Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.2.1. Porous PAN Membrane (Substrate) Preparation
2.2.2. Formation of the First Dense Selective Layer on Porous PAN Membranes (Substrates)
2.2.3. Formation of the Second (Upper) Layer by Interfacial Polymerization
2.3. Membrane Investigation Methods
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Atomic Force Microscopy (AFM)
2.3.3. The Standard Porosimetry Method
2.3.4. Ultrafiltration
2.3.5. Fourier-Transform Infrared Spectroscopy (IR Spectroscopy)
2.3.6. Pervaporation
2.3.7. Contact Angle Determination
2.3.8. Layer-by-Layer Assembly
3. Results
3.1. Characterization of Porous PAN Substrates
3.2. Characterization of TFC CS-Based Membranes
3.3. Transport Properties of TFC CS-Based Membranes
3.3.1. Transport Properties of the Best TFC Membrane
3.3.2. Layer-by-Layer Assembly Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
Alg | Alginates |
AFM | Atomic force microscopy |
BSA | Bovine serum albumin |
CS | Chitosan |
IR | Infrared spectroscopy |
IP | Interfacial polymerization |
LbL | Layer-by-layer assembly |
MA | Maleic acid |
DMF | N,N-dimethylformamide |
NIPS | Non-solvent induced phase inversion |
PAH | Poly (allylamine hydrochloride) |
PSS | Poly (sodium 4-styrenesulfonate) |
PAN | Polyacrylonitrile |
PEL | Polyelectrolyte |
PVA | Polyvinyl alcohol |
PVP | Polyvinylpyrrolidone |
SEM | Scanning electron microscopy |
TFC | Thin-film composite membrane |
TETA | Triethylenetetramine |
TMC | Trimesoyl chloride |
References
- Zuo, J.; Lai, J.-Y.; Chung, T.-S. In-situ synthesis and cross-linking of polyamide thin film composite (TFC) membranes for bioethanol applications. J. Memb. Sci. 2014, 458, 47–57. [Google Scholar] [CrossRef]
- Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for lignocellulosic biofuels. Science 2010, 329, 790–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukitpaneenit, P.; Chung, T.-S. Fabrication and use of hollow fiber thin film composite membranes for ethanol dehydration. J. Memb. Sci. 2014, 450, 124–137. [Google Scholar] [CrossRef]
- Fini, M.N.; Soroush, S.; Montazer-Rahmati, M.M. Synthesis and optimization of chitosan ceramic-supported membranes in pervaporation ethanol dehydration. Membranes 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Ueno, K.; Yamada, S.; Watanabe, T.; Negishi, H.; Okuno, T.; Tawarayama, H.; Ishikawa, S.; Miyamoto, M.; Uemiya, S.; Oumi, Y. Hydrophobic* BEA-type zeolite membranes on tubular silica supports for alcohol/water separation by pervaporation. Membranes 2019, 9, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talluri, V.S.S.L.P.; Tleuova, A.; Hosseini, S.; Vopicka, O. Selective separation of 1-butanol from aqueous solution through pervaporation using PTSMP-silica nano hybrid membrane. Membranes 2020, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostovtseva, V.; Pulyalina, A.; Rudakova, D.; Vinogradova, L.; Polotskaya, G. Strongly selective polymer membranes modified with heteroarm stars for the ethylene glycol dehydration by pervaporation. Membranes 2020, 10, 86. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, L.; Yang, F.; Wei, Q. Mesoporous silica membranes silylated by fluorinated and non-fluorinated alkylsilanes for the separation of methyl tert-butyl ether from water. Membranes 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Otvagina, K.V.; Penkova, A.V.; Dmitrenko, M.E.; Kuzminova, A.I.; Sazanova, T.S.; Vorotyntsev, A.V.; Vorotyntsev, I.V. Novel composite membranes based on chitosan copolymers with polyacrylonitrile and polystyrene: Physicochemical properties and application for pervaporation dehydration of tetrahydrofuran. Membranes 2019, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Mulder, M. Basic Principles of Membrane Technology; Springer: Moscow, Russia, 1999; ISBN 5-03-003114-6. [Google Scholar]
