 2016, 16, 4773–4778. [Google Scholar] [CrossRef]
- Grossmann, M.; Schubert, M.; He, C.; Brick, D.; Scheer, E.; Hettich, M.; Gusev, V.; Dekorsy, T. Characterization of Thin-Film Adhesion and Phonon Lifetimes in Al/Si Membranes by Picosecond Ultrasonics. New J. Phys. 2017, 19, 053019. [Google Scholar] [CrossRef]
- Greener, J.D.G.; de Lima Savi, E.; Akimov, A.V.; Raetz, S.; Kudrynskyi, Z.; Kovalyuk, Z.D.; Chigarev, N.; Kent, A.; Patané, A.; Gusev, V. High-Frequency Elastic Coupling at the Interface of van Der Waals Nanolayers Imaged by Picosecond Ultrasonics. ACS Nano 2019, 13, 11530–11537. [Google Scholar] [CrossRef]
- Li, T.-C.; Pu, N.-W.; Lwo, B.-J.; Hu, L.-J.; Kao, C.-H. The Effects of Oxygen Partial Pressure on the Acoustic Velocity in Zirconia Films Studied by Picosecond Ultrasonics. Thin Solid Films 2006, 496, 208–213. [Google Scholar] [CrossRef]
- Brick, D.; Emre, E.; Grossmann, M.; Dekorsy, T.; Hettich, M. Picosecond Photoacoustic Metrology of SiO2 and LiNbO3 Layer Systems Used for High Frequency Surface-Acoustic-Wave Filters. Appl. Sci. 2017, 7, 822. [Google Scholar] [CrossRef] [Green Version]
- Tas, G.; Loomis, J.J.; Maris, H.J.; Bailes, A.A.; Seiberling, L.E. Picosecond Ultrasonics Study of the Modification of Interfacial Bonding by Ion Implantation. Appl. Phys. Lett. 1998, 72, 2235–2237. [Google Scholar] [CrossRef]
- Dehoux, T.; Wright, O.B.; Li Voti, R.; Gusev, V.E. Nanoscale Mechanical Contacts Probed with Ultrashort Acoustic and Thermal Waves. Phys. Rev. B 2009, 80, 235409. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Miao, T.; Zhang, X.; Kohno, M.; Takata, Y. Comprehensive Study of Thermal Transport and Coherent Acoustic-Phonon Wave Propagation in Thin Metal Film–Substrate by Applying Picosecond Laser Pump–Probe Method. J. Phys. Chem. C 2015, 119, 5152–5159. [Google Scholar] [CrossRef]
- Zhang, H.; Antoncecchi, A.; Edward, S.; Setija, I.; Planken, P.; Witte, S. Unraveling Phononic, Optoacoustic, and Mechanical Properties of Metals with Light-Driven Hypersound. Phys. Rev. Appl. 2020, 13, 014010. [Google Scholar] [CrossRef]
- Girard, A.; Ramade, J.; Margueritat, J.; Machon, D.; Saviot, L.; Demoisson, F.; Mermet, A. Contact Laws between Nanoparticles: The Elasticity of a Nanopowder. Nanoscale 2018, 10, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Ayouch, A.; Dieudonné, X.; Vaudel, G.; Piombini, H.; Vallé, K.; Gusev, V.; Belleville, P.; Ruello, P. Elasticity of an Assembly of Disordered Nanoparticles Interacting via Either van Der Waals-Bonded or Covalent-Bonded Coating Layers. ACS Nano 2012, 6, 10614–10621. [Google Scholar] [CrossRef]
- Tran, H.T.; Byun, J.Y.; Kim, S.H. Nanoporous Metallic Thin Films Prepared by Dry Processes. J. Alloys Compd. 2018, 764, 371–378. [Google Scholar] [CrossRef]
- Gavioli, L. Carbon-Based and Other Nanostructures Obtained via Cluster-Assembling: A View Combining Electron Spectroscopies and Nanospectr. Adv. Sci. Technol. 2006, 51, 9. [Google Scholar] [CrossRef]
- Milani, P.; Piseri, P.; Barborini, E.; Podesta, A.; Lenardi, C. Cluster Beam Synthesis of Nanostructured Thin Films. J. Vac. Sci. Technol. A 2001, 19, 2025–2033. [Google Scholar] [CrossRef]
- Podestà, A.; Bongiorno, G.; Scopelliti, P.E.; Bovio, S.; Milani, P.; Semprebon, C.; Mistura, G. Cluster-Assembled Nanostructured Titanium Oxide Films with Tailored Wettability. J. Phys. Chem. C 2009, 113, 18264–18269. [Google Scholar] [CrossRef]
- Chiodi, M.; Cavaliere, E.; Kholmanov, I.; de Simone, M.; Sakho, O.; Cepek, C.; Gavioli, L. Nanostructured TiOx Film on Si Substrate: Room Temperature Formation of TiSix Nanoclusters. J. Nanoparticle Res. 2010, 12, 2645–2653. [Google Scholar] [CrossRef]
