Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = ultra-low power loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6919 KiB  
Article
Symmetric Optimization Strategy Based on Triple-Phase Shift for Dual-Active Bridge Converters with Low RMS Current and Full ZVS over Ultra-Wide Voltage and Load Ranges
by Longfei Cui, Yiming Zhang, Xuhong Wang and Dong Zhang
Electronics 2025, 14(15), 3031; https://doi.org/10.3390/electronics14153031 - 30 Jul 2025
Viewed by 272
Abstract
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency [...] Read more.
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency across ultra-wide output voltage and load ranges. To exploit the inherent structural symmetry of the DAB topology, a symmetric optimization strategy based on triple-phase shift (SOS-TPS) is proposed. The method specifically targets the forward buck operating mode, where an optimization framework is established to minimize the root mean square (RMS) current of the inductor, thereby addressing both switching and conduction losses. The formulation explicitly incorporates zero-voltage switching (ZVS) constraints and operating mode conditions. By employing the Karush–Kuhn–Tucker (KKT) conditions in conjunction with the Lagrange multiplier method (LMM), the refined control trajectories corresponding to various power levels are analytically derived, enabling efficient modulation across the entire operating range. In the medium-power region, full-switch ZVS is inherently satisfied. In the low-power operation, full-switch ZVS is achieved by introducing a modulation factor λ, and a selection principle for λ is established. For high-power operation, the strategy transitions to a conventional single-phase shift (SPS) modulation. Furthermore, by exploiting the inherent symmetry of the DAB topology, the proposed method reveals the symmetric property of modulation control. The modulation strategy for the forward boost mode can be efficiently derived through a duty cycle and voltage gain mapping, eliminating the need for re-derivation. To validate the effectiveness of the proposed SOS-TPS strategy, a 2.3 kW experimental prototype was developed. The measured results demonstrate that the method ensures ZVS for all switches under the full load range, supports ultra-wide voltage conversion capability, substantially suppresses RMS current, and achieves a maximum efficiency of 97.3%. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

16 pages, 4237 KiB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 340
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

35 pages, 2010 KiB  
Article
Intelligent Transmission Control Scheme for 5G mmWave Networks Employing Hybrid Beamforming
by Hazem (Moh’d Said) Hatamleh, As’ad Mahmoud As’ad Alnaser, Roba Mahmoud Ali Aloglah, Tomader Jamil Bani Ata, Awad Mohamed Ramadan and Omar Radhi Aqeel Alzoubi
Future Internet 2025, 17(7), 277; https://doi.org/10.3390/fi17070277 - 24 Jun 2025
Viewed by 339
Abstract
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is [...] Read more.
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is required due to the growing demands for spectrum resources in upcoming enormous machine-type communication applications. Ultra-high data speed, reduced latency, and improved connection are all promised by the development of 5G mmWave networks. Yet, due to severe route loss and directional communication requirements, there are substantial obstacles to transmission reliability and energy efficiency. To address this limitation in this research we present an intelligent transmission control scheme tailored to 5G mmWave networks. Transport control protocol (TCP) performance over mmWave links can be enhanced for network protocols by utilizing the mmWave scalable (mmS)-TCP. To ensure that users have the stronger average power, we suggest a novel method called row compression two-stage learning-based accurate multi-path processing network with received signal strength indicator-based association strategy (RCTS-AMP-RSSI-AS) for an estimate of both the direct and indirect channels. To change user scenarios and maintain effective communication constantly, we utilize the innovative method known as multi-user scenario-based MATD3 (Mu-MATD3). To improve performance, we introduce the novel method of “digital and analog beam training with long-short term memory (DAH-BT-LSTM)”. Finally, as optimizing network performance requires bottleneck-aware congestion reduction, the low-latency congestion control schemes (LLCCS) are proposed. The overall proposed method improves the performance of 5G mmWave networks. Full article
(This article belongs to the Special Issue Advances in Wireless and Mobile Networking—2nd Edition)
Show Figures

