Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = ultrasonic anemometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5763 KB  
Article
Field Measurement of the Near-Ground Wind Characteristics Around Landing Center During Typhoon ‘Mangkhut’ (1822)
by Xu Lei, Ming Nie, Xiaoyu Luo, Wenping Xie, Lian Shen, Yinfeng Xie and Qiyi Yang
Atmosphere 2026, 17(1), 76; https://doi.org/10.3390/atmos17010076 - 14 Jan 2026
Viewed by 141
Abstract
A two-dimensional ultrasonic anemometer was installed at a height of 20 m on a wind measurement tower in Haiyan Town, Jiangmen, to monitor flow conditions in typhoon Mangkhut (1822) before and after landfall. Mean wind speed, wind direction, turbulence intensity, gust factor, turbulence [...] Read more.
A two-dimensional ultrasonic anemometer was installed at a height of 20 m on a wind measurement tower in Haiyan Town, Jiangmen, to monitor flow conditions in typhoon Mangkhut (1822) before and after landfall. Mean wind speed, wind direction, turbulence intensity, gust factor, turbulence integral scale, and turbulence power spectral density were derived and analyzed before and after landing. The results show that the central wind speed time history before and after landfall exhibits significant differences, and the mean wind direction undergoes a reverse change of about 180°. The mean downwind and crosswind turbulence intensity before landing were 0.25 and 0.22, respectively, and 0.20 and 0.16 after landing. The associated mean downwind and crosswind gust factors were 1.70 and 0.61 before landing, and 1.55 and 0.46 after. These differences before and after landing are considered significant, and both turbulence intensity and gust factor showed a certain decreasing trend with the increase in wind speed. The relationship between turbulence intensity and gust factor, though somewhat scattered, was basically consistent with the commonly used Ishizaki and Choi empirical formulas. Mean streamwise and crosswind turbulence integral scales before landfall were 218 m and 100 m, respectively, and 198 m and 177 m after. They showed a weak increasing trend with increase in mean wind speed. Power spectra before and after landing were basically consistent. Comparisons with standard forms were inconclusive, though the von Karman spectrum appeared to be slightly superior to the others, particularly as the wind speed and turbulence integral scale increased. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 16419 KB  
Article
Experimental Investigation of Local Wind Effects on Façade Scaffolding Structures
by Paulina Jamińska-Gadomska and Andrzej Sumorek
Appl. Sci. 2025, 15(22), 12196; https://doi.org/10.3390/app152212196 - 17 Nov 2025
Cited by 1 | Viewed by 356
Abstract
Wind is one of the main environmental loads acting on temporary scaffolding structures, yet current design codes apply simplified assumptions regarding its distribution. This study presents full-scale measurements of wind velocities on 10 façade scaffolds located across Poland, representing various building geometries and [...] Read more.
Wind is one of the main environmental loads acting on temporary scaffolding structures, yet current design codes apply simplified assumptions regarding its distribution. This study presents full-scale measurements of wind velocities on 10 façade scaffolds located across Poland, representing various building geometries and exposure conditions. Each scaffold was instrumented with five two-dimensional ultrasonic anemometers and one three-dimensional rooftop reference anemometer. Data were analysed in 10 min averages, divided into 30° directional sectors and compared with the normative model defined in EN 12811-1 using the site factor cs. The results reveal strong spatial variability of wind action across scaffold surfaces, with measured local velocities ranging from 20% to 140% of the reference values. The parallel flow component exhibited substantial scatter, while the perpendicular component was strongly damped by façade shielding and protective netting. For most mid-façade positions, measured values corresponded to cs=0.250.5, whereas corner and edge locations frequently exceeded cs=1.0. The findings demonstrate that the uniform site factors assumed in current standards do not capture the aerodynamic complexity of real scaffolds, especially under oblique or high-intensity wind conditions. The presented dataset provides a unique experimental basis for improving scaffold wind load modelling and developing position-specific design provisions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 6949 KB  
Article
Estimation of Atmospheric Boundary Layer Turbulence Parameters over the South China Sea Based on Multi-Source Data
by Ying Liu, Tao Luo, Kaixuan Yang, Hanjiu Zhang, Liming Zhu, Shiyong Shao, Shengcheng Cui, Xuebing Li and Ningquan Weng
Remote Sens. 2025, 17(11), 1929; https://doi.org/10.3390/rs17111929 - 2 Jun 2025
Cited by 3 | Viewed by 2337
Abstract
Understanding optical turbulence within the atmospheric boundary layer (ABL) is essential for refining atmospheric motion analyses, enhancing numerical weather prediction models, and improving light propagation assessments. This study develops an optical turbulence model for the boundary layer over the South China Sea (SCS) [...] Read more.
Understanding optical turbulence within the atmospheric boundary layer (ABL) is essential for refining atmospheric motion analyses, enhancing numerical weather prediction models, and improving light propagation assessments. This study develops an optical turbulence model for the boundary layer over the South China Sea (SCS) by integrating multiple observational and reanalysis datasets, including ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF), radiosonde observations, coherent Doppler wind lidar (CDWL), and ultrasonic anemometer (CSAT3) measurements. Utilizing Monin–Obukhov Similarity Theory (MOST) as the theoretical foundation, the model’s performance is evaluated by comparing its outputs with the observed diurnal cycle of near-surface optical turbulence. Error analysis indicates a root mean square error (RMSE) of less than 1 and a correlation coefficient exceeding 0.6, validating the model’s predictive capability. Moreover, this study demonstrates the feasibility of employing ERA5-derived temperature and pressure profiles as alternative inputs for optical turbulence modeling while leveraging CDWL’s high-resolution observational capacity for all-weather turbulence characterization. A comprehensive statistical analysis of the atmospheric refractive index structure constant (Cn2) from November 2019 to September 2020 highlights its critical implications for optoelectronic system optimization and astronomical observatory site selection in the SCS region. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

