Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = ultra-wide band antennas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 9998 KiB  
Review
Routing Challenges and Enabling Technologies for 6G–Satellite Network Integration: Toward Seamless Global Connectivity
by Fatma Aktas, Ibraheem Shayea, Mustafa Ergen, Laura Aldasheva, Bilal Saoud, Akhmet Tussupov, Didar Yedilkhan and Saule Amanzholova
Technologies 2025, 13(6), 245; https://doi.org/10.3390/technologies13060245 - 12 Jun 2025
Viewed by 2019
Abstract
The capabilities of 6G networks surpass those of existing networks, aiming to enable seamless connectivity between all entities and users at any given time. A critical aspect of achieving enhanced and ubiquitous mobile broadband, as promised by 6G networks, is merging satellite networks [...] Read more.
The capabilities of 6G networks surpass those of existing networks, aiming to enable seamless connectivity between all entities and users at any given time. A critical aspect of achieving enhanced and ubiquitous mobile broadband, as promised by 6G networks, is merging satellite networks with land-based networks, which offers significant potential in terms of coverage area. Advanced routing techniques in next-generation network technologies, particularly when incorporating terrestrial and non-terrestrial networks, are essential for optimizing network efficiency and delivering promised services. However, the dynamic nature of the network, the heterogeneity and complexity of next-generation networks, and the relative distance and mobility of satellite networks all present challenges that traditional routing protocols struggle to address. This paper provides an in-depth analysis of 6G networks, addressing key enablers, technologies, commitments, satellite networks, and routing techniques in the context of 6G and satellite network integration. To ensure 6G fulfills its promises, the paper emphasizes necessary scenarios and investigates potential bottlenecks in routing techniques. Additionally, it explores satellite networks and identifies routing challenges within these systems. The paper highlights routing issues that may arise in the integration of 6G and satellite networks and offers a comprehensive examination of essential approaches, technologies, and visions required for future advancements in this area. 6G and satellite networks are associated with technical terms such as AI/ML, quantum computing, THz communication, beamforming, MIMO technology, ultra-wide band and multi-band antennas, hybrid channel models, and quantum encryption methods. These technologies will be utilized to enhance the performance, security, and sustainability of future networks. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

12 pages, 4302 KiB  
Article
Design of Ultra-Wideband Low RCS Antenna Based on Polarization Conversion Metasurface
by Haiqing Guo, Ye Zhao, Jiangwei Li, Rui Gao, Zhihui He and Zhimin Yang
Electronics 2025, 14(11), 2204; https://doi.org/10.3390/electronics14112204 - 29 May 2025
Viewed by 350
Abstract
An ultra-wideband and radar cross-section (RCS) antenna array based on polarization conversion metasurface (PCM) is proposed. Firstly, the PCM unit is proposed, and its performance is analyzed. In terms of radiation performance, the −10 dB impedance matching bandwidth of the PCM unit is [...] Read more.
An ultra-wideband and radar cross-section (RCS) antenna array based on polarization conversion metasurface (PCM) is proposed. Firstly, the PCM unit is proposed, and its performance is analyzed. In terms of radiation performance, the −10 dB impedance matching bandwidth of the PCM unit is 8.5–30.2 GHz (a relative bandwidth of 112.1%) and the polarization conversion ratio (PCR) is higher than 90%. In terms of scattering performance, the antenna achieves more than 10 dB RCS reduction in the band of 8.35–30.45 GHz (a relative bandwidth of 113.9%). Secondly, the PCM unit is combined with the microstrip antenna, and its performance is analyzed: the gain of the microstrip antenna is increased by 2.8 dB at 19.5 GHz compared to the antenna without the PCM, and the low-RCS antenna array achieves RCS reduction over 6 dB within the frequency range of 8.3–31.7 GHz (a relative bandwidth of 117%). The antenna array has the advantages of wide bandwidth, high gain, and low RCS. It can be used for radars, aircraft, and stealth platforms. Full article
Show Figures

