Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
Abstract
:1. Introduction
1.1. Objectives and Scope
- To foresee the fundamental and physical aspects of terahertz frequencies;
- To assess the development of enabling technologies that facilitate the development of THz systems, such as THz sources, detectors, and adaptive systems;
- In this paper, some of the issues regarding this technology, such as future research directions, its massive energy consumption, and its susceptibility to abnormal weather conditions, will also be discussed, with a focus on the limitations and challenges, such as atmospheric attenuation and hardware limitations in implementing THz-FSO systems;
- To analyze THz-FSO communication and other systems, comparisons are made here to microwave and optical systems;
- To explore possible use cases that include inter-satellite links, the sixth generation network, and safe communications.
1.2. Comparative Analysis of Communication Systems
2. Fundamentals of Terahertz Communication
2.1. The Terahertz Spectrum
2.1.1. High Bandwidth
2.1.2. Shorter Wavelengths
2.1.3. Higher Data Rates
2.2. Advantages of THz in FSO Systems
3. Challenges in Terahertz-Based FSO Communication
3.1. Atmospheric Absorption
3.1.1. Mitigation Strategies
- Low-loss materials: advanced materials like metamaterials and dielectric polymers are engineered to enable efficient wave guiding and minimal absorption.
3.1.2. Challenges in Implementation
3.1.3. Advanced Modeling for Atmospheric Effects
3.2. Line-of-Sight (LOS) Alignment
- Adaptive beam steering: real-time adjustment of the beam direction to maintain alignment, even in dynamic scenarios;
- Vibration compensation systems: mechanisms that counteract environmental vibrations and platform instability;
- Advanced optics: the utilization of lens arrays and phased array antennas to improve the beam focusing and alignment precision.
3.3. Hardware Limitations
3.4. Signal Distortion
- Adaptive equalization: machine learning-based adaptive equalizers dynamically compensate for distortions;
- Beam shaping: adjusting beam profiles to counteract turbulence effects improves signal stability;
- Error-correction codes: advanced error-correction techniques reduce the impact of distortion on the data accuracy [66].
- Real-time sensing: using real-time environmental monitoring to optimize transmission paths;
- Polarization techniques: exploiting polarization diversity reduces the sensitivity to turbulence-induced scattering.
3.5. Atmospheric Dispersion and Its Impact on THz-FSO Communication
Mitigation Strategies for Atmospheric Dispersion
3.6. Manufacturing Challenges in THz Communication
3.6.1. High-Precision Fabrication and Nanometer-Scale Tolerances
3.6.2. THz Transmitter and Receiver Limitations
3.6.3. Material Constraints and High Absorption Loss
3.6.4. Packaging and Integration of THz Systems
3.6.5. Scalability and Cost Barriers
4. Enabling Technologies for THz-FSO Communication
4.1. Advanced Materials
4.2. Integrated Photonic Devices
4.3. High-Power THz Sources
4.4. Adaptive Optics
4.5. Signal Processing Algorithms
5. Applications of THz-FSO Communication
5.1. Space Communications
5.2. 6G and Beyond
5.3. Secure Communication
6. Synergy with Hybrid Communication Systems
6.1. Hybrid Optical-RF Systems
6.2. Multi-Band Adaptive Systems
6.3. Software-Defined Networking (SDN)
7. Future Directions
7.1. AI-Driven Network Management
7.2. Energy-Efficient Systems
7.3. Advanced Materials for THz Devices
7.4. Integration with Quantum Communication
7.5. Standardization and Regulation
7.6. Deep Space Communication
8. Conclusions