17 pages, 6203 KB  
Article
Morphodynamics and Successional Characteristics of Bowl Blowout in the Late Stage of Coastal Foredune
by Shaoyun Zhang, Yuxiang Dong, Wei Tian, Shuyi Fu and Lin Yang
J. Mar. Sci. Eng. 2025, 13(4), 638; https://doi.org/10.3390/jmse13040638 - 23 Mar 2025
Viewed by 854
Abstract
Coastal foredune blowout is a significant indicator of shoreline retreat, activation of backshore dune fields, and land desertification. Among current research on the terminal phase of coastal foredune blowouts, few studies explain blowouts’ morphological and airflow interaction mechanisms in the late stage through [...] Read more.
Coastal foredune blowout is a significant indicator of shoreline retreat, activation of backshore dune fields, and land desertification. Among current research on the terminal phase of coastal foredune blowouts, few studies explain blowouts’ morphological and airflow interaction mechanisms in the late stage through comprehensive field surveys and observations. In this study, the coastal blowout on the foredune at Tannanwan Beach, Pingtan Island, China, is investigated to explore the morphodynamics and evolutionary characteristics of blowout morphology. High-resolution RTK GPS technology and two-dimensional ultrasonic anemometers are utilized to repeatedly measure and observe the morphology of late-stage bowl blowouts. The results revealed that the following: (1) During the entire survey period, the bowl blowout is characterized by deepening erosion of the lateral walls and accretion in the deflation basin, with the maximum erosion depth on the east lateral wall reaching up to 3.99 m and the maximum accumulation height occurring in the front half of the deflation basin. (2) The wind direction and the morphology of the bowl blowout significantly impact the airflow characteristics within the blowout, and the airflow distribution within the blowout further affects the development of the blowout morphology. (3) The bowl blowout is in the late stage of its life cycle. Full article
(This article belongs to the Special Issue Morphological Changes in the Coastal Ocean)
Show Figures