Figure 1

13 pages, 1744 KiB  
Article
Numerical Optimization of Metamaterial-Enhanced Infrared Emitters for Ultra-Low Power Consumption
by Bui Xuan Khuyen, Pham Duy Tan, Bui Son Tung, Nguyen Phon Hai, Pham Dinh Tuan, Do Xuan Phong, Do Khanh Tung, Nguyen Hai Anh, Ho Truong Giang, Nguyen Phuc Vinh, Nguyen Thanh Tung, Vu Dinh Lam, Liangyao Chen and YoungPak Lee
Photonics 2025, 12(6), 583; https://doi.org/10.3390/photonics12060583 - 7 Jun 2025
Viewed by 477
Abstract
This study addresses the challenges of high-power consumption and complexity in conventional infrared (IR) gas sensors by integrating metamaterials and gold coatings into IR radiation sources to reduce radiation loss. In addition, emitter design optimization and material selection were employed to minimize conduction [...] Read more.
This study addresses the challenges of high-power consumption and complexity in conventional infrared (IR) gas sensors by integrating metamaterials and gold coatings into IR radiation sources to reduce radiation loss. In addition, emitter design optimization and material selection were employed to minimize conduction loss. Our metasurface exhibited superior performance, achieving a narrower full width at half maximum at 4197 and 3950 nm, resulting in more confined emission spectral ranges. This focused emission reduced energy waste at unnecessary wavelengths, improving efficiency compared to traditional blackbody emitters. At 300 °C, the device consumed only 6.8 mW, while maintaining temperature uniformity and a fast response time. This enhancement is promising for the operation of such sensors in IoT networks with ultra-low power consumption and at suitably low costs for widespread demands in high-technology farming. Full article
(This article belongs to the Special Issue Emerging Trends in Metamaterials and Metasurfaces Research)
Show Figures

Figure 1

19 pages, 2510 KiB  
Article
Efficiency Optimization Control Strategies for High-Voltage-Ratio Dual-Active-Bridge (DAB) Converters in Battery Energy Storage Systems
by Hui Ma, Jianhua Lei, Geng Qin, Zhihua Guo and Chuantong Hao
Energies 2025, 18(10), 2650; https://doi.org/10.3390/en18102650 - 20 May 2025
Viewed by 539
Abstract
This article introduces a high-efficiency, high-voltage-ratio bidirectional DC–DC converter based on the Dual-Active-Bridge (DAB) topology, specifically designed for applications involving low-voltage, high-capacity cells. Addressing the critical challenge of enhancing bidirectional power transfer efficiency under ultra-high step-up ratios, which is essential for integrating renewable [...] Read more.
This article introduces a high-efficiency, high-voltage-ratio bidirectional DC–DC converter based on the Dual-Active-Bridge (DAB) topology, specifically designed for applications involving low-voltage, high-capacity cells. Addressing the critical challenge of enhancing bidirectional power transfer efficiency under ultra-high step-up ratios, which is essential for integrating renewable energy sources and battery storage systems into modern power grids, an optimized control strategy is proposed. This strategy focuses on refining switching patterns and minimizing conduction losses to improve overall system efficiency. Theoretical analysis revealed significant enhancements in efficiency across various operating conditions. Simulation results further confirmed that the converter achieved exceptional performance in terms of efficiency at extremely high voltage conversion ratios, showcasing full-range Zero-Voltage Switching (ZVS) capabilities and reduced circulating reactive power. Specifically, the proposed method reduced circulating reactive power by up to 22.4% compared to conventional fixed-frequency control strategies, while achieving over 35% overload capability. These advancements reinforce the role of DAB as a key topology for next-generation high-performance power conversion systems, facilitating more efficient integration of renewable energy and energy storage solutions, and thereby contributing to the stability and sustainability of contemporary energy systems. Full article
(This article belongs to the Special Issue Advances in Energy Storage Systems for Renewable Energy: 2nd Edition)
Show Figures