Figure 1

14 pages, 5328 KiB  
Article
Design of a Novel Ultra-Wideband Antipodal Vivaldi Antenna Based on Klopfenstein Curve
by Yanxing Zhang and Jinling Zhang
Microwave 2025, 1(1), 4; https://doi.org/10.3390/microwave1010004 - 21 May 2025
Viewed by 891
Abstract
We propose a new ultra-wideband antipodal Vivaldi antenna design based on the Klopfenstein curve, incorporating exponential slots, horns, and apertures to improve the antenna’s return loss and increase its gain in high-frequency bands. The antenna achieves high gain and wide bandwidth characteristics, with [...] Read more.
We propose a new ultra-wideband antipodal Vivaldi antenna design based on the Klopfenstein curve, incorporating exponential slots, horns, and apertures to improve the antenna’s return loss and increase its gain in high-frequency bands. The antenna achieves high gain and wide bandwidth characteristics, with measured −10 dB bandwidth ranging from 2 GHz to 20 GHz, maximum gain of 14 dBi, and gain exceeding 10 dBi from 3.5 GHz to 14 GHz. Full article
Show Figures

Graphical abstract

17 pages, 3364 KiB  
Article
Ultra-Wideband Antenna Design for 5G NR Using the Bezier Search Differential Evolution Algorithm
by Georgios Korompilis, Achilles D. Boursianis, Panagiotis Sarigiannidis, Zaharias D. Zaharis, Katherine Siakavara, Maria S. Papadopoulou, Mohammad Abdul Matin and Sotirios K. Goudos
Technologies 2025, 13(4), 133; https://doi.org/10.3390/technologies13040133 - 1 Apr 2025
Cited by 1 | Viewed by 482
Abstract
As the energy crisis is leading to energy shortages and constant increases in prices, green energy and renewable energy sources are trending as a viable solution to this problem. One of the most rapidly expanding green energy methods is RF (RadioFrequency) energy harvesting, [...] Read more.
As the energy crisis is leading to energy shortages and constant increases in prices, green energy and renewable energy sources are trending as a viable solution to this problem. One of the most rapidly expanding green energy methods is RF (RadioFrequency) energy harvesting, as RF energy and its corresponding technologies are constantly progressing, due to the introduction of 5G and high-speed telecommunications. The usual system for RF energy harvesting is called a rectenna, and one of its main components is an antenna, responsible for collecting ambient RF energy. In this paper, the optimization process of an ultra-wideband antenna for RF energy harvesting applications was studied, with the main goal of broadening the antenna’s operational bandwidth to include 5G New Radio. For this purpose, the Bezier Search Differential Evolution Algorithm (BeSD) was used along with a novel CST-Matlab API, to manipulate the degrees of freedom of the antenna, while searching for the optimal result, which would satisfy all the necessary dependencies to make it capable of harvesting RF energy in the target frequency band. The BeSD algorithm was first tested with benchmark functions and compared to other widely used algorithms, which it successfully outperformed, and hence, it was selected as the optimizer for this research. All in all, the optimization process was successful by producing an ultra-wideband optimal antenna operating from 1.4 GHz to 3.9 GHz, which includes all vastly used telecommunication technologies, like GSM (1.8 GHz), UMTS (2.1 GHz), Wi-Fi (2.4 GHz), LTE (2.6 GHz), and 5G NR (3.5 GHz). Its ultra-wideband properties and the rest of the characteristics that make this design suitable for RF energy harvesting are proven by its S11 response graph, its impedance response graph, its efficiency on the targeted technologies, and its omnidirectionality across its band of operation. Full article
Show Figures

Figure 1

8 pages, 8967 KiB  
Proceeding Paper
Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications
by Ankur Jyoti Kalita, Nairit Barkataki and Utpal Sarma
Eng. Proc. 2025, 87(1), 25; https://doi.org/10.3390/engproc2025087025 - 24 Mar 2025
Viewed by 425
Abstract
Ground-Penetrating Radar (GPR) systems with ultra-wideband (UWB) antennas introduce the benefits of both high and low frequencies. Higher frequencies offer finer spatial resolution, enabling the detection of small-scale features and details, while lower frequencies improve depth penetration by minimising signal attenuation, allowing the [...] Read more.
Ground-Penetrating Radar (GPR) systems with ultra-wideband (UWB) antennas introduce the benefits of both high and low frequencies. Higher frequencies offer finer spatial resolution, enabling the detection of small-scale features and details, while lower frequencies improve depth penetration by minimising signal attenuation, allowing the system to explore deeper subsurface layers. This combination optimises the performance of GPR systems by balancing the need for detailed imaging with the requirement for deeper penetration. This work presents the design of a wideband inverted U-shaped patch antenna with a wide rectangular slot centred at a frequency of 1.5 GHz. The antenna is fed through a microstrip feed line and employs a partial ground plane. Through simulation, the antenna is optimised by varying the patch dimensions and slot size. Further modifications to the partial ground plane improve the UWB and gain characteristics of the antenna. The optimised antenna is fabricated using a double-sided copper-clad FR4 substrate with a thickness of 1.6 mm and characterised using a Vector Network Analyser (VNA), with final dimensions of 200 mm × 300 mm. The experimental results demonstrate a return loss below −10 dB across the operational band from 1.068 GHz to 4 GHz and a maximum gain of 7.29 dB at 4 GHz. In addition to other bands, the antenna exhibits a return loss consistently below −20 dB in the frequency range of 1.367 GHz to 1.675 GHz. These results confirm the antenna’s UWB performance and its suitability for GPR applications in utility mapping, landmine and artefact detection, and identifying architectural defects. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