Figure 1

17 pages, 10463 KB  
Article
Characteristics of Aerosol Number Concentration Power Spectra and Their Influence on Flux Measurements
by Hao Liu, Renmin Yuan, Bozheng Zhu, Qiang Zhao, Xingyu Zhu, Yuan Liu and Yongchang Li
Atmosphere 2025, 16(3), 332; https://doi.org/10.3390/atmos16030332 - 15 Mar 2025
Cited by 1 | Viewed by 732
Abstract
In this paper, a water-based aerosol particle counter was used to measure aerosol number concentrations with high temporal resolution at a meteorological tower and on the ground, and the ultrasonic anemometer on the meteorological tower measured the data of the three-dimensional wind speed. [...] Read more.
In this paper, a water-based aerosol particle counter was used to measure aerosol number concentrations with high temporal resolution at a meteorological tower and on the ground, and the ultrasonic anemometer on the meteorological tower measured the data of the three-dimensional wind speed. The power spectrum of the aerosol particle number concentration fluctuation was obtained by using a Fourier transform, and the characteristics of the power spectrum were deeply analyzed. The results show that the aerosol concentration fluctuation power spectrum satisfies the Monin–Obukhov law in the low-frequency (0.02–0.25 Hz) part of the inertial subregion, which is consistent with the characteristics of atmospheric turbulent motion. Significant attenuation occurs in the high-frequency (0.3–5 Hz) range, which is mainly caused by the attenuation of the aerosol concentration by the intake pipe. Using the similarity of the power spectrum in the low-frequency part, using the “−5/3” line as a standard, the characteristic time of the measurement system is obtained by fitting the transfer function. The results show that in the flux measurement experiments in this paper, the characteristic time is usually less than 1 s. Finally, this paper uses the Fourier transform and wavelet transform to correct the high-frequency attenuation in the fluctuation of aerosol concentration and obtains the corrected aerosol flux. The results show that the effect of high-frequency attenuation on the flux is approximately 1–4% in this experiment. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

17 pages, 4887 KB  
Article
Towards Mobile Wind Measurements Using Joust Configured Ultrasonic Anemometer for Applications in Gas Flux Quantification
by Derek Hollenbeck, Colin Edgar, Eugenie Euskirchen and Kristen Manies
Drones 2025, 9(2), 94; https://doi.org/10.3390/drones9020094 - 26 Jan 2025
Cited by 2 | Viewed by 1925
Abstract
Small uncrewed aerial systems (sUASs) can be used to quantify emissions of greenhouse and other gases, providing flexibility in quantifying these emissions from a multitude of sources, including oil and gas infrastructure, volcano plumes, wildfire emissions, and natural sources. However, sUAS-based emission estimates [...] Read more.
Small uncrewed aerial systems (sUASs) can be used to quantify emissions of greenhouse and other gases, providing flexibility in quantifying these emissions from a multitude of sources, including oil and gas infrastructure, volcano plumes, wildfire emissions, and natural sources. However, sUAS-based emission estimates are sensitive to the accuracy of wind speed and direction measurements. In this study, we examined how filtering and correcting sUAS-based wind measurements affects data accuracy by comparing data from a miniature ultrasonic anemometer mounted on a sUAS in a joust configuration to highly accurate wind data taken from a nearby eddy covariance flux tower (aka the Tower). These corrections had a small effect on wind speed error, but reduced wind direction errors from 50° to >120° to 20–30°. A concurrent experiment examining the amount of error due to the sUAS and the Tower not being co-located showed that the impact of this separation was 0.16–0.21 ms1, a small influence on wind speed errors. Lower wind speed errors were correlated with lower turbulence intensity and higher relative wind speeds. There were also some loose trends in diminished wind direction errors at higher relative wind speeds. Therefore, to improve the quality of sUAS-based wind measurements, our study suggested that flight planning consider optimizing conditions that can lower turbulence intensity and maximize relative wind speeds as well as include post-flight corrections. Full article
Show Figures

Figure 1

21 pages, 2659 KB  
Review
Development Trends of Air Flow Velocity Measurement Methods and Devices in Renewable Energy
by Paweł Ligęza, Paweł Jamróz and Katarzyna Socha
Energies 2025, 18(2), 412; https://doi.org/10.3390/en18020412 - 18 Jan 2025
Cited by 9 | Viewed by 2945
Abstract
This article presents an overview of airflow velocity measurement methods applied to renewable energy. Basic measurement methods used in this field are discussed: tachometric, ultrasonic, and calorimetric anemometry. The principle of operation and basic properties of anemometers are presented, and based on publications [...] Read more.
This article presents an overview of airflow velocity measurement methods applied to renewable energy. Basic measurement methods used in this field are discussed: tachometric, ultrasonic, and calorimetric anemometry. The principle of operation and basic properties of anemometers are presented, and based on publications from the last decade, a systematic review of development directions and trends in this field is made. The aim of the article is to familiarize people dealing with renewable energy problems, in particular wind energy, with the current state of knowledge in the field of anemometric measurements, properties of individual types of measuring devices, as well as directions of development of measurement tools. This will allow for the optimization of processes in the field of wind energy, in particular in the selection of the location of the energy facility, implementation of investments and control, diagnostics, and monitoring during operation. The selection of metrological tools adequate to the problem also allows for ensuring an appropriate level of work safety and environmental and ecological harmony and supporting the process of sustainable development. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

