Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, C.; He, L.; Xuan, Q.; Liao, Y.; Dai, J.-G.; Lei, D. Phase-change VO2-based thermochromic smart windows. Light Sci. Appl. 2024, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wei, H.; Ren, F.; Guan, H.; Liang, S.; Geng, C.; Li, L.; Zhao, J.; Dou, S.; Li, Y. VO2-Based Infrared Radiation Regulator with Excellent Dynamic Thermal Management Performance. Acs Appl. Mater. Interfaces 2022, 14, 2683–2690. [Google Scholar] [CrossRef] [PubMed]
- Gudadur, K.S.; Reji, T.; Gopinath, P.G.; Jayabal, K.; Suhasini, S.; Veluswamy, P. Smart Wearable Thermal Management VO2 Coated Textile for Thermochromic and Sensing Applications. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Gui, B.; Wang, J.; Zhang, L.; Zhu, Y.; Jia, Y.; Xu, C.; Yan, M.; Chu, Z.; Wang, J.; Qu, S. Design of scene-adaptive infrared camouflage emitter based on Au-VO2-Al2O3-Au metamaterials. Opt. Commun. 2022, 512, 128016. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, Y.; Hu, X.; Ye, Y.; Wang, P.; Luo, J.; Yin, A.; Ren, Z.; Liu, H.; Qi, X.; et al. Flexible Fabric Temperature Sensor Based on Vo2/Pedot:Pss with High Performance. Adv. Mater. Technol. 2023, 8, 2300898. [Google Scholar] [CrossRef]
- Li Voti, R.; Agharahimli, K.; Misano, M.; Larciprete, M.C.; Leahu, G.; Bovino, F.A.; Sibilia, C.; Cesca, T.; Mattei, G.; Lupo, F.V.; et al. Optothermal characterization of vanadium dioxide films by Infrared Thermography. Int. J. Therm. Sci. 2024, 197, 108832. [Google Scholar] [CrossRef]
- Spitzig, A.; Pivonka, A.; Frenzel, A.; Kim, J.; Ko, C.; Zhou, Y.; Hudson, E.; Ramanathan, S.; Hoffman, J.E.; Hoffman, J.D. Nanoscale thermal imaging of VO2 via Poole-Frenkel conduction. Appl. Phys. Lett. 2022, 120, 151602. [Google Scholar] [CrossRef]
- Ko, J.H.; Kim, D.H.; Hong, S.-H.; Kim, S.-K.; Song, Y.M. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns. Iscience 2023, 26, 105780. [Google Scholar] [CrossRef]
- Qu, Y.; Li, Q.; Cai, L.; Pan, M.; Ghosh, P.; Du, K.; Qiu, M. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 2018, 7, 26. [Google Scholar] [CrossRef]
- Kang, Q.; Li, D.; Guo, K.; Gao, J.; Guo, Z. Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial. Nanomaterials 2021, 11, 260. [Google Scholar] [CrossRef]
- Du, K.K.; Li, Q.; Lyu, Y.B.; Ding, J.C.; Lu, Y.; Cheng, Z.Y.; Qiu, M. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl. 2017, 6, e16194. [Google Scholar] [CrossRef]
- Fan, D.; Li, Q.; Xuan, Y.; Tan, H.; Fang, J. Temperature-dependent infrared properties of Ca doped (La,Sr)MnO3 compositions with potential thermal control application. Appl. Therm. Eng. 2013, 51, 255–261. [Google Scholar] [CrossRef]
- Fan, D.; Li, Q.; Dai, P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films. Acta Astronaut. 2016, 121, 144–152. [Google Scholar] [CrossRef]
- Sun, S.; Yu, Y.; Mi, L.; Yu, Y.; Cao, Y.; Song, L. The temperature-dependent electricity and emissivity properties of La0.67Ca0.33-xSrxMnO3 compounds. J. Alloys Compd. 2016, 682, 579–583. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; Wang, C.; Li, R.; Cai, T.; Zhang, D. Tunable Infrared Optical Switch Based on Vanadium Dioxide. Nanomaterials 2021, 11, 2988. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, J.; Liu, J.; Li, B.; Zhou, C.; Sheng, Z. Active and Smart Terahertz Electro-Optic Modulator Based on VO2 Structure. Acs Appl. Mater. Interfaces 2022, 14, 26923–26930. [Google Scholar] [CrossRef]
- Li, G.; Xie, D.; Zhong, H.; Zhang, Z.; Fu, X.; Zhou, Q.; Li, Q.; Ni, H.; Wang, J.; Guo, E.-j.; et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 2022, 13, 1729. [Google Scholar] [CrossRef]
- Jung, Y.; Jeong, J.; Qu, Z.; Cui, B.; Khanda, A.; Parkin, S.S.P.; Poon, J.K.S. Observation of Optically Addressable Nonvolatile Memory in VO2 at Room Temperature. Adv. Electron. Mater. 2021, 7, 2001142. [Google Scholar] [CrossRef]
- Ren, F.; Wei, H.; Gu, J.; Li, L.; Wang, B.; Zhao, J.; Xu, G.; Zhao, Y.; Li, X.; Dou, S.; et al. In Situ Preparation of VO2 Films with Controlled Ionized Flux Density in HiPIMS and Their Regulation of Thermal Radiance. ACS Appl. Electron. Mater. 2020, 2, 2203–2210. [Google Scholar] [CrossRef]
- Song, J.; Huang, S.; Ma, Y.; Cheng, Q.; Hu, R.; Luo, X. Radiative metasurface for thermal camouflage, illusion and messaging. Opt. Express 2020, 28, 875–885. [Google Scholar] [CrossRef]