22 pages, 22157 KiB  
Article
A Watt-Level RF Wireless Power Transfer System with Intelligent Auto-Tracking Function
by Zhaoxu Yan, Chuandeng Hu, Bo Hou and Weijia Wen
Electronics 2025, 14(7), 1259; https://doi.org/10.3390/electronics14071259 - 22 Mar 2025
Viewed by 1074
Abstract
Radio-frequency (RF) microwave wireless power transfer (WPT) offers an efficient means of delivering energy to a wide array of devices over long distances. Previous RF WPT systems faced significant challenges, including complex hardware and control systems, software deficiencies, insufficient rectification power, lack of [...] Read more.
Radio-frequency (RF) microwave wireless power transfer (WPT) offers an efficient means of delivering energy to a wide array of devices over long distances. Previous RF WPT systems faced significant challenges, including complex hardware and control systems, software deficiencies, insufficient rectification power, lack of high-performance substrate materials, and electromagnetic radiation hazards. Addressing these issues, this paper proposes the world’s first watt-level RF WPT system capable of intelligent continuous tracking and occlusion judgment. Our 5.8 GHz band RF WPT system integrates several advanced technologies, such as millimeter-precision lidar, the multi-object image recognition algorithm, the accurate 6-bit continuous beamforming algorithm, a compact 16-channel 32 W high-power transmitting system, a pair of ultra-low axial ratio circularly polarized antenna arrays, ultra-low-loss high-strength ceramic substrates, and a 2.4 W high-power Schottky diode array rectifier achieving a rectification efficiency of 66.8%. Additionally, we construct a platform to demonstrate the application of the proposed RF WPT system in battery-free vehicles, achieving unprecedented 360 uninterrupted power supply to the battery-free vehicle. In summary, this system represents the most functionally complete RF WPT system to date, serving as a milestone for several critical fields such as smart living, transportation electrification, and battery-less/free societies. Full article
Show Figures

Figure 1

19 pages, 2276 KiB  
Article
A Broadband Mode Converter Antenna for Terahertz Communications
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Electronics 2025, 14(3), 551; https://doi.org/10.3390/electronics14030551 - 29 Jan 2025
Viewed by 951
Abstract
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a [...] Read more.
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a major challenge in THz systems. In this paper, we propose a THz band mode converter that converts from a rectangular waveguide (RWG) (WR-0.43) in TE10 mode to a substrate-integrated waveguide (SIW) in TE20 mode. The converter comprises a tapered waveguide, a widened waveguide, a zigzag antenna, and an aperture coupling slot. The zigzag antenna effectively captures the electromagnetic (EM) energy from the RWG, which is then coupled to the aperture slot. This coupling generates a quasi-slotline mode for the electric field (E-field) along the longitudinal side of the aperture, exhibiting odd symmetry akin to the SIW’s TE20 mode. Consequently, the TE20 mode is excited in the symmetrical plane of the SIW and propagates transversely. Our work details the mode transition principle through simulations of the EM field distribution and model optimization. A back-to-back RWG TE10-to-TE10 mode converter is designed, demonstrating an insertion loss of approximately 5 dB over the wide frequency range band of 2.15–2.36 THz, showing a return loss of 10 dB. An on-chip antenna is proposed which is fed by a single higher-order mode of the SIW, achieving a maximum gain of 4.49 dB. Furthermore, a balun based on the proposed converter is designed, confirming the presence of the TE20 mode in the SIW. The proposed mode converter demonstrates its feasibility for integration into a THz-band high-speed circuit due to its efficient mode conversion and compact planar design. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