17 pages, 6118 KB  
Article
UAV Atmosphere Sounding for Rocket Launch Support
by Karol Piotr Bęben, Tomasz Noga, Dawid Cieśliński, Dawid Kulpa and Marcin Ryszard Spiralski
Sensors 2023, 23(24), 9639; https://doi.org/10.3390/s23249639 - 5 Dec 2023
Cited by 1 | Viewed by 3158
Abstract
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given [...] Read more.
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given the finite flight zone and impact area. Crucial to safety analysis is the wind profile, especially in the very first seconds of a flight, when rocket velocity is of the same order as the wind speed. Traditional near-ground wind data sources, ranging from wind towers to numerical models of the atmosphere, have limitations. Wind towers are costly and unfeasible at many test ranges used for launches, while numerical modeling may not reflect the specific ground profile near the launcher due to their large cell size (2 to +10 km). Meteorological balloons are not favorable for such measurements as they aim to provide the launch operator with a wind profile at high altitudes, and are launched only 1–2 times per flight attempt. Our study sought to prototype a wind measurement system designed to acquire near-ground wind profile data. It focuses on measuring wind direction and speed at near-ground altitudes with higher flight frequency, offering data on demand shortly before launch to help ensure safety. This atmosphere sounding system consists of an Unmanned Aerial Vehicle (UAV) equipped with an onboard ultrasonic wind sensor. Some reports in the literature have discussed the possibility of using UAV-borne anemometers, but the topic of measurement errors introduced by placing the anemometer onboard an UAV remains under studied. Limited research in this area underlines the need for experimental validation of design choices–for specific types of UAVs, anemometers, and mounting. This paper presents a literature review, a detailed overview of the prototyped system, and flight test results in both natural (outdoor) and controlled (indoor, no wind) conditions. Data from the UAV system’s anemometer was benchmarked against a stationary reference weather station, in order to examine the influence of the UAV’s rotor on the anemometer readings. Our findings show a wind speed Root Mean Square Error (RMSE) of 5 m/s and a directional RMSE of below 5.3° (both averaged for 1 min). The results were also compared with similar UAV-based wind measurements. The prototyped system was successfully used in a suborbital rocket launch campaign, thus demonstrating the feasibility of integrating UAVs with dedicated sensors for performing regular meteorological measurements in automatic mode. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

11 pages, 5466 KB  
Article
A Study on the Depositional Law of Road Cutting in the Tengger Desert
by Wen-Hua Yin, Huan Yue and Xu Wang
Appl. Sci. 2023, 13(21), 11967; https://doi.org/10.3390/app132111967 - 2 Nov 2023
Cited by 4 | Viewed by 1316
Abstract
In this study, the characteristics of wind-blown sand in the hinterland of the Tengger Desert and the regularity of sand deposition in road cutting are studied by combining a field test and numerical simulation. Firstly, the meteorological observation system is used to obtain [...] Read more.
In this study, the characteristics of wind-blown sand in the hinterland of the Tengger Desert and the regularity of sand deposition in road cutting are studied by combining a field test and numerical simulation. Firstly, the meteorological observation system is used to obtain the long-term monitoring of the Tengger Desert hinterland, and the perennial wind speed, wind direction, and strong wind period are obtained. Then, a three-dimensional ultrasonic anemometer and stepwise sand accumulation instrument are used to measure the transient wind-blown sand velocity and density at the top of the cutting slope, which provide the basis and verification for the numerical simulation. Finally, Fluent software (2020R2) is used to establish two numerical models with and without grading. Based on Euler’s two-fluid theory and fluctuating-wind user-defined functions, the movement of wind-blown sand in the cutting section of the desert hinterland is simulated, and the regularity of sand accumulation in the cutting section is obtained. The main conclusions are as follows: (1) The strong wind period in the hinterland of the Tengger Desert in 2021 mainly occurs from April to August, and the mainstream wind direction is concentrated in the WSW and SW directions. (2) The sand in the hinterland of the Tengger Desert is mainly medium–fine, and the particle size range is mainly concentrated at 0.075–0.250 mm, accounting for 98.2% of the total sand; the curve of the wind-blown sand density with height is oblique and L-shaped. (3) The method of grading excavation is beneficial to reduce the sand accumulation rate on the road’s surface. Full article
Show Figures