- Morsy, A.M.; Barako, M.T.; Jankovic, V.; Wheeler, V.D.; Knight, M.W.; Papadakis, G.T.; Sweatlock, L.A.; Hon, P.W.C.; Povinelli, M.L. Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films. Sci. Rep. 2020, 10, 110260. [Google Scholar] [CrossRef]
- Beaini, R.; Baloukas, B.; Loquai, S.; Klemberg-Sapieha, J.E.; Martinu, L. Thermochromic VO2-based smart radiator devices with ultralow refractive index cavities for increased performance. Sol. Energy Mater. Sol. Cells 2020, 205, 110260. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chen, M.; Barako, M.T.; Jankovic, V.; Hon, P.W.C.; Sweatlock, L.A.; Povinelli, M.L. Thermal homeostasis using microstructured phase-change materials. Optica 2017, 4, 1390–1396. [Google Scholar] [CrossRef]
- Shrewsbury, B.K.; Morsy, A.M.; Povinelli, M.L. Multilayer planar structure for optimized passive thermal homeostasis. Opt. Mater. Express 2022, 12, 1442–1449. [Google Scholar] [CrossRef]
- Yang, W.Z.; Huang, J.P. Effective mass density of liquid composites: Experiment and theory. J. Appl. Phys. 2007, 101, 064903. [Google Scholar] [CrossRef]
- Ordonez-Miranda, J.; Alvarado-Gil, J.J.; Medina-Ezquivel, R. Generalized Bruggeman Formula for the Effective Thermal Conductivity of Particulate Composites with an Interface Layer. Int. J. Thermophys. 2010, 31, 975–986. [Google Scholar] [CrossRef]
- Barker, A.S.; Verleur, H.W.; Guggenheim, H.J. Infrared optical properties of vanadium dioxide above and below transition temperature. Phys. Rev. Lett. 1966, 17, 1286–1289. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chen, M.; Wang, L.; Barako, M.T.; Jankovic, V.; Hon, P.; Sweatlock, L.A.; Povinelli, M.L. Thermal Homeostasis Device Using Phase-Change Materials. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 14–19 May 2017. [Google Scholar]
- Fu, D.; Liu, K.; Tao, T.; Lo, K.; Cheng, C.; Liu, B.; Zhang, R.; Bechtel, H.A.; Wu, J. Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films. J. Appl. Phys. 2013, 113, 043707. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Kanehira, M.; Cao, C. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. Nano Energy 2012, 1, 221–246. [Google Scholar] [CrossRef]
- Batista, C.; Ribeiro, R.M.; Teixeira, V. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows. Nanoscale Res. Lett. 2011, 6, 301. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, C.; Lv, C.; Chen, S. Tungsten-doped vanadium dioxide thin films on borosilicate glass for smart window application. J. Alloys Compd. 2013, 564, 158–161. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Wang, J.; Tang, L.; Ying, Y. Flexible and Transparent Surface-Enhanced Raman Scattering (SERS)-Active Metafilm for Visualizing Trace Molecules via Raman Spectral Mapping. Anal. Chem. 2016, 88, 6166–6173. [Google Scholar] [CrossRef]
- Tittl, A. Tunable structural colors on display. Light Sci. Appl. 2022, 11, 155. [Google Scholar] [CrossRef]
- Li, G.; Leng, M.; Wang, S.; Ke, Y.; Luo, W.; Ma, H.; Guan, J.; Long, Y. Printable structural colors and their emerging applications. Mater. Today 2023, 69, 133–159. [Google Scholar] [CrossRef]
- Rezaei, S.D.; Dong, Z.; Chan, J.Y.E.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.-W.; Mortensen, N.A.; Yang, J.K.W. Nanophotonic Structural Colors. ACS Photonics 2021, 8, 18–33. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, J.; Song, A.Y.; Catrysse, P.B.; Hsu, P.-C.; Cai, L.; Liu, B.; Zhu, Y.; Zhou, G.; Wu, D.S.; et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Liu, C.; Song, A.Y.; Zhang, Z.; Peng, Y.; Xie, J.; Liu, K.; Wu, C.-L.; Catrysse, P.B.; Cai, L.; et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, Y.; Chen, R. Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation. Materials 2024, 17, 5580. https://doi.org/10.3390/ma17225580
Wang Y, Ma Y, Chen R. Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation. Materials. 2024; 17(22):5580. https://doi.org/10.3390/ma17225580
Chicago/Turabian StyleWang, Yubo, Yungui Ma, and Rui Chen. 2024. "Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation" Materials 17, no. 22: 5580. https://doi.org/10.3390/ma17225580
APA StyleWang, Y., Ma, Y., & Chen, R. (2024). Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation. Materials, 17(22), 5580. https://doi.org/10.3390/ma17225580