12 pages, 6322 KiB  
Article
Three-Dimensional Ultra-Wideband Antenna: From Guiding Physical Considerations to Sequential Computer Optimization of Parameters and Characteristics
by Victor P. Belichenko, Yuri Buyanov, George Dymov, Aleksandr Mironchev and Aleksandr Gorst
Appl. Sci. 2024, 14(24), 11658; https://doi.org/10.3390/app142411658 - 13 Dec 2024
Viewed by 744
Abstract
Features of radiation from a three-dimensional ultra-wideband (UWB) unidirectional antenna are studied within the framework of the theory of characteristic modes. The antenna has a very simple structure and is distinguished by a rational use of accommodation volume. It has been found that [...] Read more.
Features of radiation from a three-dimensional ultra-wideband (UWB) unidirectional antenna are studied within the framework of the theory of characteristic modes. The antenna has a very simple structure and is distinguished by a rational use of accommodation volume. It has been found that a very wide matching band is provided by the simultaneous excitation of modes of two groups. Since the modes of each group have similar directional patterns, the stability of the antenna directional pattern also occurs practically within the entire matching band. Full article
Show Figures

Figure 1

20 pages, 26546 KiB  
Article
Synthetic Imaging Radar Data Generation in Various Clutter Environments Using Novel UWB Log-Periodic Antenna
by Deepmala Trivedi, Gopal Singh Phartiyal, Ajeet Kumar and Dharmendra Singh
Sensors 2024, 24(24), 7903; https://doi.org/10.3390/s24247903 - 11 Dec 2024
Viewed by 934
Abstract
In short-range microwave imaging, the collection of data in real environments for the purpose of developing techniques for target detection is very cumbersome. Simultaneously, to develop effective and efficient AI/ML-based techniques for target detection, a sufficiently large dataset is required. Therefore, to complement [...] Read more.
In short-range microwave imaging, the collection of data in real environments for the purpose of developing techniques for target detection is very cumbersome. Simultaneously, to develop effective and efficient AI/ML-based techniques for target detection, a sufficiently large dataset is required. Therefore, to complement labor-intensive and tedious experimental data collected in a real cluttered environment, synthetic data generation via cost-efficient electromagnetic wave propagation simulations is explored in this article. To obtain realistic synthetic data, a 3-D model of an antenna, instead of a point source, is used to include the coupling effects between the antenna and the environment. A novel printed scalable ultra-wide band (UWB) log-periodic antenna with a tapered feed line is designed and incorporated in simulation models. The proposed antenna has a highly directional radiation pattern with considerable high gain (more than 6 dBi) on the entire bandwidth. Synthetic data are generated for two different applications, namely through-the-wall imaging (TWI) and through-the-foliage imaging (TFI). After the generation of synthetic data, clutter removal techniques are also explored, and results are analyzed in different scenarios. Post-analysis shows evidence that the proposed UWB log-periodic antenna-based synthetic imagery is suitable for use as an alternative dataset for TWI and TFI application development, especially in training machine learning models. Full article
(This article belongs to the Special Issue Microwave and Millimeter Wave Sensing and Applications)
Show Figures

Figure 1

14 pages, 6132 KiB  
Article
Design of Two Compact Wideband Monopoles Through Loading with Linear Approximated Lumped Components
by Jiansen Ma, Weiping Cao and Xinhua Yu
Micromachines 2024, 15(12), 1477; https://doi.org/10.3390/mi15121477 - 7 Dec 2024
Viewed by 1122
Abstract
In this paper, two ultra-wideband monopoles in a colinear structure are presented for application in remote terrestrial communication systems. The antennas consist of a loaded monopole with a hat and an elevated loaded monopole located in the upper position. All lumped loads are [...] Read more.
In this paper, two ultra-wideband monopoles in a colinear structure are presented for application in remote terrestrial communication systems. The antennas consist of a loaded monopole with a hat and an elevated loaded monopole located in the upper position. All lumped loads are modeled as linear frequency-dependent components to approximate the practical component property for achieving ultra-wideband characteristics, since the constant value property of a component is only present in a relatively narrow band. The antennas are simulated by the method of moments (MoM) with asymptotic waveform evaluation (AWE) to speed up frequency sweep across a wide bandwidth. For proper simulation with the AWE process, the parallel RLC load with linear frequency-dependent components is modeled in a corresponding impedance function. With the optimized load parameters, one antenna covers 30–750 MHz with a VSWR < 3.5 and the other one covers 800 MHz–3000 MHz with a VSWR < 2.5, which are promising results for terrestrial omnidirectional applications. Full article
(This article belongs to the Special Issue RF MEMS and Microsystems)
Show Figures