Figure 1

17 pages, 3323 KB  
Article
Concentration Gradients of Ammonia, Methane, and Carbon Dioxide at the Outlet of a Naturally Ventilated Dairy Building
by Harsh Sahu, Sabrina Hempel, Thomas Amon, Jürgen Zentek, Anke Römer and David Janke
Atmosphere 2023, 14(9), 1465; https://doi.org/10.3390/atmos14091465 - 21 Sep 2023
Cited by 7 | Viewed by 2087
Abstract
In natural ventilation system-enabled dairy buildings (NVDB), achieving accurate gas emission values is highly complicated. The external weather affects measurements of the gas concentration of pollutants (cP) and volume flow rate (Q) due to the open-sided design. Previous [...] Read more.
In natural ventilation system-enabled dairy buildings (NVDB), achieving accurate gas emission values is highly complicated. The external weather affects measurements of the gas concentration of pollutants (cP) and volume flow rate (Q) due to the open-sided design. Previous research shows that increasing the number of sensors at the side opening is not cost-effective. However, accurate measurements can be achieved with fewer sensors if an optimal sampling position is identified. Therefore, this study attempted to calibrate the outlet of an NVDB for the direct emission measurement method. Our objective was to investigate the cP gradients, in particular, for ammonia (cNH3), carbon dioxide (cCO2), and methane (cCH4) considering the wind speed (v) and their mixing ratios ([cCH4/cNH3¯]) at the outlet, and assess the effect of sampling height (H). The deviations in each cP at six vertical sampling points were recorded using a Fourier-transform infrared (FTIR) spectrometer. Additionally, wind direction and speed were recorded at the gable height (10 m) by an ultrasonic anemometer. The results indicated that, at varied heights, the average cNH3 (p < 0.001), cCO2 (p < 0.001), and (p < 0.001) were significantly different and mostly concentrated at the top (H = 2.7). Wind flow speed information revealed drastic deviations in cP, for example up to +105.1% higher cNH3 at the top (H = 2.7) compared to the baseline (H = 0.6), especially during low wind speed (v < 3 m s1) events. Furthermore, [cCH4/cNH3¯] exhibited significant variation with height, demonstrating instability below 1.5 m, which aligns with the average height of a cow. In conclusion, the average cCO2, cCH4, and cNH3 measured at the barn’s outlet are spatially dispersed vertically which indicates a possibility of systematic error due to the sensor positioning effect. The outcomes of this study will be advantageous to locate a representative gas sampling position when measurements are limited to one constant height, for example using open-path lasers or low-cost devices. Full article
(This article belongs to the Special Issue Emerging Technologies for Observation of Air Pollution)
Show Figures

Figure 1

22 pages, 19025 KB  
Article
Flow Structure around a Multicopter Drone: A Computational Fluid Dynamics Analysis for Sensor Placement Considerations
by Mauro Ghirardelli, Stephan T. Kral, Nicolas Carlo Müller, Richard Hann, Etienne Cheynet and Joachim Reuder
Drones 2023, 7(7), 467; https://doi.org/10.3390/drones7070467 - 13 Jul 2023
Cited by 19 | Viewed by 7865
Abstract
This study presents a computational fluid dynamics (CFD) based approach to determine the optimal positioning for an atmospheric turbulence sensor on a rotary-wing uncrewed aerial vehicle (UAV) with X8 configuration. The vertical (zBF) and horizontal (xBF [...] Read more.
This study presents a computational fluid dynamics (CFD) based approach to determine the optimal positioning for an atmospheric turbulence sensor on a rotary-wing uncrewed aerial vehicle (UAV) with X8 configuration. The vertical (zBF) and horizontal (xBF) distances of the sensor to the UAV center to reduce the effect of the propeller-induced flow are investigated by CFD simulations based on the kϵ turbulence model and the actuator disc theory. To ensure a realistic geometric design of the simulations, the tilt angles of a test UAV in flight were measured by flying the drone along a fixed pattern at different constant ground speeds. Based on those measurement results, a corresponding geometry domain was generated for the CFD simulations. Specific emphasis was given to the mesh construction followed by a sensitivity study on the mesh resolution to find a compromise between acceptable simulation accuracy and available computational resources. The final CFD simulations (twelve in total) were performed for four inflow conditions (2.5 m s−1, 5 m s−1, 7.5 m s−1 and 10 m s−1) and three payload configurations (15 kg, 20 kg and 25 kg) of the UAV. The results depend on the inflows and show that the most efficient way to reduce the influence of the propeller-induced flow is mounting the sensor upwind, pointing along the incoming flow direction at xBF varying between 0.46 and 1.66 D, and under the mean plane of the rotors at zBF between 0.01 and 0.7 D. Finally, results are then applied to the possible real-case scenario of a Foxtech D130 carrying a CSAT3B ultrasonic anemometer, that aims to sample wind with mean flows higher than 5 m s−1. The authors propose xBF=1.7 m and zBF=20 cm below the mean rotor plane as a feasible compromise between propeller-induced flow reduction and safety. These results will be used to improve the design of a novel drone-based atmospheric turbulence measurement system, which aims to combine accurate wind and turbulence measurements by a research-grade ultrasonic anemometer with the high mobility and flexibility of UAVs as sensor carriers. Full article
(This article belongs to the Special Issue Weather Impacts on Uncrewed Aircraft)
Show Figures