Figure 1

11 pages, 5339 KiB  
Article
Simultaneous Achievement of Low Loss, Large Effective Mode Area and Wide Transmission Band Hollow-Core Anti-Resonant Optical Fibers
by Min Liu, Yingqi Cui, Xiangyu Hua, Wenjun Ni, Perry Ping Shum and Lei Huang
Sensors 2025, 25(10), 3003; https://doi.org/10.3390/s25103003 - 9 May 2025
Viewed by 742
Abstract
A novel nested structure of hollow-core anti-resonant optical fiber is proposed to achieve low loss, large effective mode area, and wide transmission band simultaneously in the near-infrared range of 1200–2200 nm. It is composed of six elliptical cladding tubes nested with six large [...] Read more.
A novel nested structure of hollow-core anti-resonant optical fiber is proposed to achieve low loss, large effective mode area, and wide transmission band simultaneously in the near-infrared range of 1200–2200 nm. It is composed of six elliptical cladding tubes nested with six large circular cladding tubes, and six small circular cladding tubes are introduced in the gap of the elliptical tubes. The transmission characteristics of the hollow-core anti-resonant optical fiber are numerically investigated using the full-vector finite element method. The effects of structural parameters such as the cladding tube thickness and the tube diameters on the fiber transmission characteristics are analyzed in detail. The results indicate that within the wavelength range of 1200–2200 nm, the confinement loss remains below 0.017 dB/km, and the minimum confinement loss can be as low as 1.2 × 10−4 dB/km at 1500 nm. The effective mode area remains as large as ~1142.5 μm2. It should be noted that in the wide wavelength range of 1000 nm, the dispersion exhibits excellent characteristics ranging from 0.7 to 1.4 ps/(nm·km). Our fiber can find potential applications in ultra-long-distance and ultra-high-power transmission systems with a wide operating wavelength band. Full article
(This article belongs to the Special Issue Specialty Optical Fiber-Based Sensors)
Show Figures

Figure 1

24 pages, 7088 KiB  
Article
Ultra-Lightweight and Highly Efficient Pruned Binarised Neural Networks for Intrusion Detection in In-Vehicle Networks
by Auangkun Rangsikunpum, Sam Amiri and Luciano Ost
Electronics 2025, 14(9), 1710; https://doi.org/10.3390/electronics14091710 - 23 Apr 2025
Cited by 1 | Viewed by 721
Abstract
With the rapid evolution toward autonomous vehicles, securing in-vehicle communications is more critical than ever. The widely used Controller Area Network (CAN) protocol lacks built-in security, leaving vehicles vulnerable to cyberattacks. Although machine learning-based Intrusion Detection Systems (IDSs) can achieve high detection accuracy, [...] Read more.
With the rapid evolution toward autonomous vehicles, securing in-vehicle communications is more critical than ever. The widely used Controller Area Network (CAN) protocol lacks built-in security, leaving vehicles vulnerable to cyberattacks. Although machine learning-based Intrusion Detection Systems (IDSs) can achieve high detection accuracy, their heavy computational and power demands often limit real-world deployment. In this paper, we present an optimised IDS based on a Binarised Neural Network (BNN) that employs network pruning to eliminate redundant parameters, achieving up to a 91.07% reduction with only a 0.1% accuracy loss. The proposed approach incorporates a two-stage Coarse-to-Fine (C2F) framework, efficiently filtering normal traffic in the initial stage to minimise unnecessary processing. To assess its practical feasibility, we implement and compare the pruned IDS across CPU, GPU, and FPGA platforms. The experimental results indicate that, with the same model structure, the FPGA-based solution outperforms GPU and CPU implementations by up to 3.7× and 2.4× in speed, while achieving up to 7.4× and 3.8× greater energy efficiency, respectively. Among cutting-edge BNN-based IDSs, our ultra-lightweight FPGA-based C2F approach achieves the fastest average inference speed, showing a 3.3× to 12× improvement, while also outperforming them in accuracy and average F1 score, highlighting its potential for low-power, high-performance vehicle security. Full article
(This article belongs to the Special Issue Recent Advances in Intrusion Detection Systems Using Machine Learning)
Show Figures