Figure 1

18 pages, 8581 KiB  
Article
Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems
by Zhiwei Song, Youwei Shi, Xianren Zheng and Yuchao Wang
Sensors 2024, 24(23), 7522; https://doi.org/10.3390/s24237522 - 25 Nov 2024
Cited by 1 | Viewed by 1135
Abstract
This paper presents an innovative, compact, dual-element, implantable, ultra-wideband, circularly polarized multiple-input multiple-output (MIMO) antenna designed to operate within the 2.45 GHz industrial, scientific, and medical band, and both of its radiating units are circularly polarized antennas with polarization diversity. Specifically, antenna-1 exhibits [...] Read more.
This paper presents an innovative, compact, dual-element, implantable, ultra-wideband, circularly polarized multiple-input multiple-output (MIMO) antenna designed to operate within the 2.45 GHz industrial, scientific, and medical band, and both of its radiating units are circularly polarized antennas with polarization diversity. Specifically, antenna-1 exhibits left-handed circular polarization properties, while antenna-2 demonstrates right-handed circular polarization properties. The slots in the radiating patch and ground plane help the antenna achieve 690 MHz (2.14–2.83 GHz) ultra-wide bandwidth characteristics and circularly polarized characteristics. Additionally, a slit connecting two U-slots on the ground plane allows the antenna to achieve a wide effective circularly polarized axial ratio bandwidth of 400 MHz (2.23–2.63 GHz). The antenna is compact, with dimensions of 0.065 × 0.057 × 0.0042 λ030 represents the free-space wavelength corresponding to the lowest operating frequency). The proposed antenna system’s performance was evaluated with a seven-layer homogeneous human head model, a real human head model, and minced pork. This evaluation revealed that the antenna attained a peak gain of −24.1 dBi and an isolation level of 27.5 dB. Furthermore, the assessment included the antenna’s link margin (LM), key MIMO channel characteristics, and Specific Absorption Rate (SAR) metrics. The results indicate that the antenna performs exceptionally well. Full article
Show Figures

Figure 1

17 pages, 5128 KiB  
Article
A Compact Ultra-Wideband Millimeter-Wave Four-Port Multiple-Input Multiple-Output Antenna for 5G Internet of Things Applications
by Ashutosh Sharma, Sanjeev Sharma, Vikas Sharma, Girish Wadhwa and Rajeev Kumar
Sensors 2024, 24(22), 7153; https://doi.org/10.3390/s24227153 - 7 Nov 2024
Cited by 3 | Viewed by 1438
Abstract
This paper presents a compact design for a four-element multiple-input multiple-output (MIMO) antenna for millimeter-wave (mmWave) communications covering the bands of n257/n258/n261. The MIMO design covers the frequency range of 24.25–29.5 GHz, with a wide bandwidth of 5.25 GHz. The element of the [...] Read more.
This paper presents a compact design for a four-element multiple-input multiple-output (MIMO) antenna for millimeter-wave (mmWave) communications covering the bands of n257/n258/n261. The MIMO design covers the frequency range of 24.25–29.5 GHz, with a wide bandwidth of 5.25 GHz. The element of the MIMO antenna structure uses a single circular patch with an inset feed, and, in order to improve the reflection coefficient (S11), a half-disk parasitic patch is positioned on top of the circular patch. Moreover, to fine-tune the antenna’s characteristics, two vertical stubs on the extreme ends of the ground plane are introduced. For this design, a Rogers RT/Duroid 5880 substrate with ultra-thin thickness is used. After the optimization of the design, the four-port MIMO antenna attained a tiny size, with the dimensions 16.2 mm × 16.2 mm × 0.254 mm. In terms of the MIMO parameters, the ECC (Envelop Correlation coefficient) is less than 0.002 and the DG (Diversity Gain) is greater than 9.99 dB in the mentioned band, which are within the tolerance limits. Also, in spite of the very small size and the four-port configuration, the achieved isolation between the neighboring MIMO elements is less than −23.5 dB. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