Figure 1

12 pages, 2749 KB  
Article
Investigating the Diurnal Variation in Coastal Boundary Layer Winds on Hainan Island Using Three Tower Observations
by Ziqiang Duan, Bingke Zhao, Shiwang Fu, Shuai Zhang, Limin Lin and Jie Tang
Atmosphere 2023, 14(4), 751; https://doi.org/10.3390/atmos14040751 - 21 Apr 2023
Cited by 1 | Viewed by 2688
Abstract
This study analyzes wind structures up to 509 m in the atmospheric boundary layer in the coastal area of Hainan Island, using a dataset obtained from ultrasonic anemometers housed in three towers. The wind profile, consisting of the measurements from the three towers, [...] Read more.
This study analyzes wind structures up to 509 m in the atmospheric boundary layer in the coastal area of Hainan Island, using a dataset obtained from ultrasonic anemometers housed in three towers. The wind profile, consisting of the measurements from the three towers, followed logarithmic law. In a diurnal variation, the maximum wind speed occurred at night, with a greater component of northerly wind, while the minimum wind speed was observed at noon, with a greater component of easterly wind. The variation in wind speed suggests that the measurements were representative of the wind field in the upper part of the atmospheric boundary layer, and the variation in wind direction might be affected by sea and land breezes, which can be induced by the different thermal conditions of underlying surfaces. The diurnal variation in average wind speed ranged from 0.5 to 1.5 m s−1, and the diurnal variation in wind direction was 10–20 degrees. In our measurements, the diurnal trajectory of the wind vector was observed to be counterclockwise, which differs from previous studies conducted over uniform and flat underlying surfaces. This is partially due to the different thermodynamic conditions of the underlying land and sea surfaces. The impact of topographic relief on wind measurement is also discussed. The measurements suggest that wind speeds at altitudes above 50 m are less influenced by terrain. The height of the reversal layer, which is generated by the different diurnal variations in wind speed in the upper and lower parts of the boundary layer, was estimated to be around 300 m. Full article
Show Figures