- Chiodi, M.; Cheney, C.P.; Vilmercati, P.; Cavaliere, E.; Mannella, N.; Weitering, H.H.; Gavioli, L. Enhanced Dopant Solubility and Visible-Light Absorption in Cr–N Codoped TiO2 Nanoclusters. J. Phys. Chem. C 2012, 116, 311–318. [Google Scholar] [CrossRef]
- Fraters, B.D.; Cavaliere, E.; Mul, G.; Gavioli, L. Synthesis of Photocatalytic TiO2 Nano-Coatings by Supersonic Cluster Beam Deposition. J. Alloys Compd. 2014, 615, S467–S471. [Google Scholar] [CrossRef]
- Minnai, C.; Bellacicca, A.; Brown, S.A.; Milani, P. Facile Fabrication of Complex Networks of Memristive Devices. Sci. Rep. 2017, 7, 7955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghi, F.; Milani, M.; Bettini, L.G.; Podestà, A.; Milani, P. Quantitative Characterization of the Interfacial Morphology and Bulk Porosity of Nanoporous Cluster-Assembled Carbon Thin Films. Appl. Surf. Sci. 2019, 479, 395–402. [Google Scholar] [CrossRef]
- Li Voti, R.; Leahu, G.; Sibilia, C.; Matassa, R.; Familiari, G.; Cerra, S.; Salamone, T.A.; Fratoddi, I. Photoacoustics for Listening to Metal Nanoparticle Super-Aggregates. Nanoscale Adv. 2021, 3, 4692–4701. [Google Scholar] [CrossRef]
- Barborini, E.; Conti, A.M.; Kholmanov, I.; Piseri, P.; Podestà, A.; Milani, P.; Cepek, C.; Sakho, O.; Macovez, R.; Sancrotti, M. Nanostructured TiO2 Films with 2 EV Optical Gap. Adv. Mater. 2005, 17, 1842–1846. [Google Scholar] [CrossRef]
- Barborini, E.; Kholmanov, I.N.; Piseri, P.; Ducati, C.; Bottani, C.E.; Milani, P. Engineering the Nanocrystalline Structure of TiO2 Films by Aerodynamically Filtered Cluster Deposition. Appl. Phys. Lett. 2002, 81, 3052–3054. [Google Scholar] [CrossRef]
- Marega, C.; Maculan, J.; Andrea Rizzi, G.; Saini, R.; Cavaliere, E.; Gavioli, L.; Cattelan, M.; Giallongo, G.; Marigo, A.; Granozzi, G. Polyvinyl Alcohol Electrospun Nanofibers Containing Ag Nanoparticles Used as Sensors for the Detection of Biogenic Amines. Nanotechnology 2015, 26, 075501. [Google Scholar] [CrossRef]
- Costantino, F.; Armirotti, A.; Carzino, R.; Gavioli, L.; Athanassiou, A.; Fragouli, D. In Situ Formation of SnO2 Nanoparticles on Cellulose Acetate Fibrous Membranes for the Photocatalytic Degradation of Organic Dyes. J. Photochem. Photobiol. Chem. 2020, 398, 112599. [Google Scholar] [CrossRef]
- Costantino, F.; Cavaliere, E.; Gavioli, L.; Carzino, R.; Leoncino, L.; Brescia, R.; Athanassiou, A.; Fragouli, D. Photocatalytic Activity of Cellulose Acetate Nanoceria/Pt Hybrid Mats Driven by Visible Light Irradiation. Polymers 2021, 13, 912. [Google Scholar] [CrossRef]
- Balzano, V.; Cavaliere, E.; Fanetti, M.; Gardonio, S.; Gavioli, L. The Role of Substrate on Thermal Evolution of Ag/TiO2 Nanogranular Thin Films. Nanomaterials 2021, 11, 2253. [Google Scholar] [CrossRef]
- Mazza, T.; Barborini, E.; Kholmanov, I.N.; Piseri, P.; Bongiorno, G.; Vinati, S.; Milani, P.; Ducati, C.; Cattaneo, D.; Li Bassi, A.; et al. Libraries of Cluster-Assembled Titania Films for Chemical Sensing. Appl. Phys. Lett. 2005, 87, 103108. [Google Scholar] [CrossRef]
- Benetti, G.; Cavaliere, E.; Brescia, R.; Salassi, S.; Ferrando, R.; Vantomme, A.; Pallecchi, L.; Pollini, S.; Boncompagni, S.; Fortuni, B.; et al. Tailored Ag–Cu–Mg Multielemental Nanoparticles for Wide-Spectrum Antibacterial Coating. Nanoscale 2019, 11, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Auld, B.A. Acoustic Fields and Waves in Solids; Wiley: New York, NY, USA, 1973; Volume 1, ISBN 978-0-471-03700-2. [Google Scholar]