20 pages, 14212 KiB  
Article
ReLoki: A Light-Weight Relative Localization System Based on UWB Antenna Arrays
by Joseph Prince Mathew and Cameron Nowzari
Sensors 2024, 24(16), 5407; https://doi.org/10.3390/s24165407 - 21 Aug 2024
Cited by 3 | Viewed by 1489
Abstract
Ultra Wide-Band (UWB) sensing has gained popularity in relative localization applications. Many localization solutions rely on using Time of Flight (ToF) sensing based on a beacon–tag system, which requires four or more beacons in the environment for 3D localization. A lesser researched option [...] Read more.
Ultra Wide-Band (UWB) sensing has gained popularity in relative localization applications. Many localization solutions rely on using Time of Flight (ToF) sensing based on a beacon–tag system, which requires four or more beacons in the environment for 3D localization. A lesser researched option is using Angle of Arrival (AoA) readings obtained from UWB antenna pairs to perform relative localization. In this paper, we present a UWB platform called ReLoki that can be used for ranging and AoA-based relative localization in 3D. To enable AoA, ReLoki utilizes the geometry of antenna arrays. In this paper, we present a system design for localization estimates using a Regular Tetrahedral Array (RTA), Regular Orthogonal Array (ROA), and Uniform Square Array (USA). The use of a multi-antenna array enables fully onboard infrastructure-free relative localization between participating ReLoki modules. We also present studies demonstrating sub-50cm localization errors in indoor experiments, achieving performance close to current ToF-based systems, while offering the advantage of not relying on static infrastructure. Full article
Show Figures

Figure 1

10 pages, 10160 KiB  
Article
Dual-Band Antenna Array Fed by Ridge Gap Waveguide with Dual-Periodic Interdigital-Pin Bed of Nails
by Boju Chen, Xiaoming Chen, Xin Cheng, Yiran Da, Xiaobo Liu, Steven Gao and Ahmed A. Kishk
Sensors 2024, 24(16), 5117; https://doi.org/10.3390/s24165117 - 7 Aug 2024
Cited by 1 | Viewed by 1554
Abstract
A dual-band (K-/Ka-band) antenna array is presented. An ultra-wideband antenna element in the shape of a double-ridged waveguide is used as a radiation slot, and a novel dual-periodic ridge gap waveguide (RGW) with an interdigital-pin bed of nails (serving as a filter) is [...] Read more.
A dual-band (K-/Ka-band) antenna array is presented. An ultra-wideband antenna element in the shape of a double-ridged waveguide is used as a radiation slot, and a novel dual-periodic ridge gap waveguide (RGW) with an interdigital-pin bed of nails (serving as a filter) is used to realize dual-band operation. By periodically arranging the pins of two different heights in two dimensions, the proposed RGW with interdigital-pin bed of nails is able to realize and flexibly adjust two passbands. The widely used GW-based back cavity boosts the realized gain and simplifies the feed network design. A 4 × 4 prototype array was designed, fabricated, and measured. The results show that the array has two operating bands at 24.5–26.4 GHz and 30.3–31.5 GHz, and the realized gain can reach 19.2 dBi and 20.4 dBi, respectively. Meanwhile, there is a very significant gain attenuation at stopband. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Antennas: Second Edition)
Show Figures

Figure 1

16 pages, 9167 KiB  
Article
A Wide Bandwidth Vivaldi Antenna Suitable for 5G/6G Communication Utilizing a CMOS 0.18 μm Process
by Ming-An Chung, Chung-Wu Ting and Kuo-Chun Tseng
Telecom 2024, 5(2), 400-415; https://doi.org/10.3390/telecom5020020 - 14 May 2024
Cited by 1 | Viewed by 2421
Abstract
This text proposes a Vivaldi structure array antenna, using a power divider structure. The composition includes an antenna array with four antennas, suitable for a wideband array structure antenna in the 100 GHz frequency band. The goal is to address the challenges faced [...] Read more.
This text proposes a Vivaldi structure array antenna, using a power divider structure. The composition includes an antenna array with four antennas, suitable for a wideband array structure antenna in the 100 GHz frequency band. The goal is to address the challenges faced by monolithic systems in modern wireless communications, particularly the issue of the inapplicability of antennas on silicon substrates. The Vivaldi antenna was chosen for its wide bandwidth, high efficiency, and stable radiation pattern. It combines the characteristics of a wide scanning angle and ultra-wide bandwidth. Through integration with CMOS technology, the developed antenna achieved a bandwidth of 85.47–102.40 GHz. The peak gain reached −4 dBi, corresponding to a bandwidth of 17.7%. And the antenna volume was only 1.2 mm × 1.2 mm, demonstrating its immense potential in high-frequency wireless applications. Full article
Show Figures

Figure 1

Back to TopTop