- Chapman, P.D.; Oliveira, T.; Livingston, A.G.; Li, K. Membranes for the dehydration of solvents by pervaporation. J. Memb. Sci. 2008, 318, 5–37. [Google Scholar] [CrossRef]
- Bolto, B.; Hoang, M.; Xie, Z. A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem. Eng. Process. Process Intensif. 2011, 50, 227–235. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; González-Valdez, J. New trends in biopolymer-based membranes for pervaporation. Molecules 2019, 24, 3584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jyothi, M.S.; Reddy, K.R.; Soontarapa, K.; Naveen, S.; Raghu, A.V.; Kulkarni, R.V.; Suhas, D.P.; Shetti, N.P.; Nadagouda, M.N.; Aminabhavi, T.M. Membranes for dehydration of alcohols via pervaporation. J. Environ. Manag. 2019, 242, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Dmitrenko, M.E.; Penkova, A.V.; Kuzminova, A.I.; Morshed, M.; Larionov, M.I.; Alem, H.; Zolotarev, A.A.; Ermakov, S.S.; Roizard, D. Investigation of new modification strategies for PVA membranes to improve their dehydration properties by pervaporation. Appl. Surf. Sci. 2018, 450, 527–537. [Google Scholar] [CrossRef]
- Chaudhari, S.; Baek, M.K.; Kwon, Y.S.; Shon, M.Y.; Nam, S.E.; Park, Y.I. Surface-modified halloysite nanotube-embedded polyvinyl alcohol/polyvinyl amine blended membranes for pervaporation dehydration of water/isopropanol mixtures. Appl. Surf. Sci. 2019. [Google Scholar] [CrossRef]
- Hu, M.Z.; Engtrakul, C.; Bischoff, B.L.; Lu, M.; Alemseghed, M. Surface-engineered inorganic nanoporous membranes for vapor and pervaporative separations of water–ethanol mixtures. Membranes 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Devi, D.A.; Smitha, B.; Sridhar, S.; Aminabhavi, T.M. Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. J. Memb. Sci. 2005, 262, 91–99. [Google Scholar] [CrossRef]
- Tsai, H.-A.; Chen, Y.-L.; Huang, S.-H.; Hu, C.-C.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. Preparation of polyamide/polyacrylonitrile composite hollow fiber membrane by synchronous procedure of spinning and interfacial polymerization. J. Memb. Sci. 2018, 551, 261–272. [Google Scholar] [CrossRef]
- Tsai, H.-A.; Wang, T.-Y.; Huang, S.-H.; Hu, C.-C.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. The preparation of polyamide/polyacrylonitrile thin film composite hollow fiber membranes for dehydration of ethanol mixtures. Sep. Purif. Technol. 2017, 187, 221–232. [Google Scholar] [CrossRef]
- Lau, W.J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Chen, J.P.; Ismail, A.F. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res. 2015, 80, 306–324. [Google Scholar] [CrossRef]
- Hung, W.-S.; Lai, C.-L.; An, Q.; De Guzman, M.; Shen, T.-J.; Huang, Y.-H.; Chang, K.-C.; Tsou, C.-H.; Hu, C.-C.; Lee, K.-R. A study on high-performance composite membranes comprising heterogeneous polyamide layers on an electrospun substrate for ethanol dehydration. J. Memb. Sci. 2014, 470, 513–523. [Google Scholar] [CrossRef]
- Zuo, J.; Wang, Y.; Chung, T.-S. Novel organic–inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration. J. Memb. Sci. 2013, 433, 60–71. [Google Scholar] [CrossRef]
- Shi, G.M.; Chung, T.-S. Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol. J. Memb. Sci. 2013, 448, 34–43. [Google Scholar] [CrossRef]
