# A Study on the Depositional Law of Road Cutting in the Tengger Desert

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### Study of the Perennial Wind Speed and Direction in the Desert Hinterland

## 3. Study of the Structural Characteristics of Wind-Blown Sand in the Desert Hinterland

#### 3.1. Instantaneous Wind Speed and Direction

#### 3.2. Structural Characteristics of Wind-Blown Sand in the Desert Hinterland

_{s}is the density of the wind-blown sand flow, unit: g/m

^{3}; Q is the sediment collection, unit: g; A indicates that the area of the rectangular sand inlet is 25, unit: cm

^{2}; t is the time of the sand collection, unit is s; u

_{z}is the average wind speed at z altitude, unit: m/s.

## 4. Numerical Simulation of Wind-Blown Sand in the Cutting in the Desert Hinterland

#### 4.1. Wind–Sand Two-Phase Flow Theory

_{x}and u

_{y}are, respectively, the velocity components in the x and y directions; φ and ρ, respectively, represent the volume fraction and density of the phase.

_{g}and ρ

_{g}, respectively, represent the volume fraction and density of the gas phase, φ

_{s}and ρ

_{s}, respectively, represent the volume fraction and density of the sand phase; φ

_{s}+ φ

_{g}= 1, f

_{sg}is the acting force between the gas phase and sand phase; U

_{g}and U

_{s}are the gas phase and sand phase velocities, respectively; p is the gas phase pressure; p

_{s}is the sand phase pressure; g is the acceleration due to gravity.