Figure 1

34 pages, 3195 KiB  
Review
Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan and Umar Farooq
Sensors 2025, 25(7), 2109; https://doi.org/10.3390/s25072109 - 27 Mar 2025
Viewed by 1651
Abstract
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to [...] Read more.
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to overcome conventional bandwidth limitations. While THz-FSO technology promises ultra-high data rates, it is significantly affected by atmospheric absorption, particularly absorption beyond 500 GHz, where the attenuation exceeds 100 dB/km, which severely limits its transmission range. However, the presence of a lower-loss transmission window at 680 GHz provides an opportunity for optimized THz-FSO communication. This paper explores recent developments in high-power THz sources, such as quantum cascade lasers, photonic mixers, and free-electron lasers, which facilitate the attainment of ultra-high data rates. Additionally, adaptive optics, machine learning-based beam alignment, and low-loss materials are examined as potential solutions to mitigating signal degradation due to atmospheric absorption. The integration of THz-FSO systems with optical and radio frequency (RF) technologies is assessed within the framework of software-defined networking (SDN) and multi-band adaptive communication, enhancing their reliability and range. Furthermore, this review discusses emerging applications such as self-driving systems in 6G networks, ultra-low latency communication, holographic telepresence, and inter-satellite links. Future research directions include the use of artificial intelligence for network optimization, creating energy-efficient system designs, and quantum encryption to obtain secure THz communications. Despite the severe constraints imposed by atmospheric attenuation, the technology’s power efficiency, and the materials that are used, THz-FSO technology is promising for the field of ultra-fast and secure next-generation networks. Addressing these limitations through hybrid optical-THz architectures, AI-driven adaptation, and advanced waveguides will be critical for the full realization of THz-FSO communication in modern telecommunication infrastructures. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

13 pages, 3847 KiB  
Article
Hybrid Growth of Clad Crystalline Sapphire Fibers for Ultra-High-Temperature (>1500 °C) Fiber Optic Sensors
by Mohammad Ahsanul Kabir, Kai-Cheng Wu, Kai-Ting Chou, Fang Luo and Shizhuo Yin
Photonics 2025, 12(4), 299; https://doi.org/10.3390/photonics12040299 - 25 Mar 2025
Viewed by 498
Abstract
Ultra-high-temperature (>1500 °C) sensors play vital roles in ensuring operational excellence in variety of energy-related applications, such as power plant boilers and gas turbine engines. Crystalline sapphire fibers have enormous potential to replace conventional expensive precious metal (e.g., Pt/Rh)-based high-temperature (>1500 °C) sensors [...] Read more.
Ultra-high-temperature (>1500 °C) sensors play vital roles in ensuring operational excellence in variety of energy-related applications, such as power plant boilers and gas turbine engines. Crystalline sapphire fibers have enormous potential to replace conventional expensive precious metal (e.g., Pt/Rh)-based high-temperature (>1500 °C) sensors by offering higher environmental robustness and distributed sensing capabilities. However, a lack of proper cladding substantially compromises the performance of the sensor. To overcome this fundamental limitation, we develop a hybrid growing method to fabricate low-loss clad crystalline sapphire fibers. We grow a higher-refractive-index doped crystalline sapphire fiber core using the laser-heated pedestal growth (LHPG) method and lower-refractive-index undoped crystalline sapphire fiber cladding using the liquid-phase epitaxy (LPE) method. Furthermore, due to the existence of this cladding layer, a single mode of operation can be achieved at a core diameter size of 30 μm. The experimental results confirm that the grown clad crystalline sapphire fiber can survive in extremely high-temperature (>1500 °C) harsh environments due to the matched coefficient of thermal expansion (CTE) between the fiber core and the cladding. The numerical results also indicate a temperature sensing accuracy of 3.5 °C. This opens the door for developing point and distributed fiber sensor networks capable of enduring extremely harsh environments at extremely high temperatures. Full article
Show Figures