- Ji, Y.-L.; Ang, M.B.M.Y.; Hung, H.-C.; Huang, S.-H.; An, Q.-F.; Lee, K.-R.; Lai, J.-Y. Bio-inspired deposition of polydopamine on PVDF followed by interfacial cross-linking with trimesoyl chloride as means of preparing composite membranes for isopropanol dehydration. J. Memb. Sci. 2018, 557, 58–66. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Yu, C.-H.; Lai, J.-Y. Poly(tetrafluoroethylene)/polyamide thin-film composite membranes via interfacial polymerization for pervaporation dehydration on an isopropanol aqueous solution. J. Memb. Sci. 2008, 315, 106–115. [Google Scholar] [CrossRef]
- Yu, C.-H.; Kusumawardhana, I.; Lai, J.-Y.; Liu, Y.-L. PTFE/polyamide thin-film composite membranes using PTFE films modified with ethylene diamine polymer and interfacial polymerization: Preparation and pervaporation application. J. Colloid Interface Sci. 2009, 336, 260–267. [Google Scholar] [CrossRef]
- Li, C.-L.; Huang, S.-H.; Liaw, D.-J.; Lee, K.-R.; Lai, J.-Y. Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution. Sep. Purif. Technol. 2008, 62, 694–701. [Google Scholar] [CrossRef]
- Huang, S.H.; Liu, Y.Y.; Huang, Y.H.; Liao, K.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Study on characterization and pervaporation performance of interfacially polymerized polyamide thin-film composite membranes for dehydrating tetrahydrofuran. J. Memb. Sci. 2014, 470, 411–420. [Google Scholar] [CrossRef]
- Yusoff, I.I.; Rohani, R.; Mohammad, A.W. Pressure driven conducting polymer membranes derived from layer by layer formation and characterization: A review. J. Eng. Sci. Technol. 2016, 11, 1183–1206. [Google Scholar]
- Xu, G.R.; Liu, X.Y.; Xu, J.M.; Li, L.; Su, H.C.; Zhao, H.L.; Feng, H.J. High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate. Appl. Surf. Sci. 2018. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Penkova, A.; Kuzminova, A.; Missyul, A.; Ermakov, S.; Roizard, D. Development and characterization of new pervaporation PVA membranes for the dehydration using bulk and surface modifications. Polymers 2018, 10, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dmitrenko, M.; Kuzminova, A.; Zolotarev, A.; Ermakov, S.; Roizard, D.; Penkova, A. Enhanced pervaporation properties of PVA-based membranes modified with polyelectrolytes. Application to IPA dehydration. Polymers 2019, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Matveev, D.N.; Plisko, V.T.; Volkov, V.V.; Vasilevskii, V.P.; Bazhenov, S.D.; Shustikov, A.A.; Chernikova, V.E.; Bildyukevich, V.A. Ultrafiltration membranes based on various acrylonitrile copolymers. Membr. Membr. Technol. 2019, 1, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Zhao, L.; Hu, X.; Yin, Z.; Zhang, Y.; Meng, J. Protein transport properties of PAN membranes grafted with hyperbranched polyelectrolytes and hyperbranched zwitterions. Ind. Eng. Chem. Res. 2017, 56, 1019–1028. [Google Scholar] [CrossRef]
- Han, N.; Zhang, W.; Wang, W.; Yang, C.; Tan, L.; Cui, Z.; Li, W.; Zhang, X. Amphiphilic cellulose for enhancing the antifouling and separation performances of poly (acrylonitrile-co-methyl acrylate) ultrafiltration membrane. J. Memb. Sci. 2019, 591. [Google Scholar] [CrossRef]
- Barbosa, L.R.S.; Ortore, M.G.; Spinozzi, F.; Mariani, P.; Bernstorff, S.; Itri, R. The importance of protein-protein interactions on the ph-induced conformational changes of bovine serum albumin: A small-angle X-ray scattering study. Biophys. J. 2010, 98, 147–157. [Google Scholar] [CrossRef]