- Del Giudice, A.; Benetti, G.; Piazzoni, C.; Borghi, F. Porosity of Nanostructured Carbon Thin Films. In Nanoporous Carbons for Soft and Flexible Energy Devices; Borghi, F., Soavi, F., Milani, P., Eds.; Carbon Materials: Chemistry and Physics; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 11, ISBN 978-3-030-81826-5. [Google Scholar]
- Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L. Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition. Nanomaterials 2017, 7, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Elsevier: Amsterdam, The Netherlands, 1985; ISBN 978-0-08-054721-3. [Google Scholar]
- Hövel, H.; Fritz, S.; Hilger, A.; Kreibig, U.; Vollmer, M. Width of Cluster Plasmon Resonances: Bulk Dielectric Functions and Chemical Interface Damping. Phys. Rev. B 1993, 48, 18178–18188. [Google Scholar] [CrossRef] [PubMed]
- Kooij, E.S.; Wormeester, H.; Brouwer, E.A.M.; van Vroonhoven, E.; van Silfhout, A.; Poelsema, B. Optical Characterization of Thin Colloidal Gold Films by Spectroscopic Ellipsometry. Langmuir 2002, 18, 4401–4413. [Google Scholar] [CrossRef]
- Ehrenreich, H.; Philipp, H.R. Optical Properties of Ag and Cu. Phys. Rev. 1962, 128, 1622–1629. [Google Scholar] [CrossRef]
- Blaber, M.G.; Arnold, M.D.; Ford, M.J. Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver. J. Phys. Chem. C 2009, 113, 3041–3045. [Google Scholar] [CrossRef] [Green Version]
- Aspnes, D.E.; Kinsbron, E.; Bacon, D.D. Optical Properties of Au: Sample Effects. Phys. Rev. B 1980, 21, 3290–3299. [Google Scholar] [CrossRef]
- Bisio, F.; Palombo, M.; Prato, M.; Cavalleri, O.; Barborini, E.; Vinati, S.; Franchi, M.; Mattera, L.; Canepa, M. Optical Properties of Cluster-Assembled Nanoporous Gold Films. Phys. Rev. B 2009, 80, 205428. [Google Scholar] [CrossRef]
- Powell, C.J. Recommended Auger Parameters for 42 Elemental Solids. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 1–3. [Google Scholar] [CrossRef]
- Ferraria, A.M.; Carapeto, A.P.; Botelho do Rego, A.M. X-Ray Photoelectron Spectroscopy: Silver Salts Revisited. Vacuum 2012, 86, 1988–1991. [Google Scholar] [CrossRef]
- Kaushik, V.K. XPS Core Level Spectra and Auger Parameters for Some Silver Compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 273–277. [Google Scholar] [CrossRef]
- Gusev, V. On Generation of Picosecond Inhomogeneous Shear Strain Fronts by Laser-Induced Gratings. Appl. Phys. Lett. 2009, 94, 164105. [Google Scholar] [CrossRef]
- Ozkan, T.; Demirkan, M.T.; Walsh, K.A.; Karabacak, T.; Polycarpou, A.A. Density Modulated Nanoporous Tungsten Thin Films and Their Nanomechanical Properties. J. Mater. Res. 2016, 31, 2011–2024. [Google Scholar] [CrossRef]
- Budiansky, B. On the Elastic Moduli of Some Heterogeneous Materials. J. Mech. Phys. Solids 1965, 13, 223–227. [Google Scholar] [CrossRef]
- Rizzi, G.; Benetti, G.; Giannetti, C.; Gavioli, L.; Banfi, F. Analytical Model of the Acoustic Response of Nanogranular Films Adhering to a Substrate. Phys. Rev. B 2021, 104, 035416. [Google Scholar] [CrossRef]
- Bertoldi, K.; Bigoni, D.; Drugan, W.J. Structural Interfaces in Linear Elasticity. Part I: Nonlocality and Gradient Approximations. J. Mech. Phys. Solids 2007, 55, 1–34. [Google Scholar] [CrossRef]
- Bigoni, D.; Movchan, A.B. Statics and Dynamics of Structural Interfaces in Elasticity. Int. J. Solids Struct. 2002, 39, 4843–4865. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.J. Cellular Solids. MRS Bull. 2003, 28, 270–274. [Google Scholar] [CrossRef] [Green Version]