Figure 1

22 pages, 22157 KiB  
Article
A Watt-Level RF Wireless Power Transfer System with Intelligent Auto-Tracking Function
by Zhaoxu Yan, Chuandeng Hu, Bo Hou and Weijia Wen
Electronics 2025, 14(7), 1259; https://doi.org/10.3390/electronics14071259 - 22 Mar 2025
Viewed by 1088
Abstract
Radio-frequency (RF) microwave wireless power transfer (WPT) offers an efficient means of delivering energy to a wide array of devices over long distances. Previous RF WPT systems faced significant challenges, including complex hardware and control systems, software deficiencies, insufficient rectification power, lack of [...] Read more.
Radio-frequency (RF) microwave wireless power transfer (WPT) offers an efficient means of delivering energy to a wide array of devices over long distances. Previous RF WPT systems faced significant challenges, including complex hardware and control systems, software deficiencies, insufficient rectification power, lack of high-performance substrate materials, and electromagnetic radiation hazards. Addressing these issues, this paper proposes the world’s first watt-level RF WPT system capable of intelligent continuous tracking and occlusion judgment. Our 5.8 GHz band RF WPT system integrates several advanced technologies, such as millimeter-precision lidar, the multi-object image recognition algorithm, the accurate 6-bit continuous beamforming algorithm, a compact 16-channel 32 W high-power transmitting system, a pair of ultra-low axial ratio circularly polarized antenna arrays, ultra-low-loss high-strength ceramic substrates, and a 2.4 W high-power Schottky diode array rectifier achieving a rectification efficiency of 66.8%. Additionally, we construct a platform to demonstrate the application of the proposed RF WPT system in battery-free vehicles, achieving unprecedented 360 uninterrupted power supply to the battery-free vehicle. In summary, this system represents the most functionally complete RF WPT system to date, serving as a milestone for several critical fields such as smart living, transportation electrification, and battery-less/free societies. Full article
Show Figures

Figure 1

26 pages, 3960 KiB  
Article
ECA-ATCNet: Efficient EEG Decoding with Spike Integrated Transformer Conversion for BCI Applications
by Xuhang Li, Qianzi Shen, Haitao Wang and Zijian Wang
Appl. Sci. 2025, 15(4), 1894; https://doi.org/10.3390/app15041894 - 12 Feb 2025
Viewed by 1766
Abstract
The Brain–Computer Interface (BCI) has applications in smart homes and healthcare by converting EEG signals into control commands. However, traditional EEG signal decoding methods are affected by individual differences, and although deep learning techniques have made significant breakthroughs, challenges such as high energy [...] Read more.
The Brain–Computer Interface (BCI) has applications in smart homes and healthcare by converting EEG signals into control commands. However, traditional EEG signal decoding methods are affected by individual differences, and although deep learning techniques have made significant breakthroughs, challenges such as high energy consumption and the processing of raw EEG data remain. This paper introduces the Efficient Channel Attention Temporal Convolutional Network (ECA-ATCNet) to enhance feature learning by applying Efficient Channel Attention Convolution (ECA-conv) across spatial and spectral dimensions. The model outperforms state-of-the-art methods in both within-subject and between-subject classification tasks on MI-EEG datasets (BCI-2a and PhysioNet), achieving accuracies of 87.89% and 71.88%, respectively. Additionally, the proposed Spike Integrated Transformer Conversion (SIT-conversion) method, based on Spiking–Softmax, converts the Transformer’s self-attention mechanism into Spiking Neural Networks (SNNs) in just 12 time steps. The accuracy loss of the converted ECA-ATCNet model is only 0.6% to 0.73%, while its energy consumption is reduced by 52.84% to 53.52%. SIT-conversion enables ultra-low-latency, near-lossless ANN-to-SNN conversion, with SNNs achieving similar accuracy to their ANN counterparts on image datasets. Inference energy consumption is reduced by 18.18% to 45.13%. This method offers a novel approach for low-power, portable BCI applications and contributes to the advancement of energy-efficient SNN algorithms. Full article
Show Figures