#### 4.2. Reynolds-Averaged N–S Equation

#### 4.3. Geometric Modeling and Meshing

#### 4.4. Boundary Conditions and Solving Strategies

#### 4.5. Mesh Independence Verification

#### 4.6. Mesh Independence Verification

#### 4.6.1. Characteristics of the Cutting Wind Field in the Desert Hinterland

#### 4.6.2. Road Area Sand Characteristics of the Cutting in the Desert Hinterland

## 5. Conclusions

- (1)
- The strong wind period in the hinterland of the Tengger Desert mainly occurs from April to August, with an average wind speed of 6.3 m/s. The main wind directions in the hinterland of the desert are concentrated in the WSW and SW directions, followed by the N and NNW directions.
- (2)
- The sand particles in the hinterland of the Tengger Desert mainly move at a height of 50 cm near the ground, and the total sand accumulation in 24 h reaches 45.78 g. The sand particles are mainly medium–fine sand, the particle size range is mainly concentrated in 0.075–0.25 mm, accounting for 98.2% of the total sand volume, and the curve of the wind-blown sand density with height is oblique L-shaped.
- (3)
- Under the same conditions, the graded excavation of the desert hinterland highway cutting is beneficial to reduce the sand accumulation rate on the road surface.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Huang, B.; Li, Z.; Zhao, Z.; Wu, H.; Zhou, H.; Cong, S. Near-ground impurity-free wind and wind-driven sand of photovoltaic power stations in a desert area. J. Wind Eng. Ind. Aerodyn.
**2018**, 179, 483–502. [Google Scholar] [CrossRef] - Liu, L.; Yang, Y.; Shi, P.; Zhang, G.; Qu, Z. The role of maximum wind speed in sand-transporting events. Geomorphology
**2015**, 238, 177–186. [Google Scholar] [CrossRef] - Shen, Y.; Zhang, C.; Huang, X.; Wang, X.; Cen, S. The effect of wind speed averaging time on sand transport estimates. Catena
**2019**, 175, 286–293. [Google Scholar] [CrossRef] - Yizhaq, H.; Xu, Z.; Ashkenazy, Y. The effect of wind speed averaging time on the calculation of sand drift potential: New scaling laws. Earth Planet. Sci. Lett.
**2020**, 544, 116373. [Google Scholar] [CrossRef] - Tan, L.; Zhang, W.; Qu, J.; Wang, J.; An, Z.; Li, F. Aeolian sediment transport over gobi: Field studies atop the Mogao Grottoes, China. Aeolian Res.
**2016**, 21, 53–60. [Google Scholar] [CrossRef] - Raffaele, L.; Beeck, J.; Bruno, L. Wind-sand tunnel testing of surface-mounted obstacles: Similarity requirements and a case study on a Sand Mitigation Measure. J. Wind Eng. Ind. Aerodyn.
**2021**, 214, 104653. [Google Scholar] [CrossRef] - Zheng, X.; Bo, T. Representation model of wind velocity fluctuations and saltation transport in aeolian sand flow. J. Wind Eng. Ind. Aerodyn.
**2021**, 220, 104846. [Google Scholar] [CrossRef] - Jiang, C.; Parteli, E.; Dong, Z.; Zhang, Z.; Qian, G.; Luo, W.; Lu, J.; Xiao, F.; Mei, F. Wind-tunnel experiments of Aeolian sand transport reveal a bimodal probability distribution function for the particle lift-off velocities. Catena
**2022**, 217, 106494. [Google Scholar] [CrossRef] - Liu, B.; Qu, J.; Tan, L.; An, Z.; Wang, H.; Wang, T.; Han, Q. A first wind tunnel study on the aeolian sand transport of coral sands. Catena
**2022**, 222, 106855. [Google Scholar] [CrossRef] - Tan, L.; Qu, J.; Wang, T.; Zhang, W.; Zhao, S.; Wang, H. Vertical flux density and frequency profiles of wind-blown sand as a function of the grain size over gobi and implications for aeolian transport processes. Aeolian Res.
**2022**, 55, 100787. [Google Scholar] [CrossRef] - Bar, N.; Elperin, T.; Katra, I.; Yizhaq, H. Numerical study of shear stress distribution at sand ripple surface in wind tunnel flow. Aeolian Res.
**2016**, 21, 125–130. [Google Scholar] [CrossRef] - Kang, L.; Zou, X. Experimental investigation of mass flux and transport rate of different size particles in mixed sand transport by wind. Geomorphology
**2020**, 367, 107320. [Google Scholar] [CrossRef] - Sun, W.; Huang, N. Influence of slope gradient on the behavior of saltating sand particles in a wind tunnel. Catena
**2017**, 148, 145–152. [Google Scholar] [CrossRef] - Horvat, M.; Bruno, L.; Khris, S.; Raffaele, L. Aerodynamic shape optimization of barriers for windblown sand mitigation using CFD analysis. J. Wind Eng. Ind. Aerodyn.
**2020**, 197, 104058. [Google Scholar] [CrossRef] - Giudice, A.; Preziosi, L. A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching. Appl. Math. Model.
**2020**, 79, 68–84. [Google Scholar] [CrossRef] - Wang, T.; Qu, J.; Liang, Y.; Liu, B.; Xiao, J. Shelter effect efficacy of sand fences: A comparison of systems in a wind tunnel. Aeolian Res.
**2018**, 30, 32–40. [Google Scholar] [CrossRef] - Chen, B.; Cheng, J.; Xin, L.; Wang, R. Effectiveness of hole plate-type sand barriers in reducing aeolian sediment flux: Evaluation of effect of hole size. Aeolian Res.
**2019**, 38, 1–12. [Google Scholar] [CrossRef] - Wang, T.; Qu, J.; Niu, Q. Comparative study of the shelter efficacy of straw checkerboard barriers and rocky checkerboard barriers in a wind tunnel. Aeolian Res.
**2020**, 43, 100575. [Google Scholar] [CrossRef] - Zhang, K.; Zhao, P.; Zhao, J.; Zhang, X. Protective effect of multi-row HDPE board sand fences: A wind tunnel study. Int. Soil Water Conserv. Res.
**2021**, 9, 103–115. [Google Scholar] [CrossRef] - Wu, X.; Guo, Z.; Wang, R.; Fan, P.; Xiang, H.; Zou, X.; Yin, J.; Fang, H. Optimal design for wind fence based on 3D numerical simulation. Agric. For. Meteorol.
**2022**, 323, 109072. [Google Scholar] [CrossRef] - Sarafrazi, V.; Talaee, M. Simulation of wall barrier properties along a railway track during a sandstorm. Aeolian Res.
**2020**, 46, 100626. [Google Scholar] [CrossRef] - Horvat, M.; Bruno, L.; Khris, S. CWE study of wind flow around railways: Effects of embankment and track system on sand sedimentation. J. Wind Eng. Ind. Aerodyn.
**2021**, 208, 104476. [Google Scholar] [CrossRef] - Zhang, M.; Xiao, H.; Mahantesh, M.; Jin, F.; Liu, G. Track structure failure caused by sand deposition: Simulation and experimentation. Aeolian Res.
**2020**, 43, 100578. [Google Scholar]

**Figure 9.**Cutting section of the Ningxia Tengger Desert Highway Experiential Base: (

**a**) no classification; (

**b**) graded.

**Figure 14.**Sand acquisition in road cuttings in the desert hinterland: (

**a1**–

**a5**) ungraded; (

**b1**–

**b5**) graded.

Height (cm) | 10 | 30 | 50 | 70 | 100 |
---|---|---|---|---|---|

Sediment transport (g) | 19.30 | 13.20 | 7.80 | 4.60 | 0.90 |

Proportion (%) | 42.00 | 29.00 | 17.00 | 10.00 | 2.00 |

Particle Size Range (mm) | 0–0.075 | 0.075–0.1 | 0.1–0.25 | 0.25–0.5 | 0.5–1 | >5 |
---|---|---|---|---|---|---|

Weight(g) | 1.03 | 71.59 | 23.71 | 0.44 | 0.10 | 0.10 |

Proportion (%) | 1.06 | 73.8 | 24.4 | 0.45 | 0.10 | 0.10 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yin, W.-H.; Yue, H.; Wang, X.
A Study on the Depositional Law of Road Cutting in the Tengger Desert. *Appl. Sci.* **2023**, *13*, 11967.
https://doi.org/10.3390/app132111967

**AMA Style**

Yin W-H, Yue H, Wang X.
A Study on the Depositional Law of Road Cutting in the Tengger Desert. *Applied Sciences*. 2023; 13(21):11967.
https://doi.org/10.3390/app132111967

**Chicago/Turabian Style**

Yin, Wen-Hua, Huan Yue, and Xu Wang.
2023. "A Study on the Depositional Law of Road Cutting in the Tengger Desert" *Applied Sciences* 13, no. 21: 11967.
https://doi.org/10.3390/app132111967