Funding
Conflicts of Interest
References
- Dabiri, M.T.; Hasna, M.; Khattab, T. THz vs. FSO: An Outage Probability and Channel Capacity Performance Comparison Study. In Proceedings of the IEEE International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20–22 June 2023; pp. 1–6. [Google Scholar]
- Seeds, A.J.; Shams, H.; Fice, M.J.; Renaud, C.C. TeraHertz Photonics for Wireless Communications. J. Lightwave Technol. 2015, 33, 579–587. [Google Scholar] [CrossRef]
- Nelatury, S.R. Free Space Optical Communications: An Overview. Eur. Sci. J. 2016, 12, 55–68. [Google Scholar]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A Contemporary Survey on Free Space Optical Communication: Potential, Technical Challenges, Recent Advances and Research Direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Civas, M.; Akan, O.B. Interplanetary communications by Hybrid THz/FSO Links. In Proceedings of the International Conference on Space Technology, Istanbul, Turkey, 15–17 October 2021; Volume 2, pp. 3–10. [Google Scholar]
- Pang, X.; Ozolins, O.; Schatz, R.; Jacobsen, G.; Popov, S.; Chen, J. Bridging the Terahertz Gap: Photonics-Assisted Free-Space Communications from the Submillimeter-Wave to the Mid-Infrared. J. Lightwave Technol. 2022, 40, 3149–3162. [Google Scholar] [CrossRef]
- Raj, A.B.; Majumder, A.K. Historical perspective of free space optical communications: From the early dates to today’s developments. IET Commun. 2019, 13, 2405–2419. [Google Scholar] [CrossRef]
- Mahmood, A.; Kiah, L.M.A.T.; Azizul, Z.H.; Azzuhri, S.R. Analysis of Terahertz (THz) Frequency Propagation and Link Design for Federated Learning in 6G Wireless Systems. IEEE Access 2024, 12, 23782–23797. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Han, B.; Safari, M.; Huang, S. Emerging Military Applications of Free Space Optical Communication Technology: A Detailed Review Emerging Military Applications of Free Space Optical Communication Technology: A Detailed Review. J. Phys. Conf. Ser. 2022, 2161, 012011. [Google Scholar]
- Al-dabbagh, M.D.; Smith, J.; Kleine-Ostmann, T.; Naftaly, M.; Fatadin, I.; Member, S. Characterising the Photonic-Assisted Coherent Free-Space Link of Sub-THz Data Transmission. IEEE Access 2023, 11, 128081–128093. [Google Scholar] [CrossRef]
- Fitch, M.J.; Osiander, R. Terahertz Waves for Communications and Sensing. Johns Hopkins APL Tech. Dig. 2004, 25, 348–355. [Google Scholar]
- Qi, X.; Zhang, X.; Xu, Y.; Li, Z.; Liu, F. Terahertz quantum cascade laser under optical feedback: Effects of laser self-pulsations on self-mixing signals. Opt. Express 2021, 29, 39885–39894. [Google Scholar] [CrossRef]
- Gao, L.; Feng, C.; Zhao, X. Recent developments in terahertz quantum cascade lasers for practical applications. Nanotechnol. Rev. 2023, 12, 20230115. [Google Scholar]
- Kaushal, H.; Kaddoum, G. Free Space Optical Communication: Challenges and Mitigation Techniques. arXiv 2015, arXiv:1506.04836. [Google Scholar]
- Gozzard, D.R.; Schediwy, S.W.; Stone, B.; Messineo, M.; Tobar, M. Stabilized free-space optical frequency transfer. Phys. Rev. Appl. 2018, 10, 014017. [Google Scholar]
- Nagatsuma, T.; Kasamatsu, A. Terahertz Communications for Space Applications. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 73–75. [Google Scholar]
- Dawidczyk, J.; Galwas, B.; Skulski, J.; Szczepaniak, Z.; Gruchała, H.; Malyshev, S. Optical-Microwave Transmission System with Subcarrier Multiplexing for Industrial Measurement Systems. In Proceedings of the 13th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Wrocław, Poland, 22–24 May 2000; Volume 1, pp. 193–196. [Google Scholar]