Figure 1

19 pages, 2276 KiB  
Article
A Broadband Mode Converter Antenna for Terahertz Communications
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Electronics 2025, 14(3), 551; https://doi.org/10.3390/electronics14030551 - 29 Jan 2025
Viewed by 951
Abstract
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a [...] Read more.
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a major challenge in THz systems. In this paper, we propose a THz band mode converter that converts from a rectangular waveguide (RWG) (WR-0.43) in TE10 mode to a substrate-integrated waveguide (SIW) in TE20 mode. The converter comprises a tapered waveguide, a widened waveguide, a zigzag antenna, and an aperture coupling slot. The zigzag antenna effectively captures the electromagnetic (EM) energy from the RWG, which is then coupled to the aperture slot. This coupling generates a quasi-slotline mode for the electric field (E-field) along the longitudinal side of the aperture, exhibiting odd symmetry akin to the SIW’s TE20 mode. Consequently, the TE20 mode is excited in the symmetrical plane of the SIW and propagates transversely. Our work details the mode transition principle through simulations of the EM field distribution and model optimization. A back-to-back RWG TE10-to-TE10 mode converter is designed, demonstrating an insertion loss of approximately 5 dB over the wide frequency range band of 2.15–2.36 THz, showing a return loss of 10 dB. An on-chip antenna is proposed which is fed by a single higher-order mode of the SIW, achieving a maximum gain of 4.49 dB. Furthermore, a balun based on the proposed converter is designed, confirming the presence of the TE20 mode in the SIW. The proposed mode converter demonstrates its feasibility for integration into a THz-band high-speed circuit due to its efficient mode conversion and compact planar design. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

25 pages, 15082 KiB  
Article
A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Electronics 2025, 14(3), 411; https://doi.org/10.3390/electronics14030411 - 21 Jan 2025
Cited by 2 | Viewed by 1487
Abstract
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, [...] Read more.
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, and data throughput (up to 20 Gbps) is considered one of the most essential factors for wireless networks. To meet these objectives, a sub-6 5G wideband multiple-input multiple-output (MIMO) array microstrip antenna for 5G Worldwide Interoperability for Microwave Access (WiMAX) applications on hotspot devices has been proposed in this research. The 1 × 4 MIMO array radiating element antenna with a partial ground proposed in this research complies with the 5G application standard set out by the Federal Communications Commission. The planned antenna configuration consists of a hollow, regular circular stub patch antenna shaped like a crescent with a rectangular defect at the top of the patch. The suggested structure is mounted on an FR-4 substrate with a thickness “h” of 1.6, a permittivity “εr” of 4.4, and a tangential loss of 0.02. The proposed antenna achieves a high radiation gain and offers a frequency spectrum bandwidth of 3.01 GHz to 6.5 GHz, covering two 5G resonant frequencies “fr” of 3.5 and 5.8 GHz as the mid-band, which yields a gain of 7.66 dBi and 7.84 dBi, respectively. MIMO antenna parameters are examined and introduced to assess the system’s performance. Beneficial results are obtained, with the channel capacity loss (CCL) tending to 0.2 bit/s/Hz throughout the operating frequency band, the envelope correlation coefficient (ECC) yielding 0.02, a mean effective gain (MEG) of less than −6 dB over the operating frequency band, and a total active reflection coefficient (TARC) of less than −10 dB; the radiation efficiency is equal to 71.5%, maintaining impedance matching as well as good mutual coupling among the adjacent parameters. The suggested antenna has been implemented and experimentally tested using the 5G system Open Air Interface (OAI) platform, which operates at sub-6 GHz, yielding −67 dBm for the received signal strength indicator (RSSI), and superior frequency stability, precision, and reproducibility for the signal-to-interference-plus-noise ratio (SINR) and a high level of positivity in the power headroom report (PHR) 5G system performance report, confirming its operational effectiveness in 5G WiMAX (Worldwide Interoperability for Microwave Access) application. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