Figure 1

23 pages, 5559 KB  
Article
Measurement System for the Environmental Load Assessment of the Scale Ship Model
by Anna Miller and Andrzej Rak
Sensors 2023, 23(1), 306; https://doi.org/10.3390/s23010306 - 28 Dec 2022
Cited by 6 | Viewed by 2619
Abstract
The forces and moments acting on a marine vessel caused by the wind are most often modeled based on its speed measured at a standard 10 m above the sea level. There exist numerous well-known methods for modeling wind speed in such conditions. [...] Read more.
The forces and moments acting on a marine vessel caused by the wind are most often modeled based on its speed measured at a standard 10 m above the sea level. There exist numerous well-known methods for modeling wind speed in such conditions. These models, by nature, are inadequate for simulating wind disturbances for free-running scale ship models sailing on lakes. Such scale models are being used increasingly for design and testing modern ship motion control systems. The paper describes the hardware and methodology used in measuring wind speed at low altitudes above the lake level. The system consists of two ultrasonic anemometers supplemented with wave sensor acting as a capacitor immersed partially in the water. Obtained measurement results show clear similarity to the values gathered during full-scale experiments. Analysis of the power spectral density functions of turbulence measured for different mean wind speeds over the lake, indicates that, at the present stage of research, the best model of wind turbulence at low altitude above the lake level can be obtained by assembling four of the known, standard turbulence models. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 49342 KB  
Article
Machine Learning and Deterministic Methods for Detection Meteorological Phenomena from Ground Measurements: Application for Low-Level Jet and Sea-Breeze Identification in Northern France
by Sayahnya Roy, Alexei Sentchev, Marc Fourmentin and Patrick Augustin
Atmosphere 2022, 13(11), 1873; https://doi.org/10.3390/atmos13111873 - 10 Nov 2022
Cited by 3 | Viewed by 2718
Abstract
This study focused on the detection of mesoscale meteorological phenomena, such as the nocturnal low-level jet (NLLJ) and sea breeze (SB), using automatic deterministic detection wavelet technique algorithms (HWTT and SWT) and the machine learning recurrent neural network (RNN) algorithm. The developed algorithms [...] Read more.
This study focused on the detection of mesoscale meteorological phenomena, such as the nocturnal low-level jet (NLLJ) and sea breeze (SB), using automatic deterministic detection wavelet technique algorithms (HWTT and SWT) and the machine learning recurrent neural network (RNN) algorithm. The developed algorithms were applied for detection of NLLJ and SB events from ultrasonic anemometer measurements, performed between January 2018 and December 2019 at a nearshore experimental site in the north of France. Both algorithms identified the SB and NLLJ days successfully. The accuracy of SB event detection by the RNN algorithm attained 95%, and we identified 67 and 78 SB days in 2018 and 2019, respectively. Additionally, a total of 192 and 168 NLLJ days were found in 2018 and 2019, respectively. To demonstrate the capability of the algorithms to detect SB and NLLJ events from near-ground ultrasonic anemometer measurements, analysis of the simultaneous wind lidar measurements available for 86 days were performed. The results show a good agreement between the RNN-based detection method and the lidar observations, detecting 88% of SB. Deterministic algorithms (HWTT and SWT) detected a similar number of NLLJ events and provided high correlation (0.98) with the wind lidar measurements. The meteorological phenomena studied can significantly affect the energy production of offshore wind farms. It was found that the maximum hourly average peak power production could be to 5 times higher than that of the reference day due to higher wind speed observed during NLLJ events. During SB events, hourly average peak power production could be up to 2.5 times higher. In this respect, the developed algorithms applied for analysis, from near-ground anemometer measurements, may be helpful for monitoring and forecasting the meteorological phenomena capable of disturbing the energy production of offshore wind turbines. Full article
(This article belongs to the Topic Energy Efficiency, Environment and Health)
Show Figures

Figure 1

12 pages, 20895 KB  
Article
Wind Speed Measurement by an Inexpensive and Lightweight Thermal Anemometer on a Small UAV
by Jun Inoue and Kazutoshi Sato
Drones 2022, 6(10), 289; https://doi.org/10.3390/drones6100289 - 3 Oct 2022
Cited by 19 | Viewed by 9667
Abstract
Profiling wind information when using a small unmanned aerial vehicle (sUAV) is vital for atmospheric profiling and monitoring attitude during flight. Wind speed on an sUAV can be measured directly using ultrasonic anemometers or by calculating its attitude control information. The former method [...] Read more.
Profiling wind information when using a small unmanned aerial vehicle (sUAV) is vital for atmospheric profiling and monitoring attitude during flight. Wind speed on an sUAV can be measured directly using ultrasonic anemometers or by calculating its attitude control information. The former method requires a relatively large payload for an onboard ultrasonic anemometer, while the latter requires real-time flight log data access, which depends on the UAV manufacturers. This study proposes the feasibility of a small thermal anemometer to measure wind speeds inexpensively using a small commercial quadcopter (DJI Mavic2: M2). A laboratory experiment demonstrated that the horizontal wind speed bias increased linearly with ascending sUAV speed. A smoke experiment during hovering revealed the downward wind bias (1.2 m s1) at a 12-cm height above the M2 body. Field experiments in the ice-covered ocean demonstrated that the corrected wind speed agreed closely with the shipboard wind data observed by a calibrated ultrasonic anemometer. A dual-mount system comprising thermal anemometers was proposed to measure wind speed and direction. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Atmospheric Research)
Show Figures

Figure 1

Back to TopTop