- Servagent-Noinville, S.; Revault, M.; Quiquampoix, H.; Baron, M.H. Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. J. Colloid Interface Sci. 2000, 221, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Kopac, T.; Bozgeyik, K.; Yener, J. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloids Surf. A Physicochem. Eng. Asp. 2008, 322, 19–28. [Google Scholar] [CrossRef]
- Sun, H.; Luo, X.; Liu, J.; Li, G.; Zhang, Y.; Li, P.; Niu, Q.J. Novel thin-film composite pervaporation membrane with controllable crosslinking degree for enhanced water/alcohol separation performance. Sep. Purif. Technol. 2020, 234, 116027. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts; Wiley: London, UK, 2001. [Google Scholar]
- Liubimova, E.S.; Bildyukevich, A.V.; Melnikova, G.B.; Volkov, V.V. Modification of hollow fiber ultrafiltration membranes by interfacial polycondensation: Monomer ratio effect. Pet. Chem. 2015, 55, 795–802. [Google Scholar] [CrossRef]
Membrane | Ra, nm | Rq, nm | Water Contact Angle, ° |
---|---|---|---|
PAN-2 | 2.000 | 2.501 | 41 |
PAN-3 | 2.562 | 3.260 | 41 |
PAN-4 | 2.607 | 3.258 | 41 |
PAN-5 | 2.593 | 3.271 | 41 |
Membrane | Pure Water Flux, L/(m2·h) | Flux, L/(m2·h) | R, % | FRR, % (BSA) | Total Porosity, % | ||
---|---|---|---|---|---|---|---|
PVP K-30 | BSA | PVP K-30 | BSA | ||||
PAN-2 | 20–40 | 10 | 23 | >99 | 96 | 100 | 41 |
PAN-3 | 72–100 | 30 | 80 | 90 | 98 | 97 | 64 |
PAN-4 | 130–160 | 60 | 101 | 75 | 95 | 79 | 73 |
PAN-5 | 180–200 | 40 | 110 | 67 | 95 | 78 | 94 |
TFC Membranes | Contact Angle of Water, ° | |
---|---|---|
Reference TFC Membrane | TFC Membrane with Polyamide Layer | |
CS/PAN-2 | 76 | 59 |
CS/PAN-3 | 77 | 66 |
CS/PAN-4 | 74 | 68 |
CS/PAN-5 | 72 | 65 |
TFC Membranes | Reference TFC Membrane | TFC Membrane with Polyamide Layer | ||
---|---|---|---|---|
Ra, nm | Rq, nm | Ra, nm | Rq, nm | |
CS/PAN-2 | 1.035 | 1.356 | 0.994 | 1.384 |
CS/PAN-3 | 1.155 | 1.532 | 0.719 | 0.985 |
CS/PAN-4 | 1.003 | 1.293 | 1.061 | 1.444 |
CS/PAN-5 | 1.885 | 2.570 | 0.963 | 1.314 |
TFC Membranes | Reference TFC Membrane | TFC Membrane with Polyamide Layer | ||
---|---|---|---|---|
Permeation Flux kg/(m2·h) | Water Content in Permeate, wt.% | Permeation Flux kg/(m2·h) | Water Content in Permeate, wt.% | |
1%CS/PAN-2 | 0.025 | 99.9 | 0.022 | 98.7 |
1%CS/PAN-3 | 0.090 | 97.5 | 0.130 | 99.9 |
1%CS/PAN-4 | 0.108 | 99.9 | 0.233 | 99.9 |
1%CS/PAN-5 | 0.130 | 96.4 | 0.160 | 92.9 |
0.5%CS/PAN-2 | 0.023 | 99.6 | 0.022 | 97.0 |
0.5%CS/PAN-3 | 0.120 | 96.5 | 0.120 | 95.3 |
0.5%CS/PAN-4 | 0.120 | 99.4 | 0.200 | 98.6 |
0.5%CS/PAN-5 | 0.120 | 95.9 | 0.190 | 94.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrenko, M.; Zolotarev, A.; Plisko, T.; Burts, K.; Liamin, V.; Bildyukevich, A.; Ermakov, S.; Penkova, A. Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration. Membranes 2020, 10, 153. https://doi.org/10.3390/membranes10070153
Dmitrenko M, Zolotarev A, Plisko T, Burts K, Liamin V, Bildyukevich A, Ermakov S, Penkova A. Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration. Membranes. 2020; 10(7):153. https://doi.org/10.3390/membranes10070153
Chicago/Turabian StyleDmitrenko, Mariia, Andrey Zolotarev, Tatiana Plisko, Katsiaryna Burts, Vladislav Liamin, Alexandr Bildyukevich, Sergey Ermakov, and Anastasia Penkova. 2020. "Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration" Membranes 10, no. 7: 153. https://doi.org/10.3390/membranes10070153
APA StyleDmitrenko, M., Zolotarev, A., Plisko, T., Burts, K., Liamin, V., Bildyukevich, A., Ermakov, S., & Penkova, A. (2020). Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration. Membranes, 10(7), 153. https://doi.org/10.3390/membranes10070153