11 pages, 3194 KiB  
Article
Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation
by Yubo Wang, Yungui Ma and Rui Chen
Materials 2024, 17(22), 5580; https://doi.org/10.3390/ma17225580 - 15 Nov 2024
Viewed by 1135
Abstract
Thermal management presents a significant challenge in electric design, particularly in densely packed electronic systems. This study proposes a theoretical model for radiative bionic skin that emulates human skin, enabling the self-adaptive modulation of the thermal exhaustion rate to maintain homeostasis for objects [...] Read more.
Thermal management presents a significant challenge in electric design, particularly in densely packed electronic systems. This study proposes a theoretical model for radiative bionic skin that emulates human skin, enabling the self-adaptive modulation of the thermal exhaustion rate to maintain homeostasis for objects covered by the skin in fluctuating thermal environments. The proposed artificial skin consists of phase change material (VO2) nanoparticles embedded in a low-loss matrix situated on a metallic substrate with a minimal thickness of several micrometers. The findings from our theoretical analyses indicate that substantial alterations in thermal radiation power around the phase transition temperature of 340 K enable a silicone substrate to sustain a relatively stable temperature, with variations confined to ±6 K, despite external heat fluxes ranging from 150 to 450 W/m2. Furthermore, to improve the spectral resemblance to natural skin, a plasmonic surface composed of self-assembled silver nanocubes is incorporated, allowing for modifications to the visible light properties of the bionic skin while maintaining its infrared characteristics. This theoretical investigation offers a cost-effective and conformal approach to the design of ultra-compact, fully passive, and versatile thermal management solutions for robotic systems and related technologies. Full article
Show Figures

Figure 1

14 pages, 3854 KiB  
Article
Concurrent Direct Inter-ONU and Upstream Communications in IMDD PONs Incorporating P2MP Flexible Optical Transceivers and Advanced Passive Remote Nodes
by Wei Jin, Lin Chen, Jiaxiang He, Roger Philip Giddings, Yi Huang, Ming Hao, Md. Saifuddin Faruk, Xingwen Yi, Tingyun Wang and Jianming Tang
Photonics 2024, 11(11), 1021; https://doi.org/10.3390/photonics11111021 - 30 Oct 2024
Cited by 1 | Viewed by 1099
Abstract
Driven by a large number of emerging diversified services, in the 5G and beyond era, concurrent direct inter-ONU and upstream communications inside a PON-based mobile access network are highly desirable to provide dynamic, ultra-dense, and fast ONU-to-ONU (without involving an OLT) and ONU-to-OLT [...] Read more.
Driven by a large number of emerging diversified services, in the 5G and beyond era, concurrent direct inter-ONU and upstream communications inside a PON-based mobile access network are highly desirable to provide dynamic, ultra-dense, and fast ONU-to-ONU (without involving an OLT) and ONU-to-OLT connections. To cost-effectively deliver highly dynamic and low latency direct inter-ONU communications, this paper proposes and experimentally demonstrates novel concurrent direct inter-ONU and upstream communications in an upstream 27 km, >62.47 Gbit/s IMDD PON. For supporting inter-ONU communications between a large number of ONUs, an advanced passive remote node is also proposed. Based on different passive optical components, this remote node can be implemented using two approaches, which can, respectively, reduce the inter-ONU signal power losses by >12.2 dB and >16.6 dB (for 128 ONUs) in comparison with existing inter-ONU communication techniques’ remote nodes. In each ONU and OLT, a single pair of cascaded IFFT/FFT-based point-to-multipoint (P2MP) flexible optical transceivers are employed to simultaneously and dynamically establish multiple ONU-to-ONU and ONU-to-OLT communications according to actual users’ requirements. Experimental results show that the proposed network has excellent robustness against various transmission system impairments, including chromatic dispersion, the Rayleigh and Brillouin backscattering effects, and the channel interference effects. For each ONU, dynamic channel allocation can be made without compromising its overall performance. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

Back to TopTop