- Onck, P.R. Scale Effects in Cellular Metals. MRS Bull. 2003, 28, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Mangipudi, K.R.; Radisch, V.; Holzer, L.; Volkert, C.A. A FIB-Nanotomography Method for Accurate 3D Reconstruction of Open Nanoporous Structures. Ultramicroscopy 2016, 163, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.W. Gas Separation Membrane Materials: A Perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Bocquet, L.; Charlaix, E. Nanofluidics, from Bulk to Interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceratti, D.R.; Faustini, M.; Sinturel, C.; Vayer, M.; Dahirel, V.; Jardat, M.; Grosso, D. Critical Effect of Pore Characteristics on Capillary Infiltration in Mesoporous Films. Nanoscale 2015, 7, 5371–5382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercuri, M.; Pierpauli, K.; Bellino, M.G.; Berli, C.L.A. Complex Filling Dynamics in Mesoporous Thin Films. Langmuir 2017, 33, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, R.; Delgado, D.C.; Palumbo, F.; Berli, C.L.A.; Bellino, M.G. Mesoporous Metal-Oxide-Semiconductor Capacitors Detect Intra-Porous Fluid Changes. Colloids Surf. Physicochem. Eng. Asp. 2017, 524, 66–70. [Google Scholar] [CrossRef]
- Bisio, F.; Prato, M.; Cavalleri, O.; Barborini, E.; Mattera, L.; Canepa, M. Interaction of Liquids with Nanoporous Cluster Assembled Au Films. J. Phys. Chem. C 2010, 114, 17591–17596. [Google Scholar] [CrossRef]
- Ji, X.; Song, J.; Wu, T.; Tian, Y.; Han, B.; Liu, X.; Wang, H.; Gui, Y.; Ding, Y.; Wang, Y. Fabrication of High-Performance F and Al Co-Doped ZnO Transparent Conductive Films for Use in Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2019, 190, 6–11. [Google Scholar] [CrossRef]
- Ellmer, K. Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 2012, 6, 809–817. [Google Scholar] [CrossRef]
- Sygletou, M.; Bisio, F.; Benedetti, S.; Torelli, P.; di Bona, A.; Petrov, A.; Canepa, M. Transparent Conductive Oxide-Based Architectures for the Electrical Modulation of the Optical Response: A Spectroscopic Ellipsometry Study. J. Vac. Sci. Technol. B 2019, 37, 061209. [Google Scholar] [CrossRef]
- Chen, L.; Leng, Z.; Long, Y.; Yu, X.; Jun, W.; Yu, X. From Silver Nanoflakes to Silver Nanonets: An Effective Trade-Off between Conductivity and Stretchability of Flexible Electrodes. Materials 2019, 12, 4218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micali, M.; Cosentino, S.; Terrasi, A. Structural, Optical and Electrical Characterization of ITO Films Co-Doped with Molybdenum. Sol. Energy Mater. Sol. Cells 2021, 221, 110904. [Google Scholar] [CrossRef]
- Ezzeldien, M.; Alrowaili, Z.A.; Hasaneen, M.F. Synthesis of an Optimized ZnS/Au/ZnS Multilayer Films for Solar Cell Electrode Applications. Opt. Mater. 2021, 113, 110814. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benetti, G.; Banfi, F.; Cavaliere, E.; Gavioli, L. Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case. Nanomaterials 2021, 11, 3116. https://doi.org/10.3390/nano11113116
Benetti G, Banfi F, Cavaliere E, Gavioli L. Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case. Nanomaterials. 2021; 11(11):3116. https://doi.org/10.3390/nano11113116
Chicago/Turabian StyleBenetti, Giulio, Francesco Banfi, Emanuele Cavaliere, and Luca Gavioli. 2021. "Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case" Nanomaterials 11, no. 11: 3116. https://doi.org/10.3390/nano11113116
APA StyleBenetti, G., Banfi, F., Cavaliere, E., & Gavioli, L. (2021). Mechanical Properties of Nanoporous Metallic Ultrathin Films: A Paradigmatic Case. Nanomaterials, 11(11), 3116. https://doi.org/10.3390/nano11113116