- Goyal, R.; Randhawa, R.; Kaler, R.S. Single tone and multi tone microwave over fiber communication system using direct detection method. Optik 2012, 123, 917–923. [Google Scholar]
- Majumdar, A. Other Related Topics: Chaos-Based and Terahertz (THz) FSO Communications. In Free Space Optical Communication; Springer: New York, NY, USA, 2015; Volume 186, pp. 227–242. [Google Scholar]
- Marczewski, J. Digital Communication—Optical vs. THz Links. Opto-Electron. Rev. 2020, 28, 176–181. [Google Scholar]
- Boulogeorgos, A.A.; Merkle, T.; Elschner, R. Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G. IEEE Commun. Mag. 2018, 56, 144–151. [Google Scholar]
- Khalighi, M.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar]
- Lema, G.G. Free space optics communication system design using iterative optimization. J. Opt. Commun. 2023, 44, 205–216. [Google Scholar]
- Djordjevic, I.B. OAM-Based Hybrid Free-Space Optical-Terahertz Multidimensional Coded Modulation and Physical-Layer Security Optical-Terahertz Multidimensional Coded Modulation and Physical-Layer Security. IEEE Photonics J. 2017, 9, 7904812. [Google Scholar]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M. Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems. IEEE Open J. Commun. Soc. 2022, 1, 1–32. [Google Scholar]
- Sugumaran, S. FSO (Free Space Optics) Communication under Different Weather Conditions and Wavelengths. Optik 2022, 10, 19–22. [Google Scholar]
- Al-gailani, S.A.; Shaddad, R.Q.; Sheikh, U.U. A Survey of Free Space Optics (FSO) Communication Systems, Links, and Networks. IEEE Access 2021, 9, 7353–7373. [Google Scholar]
- Singh, H.; Mittal, N.; Miglani, R.; Singh, H.; Gaba, G.S.; Hedabou, M. Design and Analysis of High-Speed Free Space Optical (FSO) Communication System for Supporting Fifth Generation (5G) Data Services in Diverse Geographical Locations of India. IEEE Photonics J. 2021, 13, 5500412. [Google Scholar]
- Civas, M.; Akan, O.B. Terahertz Wireless Communications in Space. In Proceedings of the International Conference on Space Technology, Istanbul, Turkey, 15–17 October 2021; pp. 1–7. [Google Scholar]
- Miglani, R. Free Space Optical Communication: The Last Mile Solution to High Speed Communication Networks. J. Lasers Opt. Photonics 2018, 5, e112. [Google Scholar]
- Aboelala, O.; Lee, I.E.; Chung, G.C. A Survey of Hybrid Free Space Optics (FSO) Communication Networks to Achieve 5G Connectivity for Backhauling. In Proceedings of the International Conference on Wireless Communications, Seoul, Republic of Korea, 16–20 May 2022. [Google Scholar]
- Henniger, H.; Wilfert, O. An Introduction to Free-Space Optical Communications. Radioengineering 2010, 19, 203–212. [Google Scholar]
- Meulenberg, A. LEO-Based Optical/Microwave Terrestrial Communications. arXiv 2010, arXiv:1009.5506. [Google Scholar]
- Hong, B.; Qiu, Y.; Somjit, N.; Cunningham, J.; Robertson, I.; Wang, G.P. Guidance of Terahertz Wave over Commercial Optical Fiber. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 2021–2023. [Google Scholar]
- Alqaraghuli, A.; Siles, J.V.; Jornet, J. The Road to High Data Rates in Space: Terahertz vs. Optical Wireless Communication. IEEE Aerosp. Electron. Syst. Mag. 2023, 38, 1–9. [Google Scholar]
- Singya, P.K.; Makki, B.; D’Errico, A.; Alouini, M.S. High-Rate Reliable Communication Using Multi-Hop and Mesh THz/FSO Networks. IEEE Open J. Commun. Soc. 2024, 5, 3804–3823. [Google Scholar]
- Sarieddeen, H.; Alouini, M.S.; Al-Naffouri, T.Y. An Overview of Signal Processing Techniques for Terahertz Communications. Proc. IEEE 2021, 109, 1628–1665. [Google Scholar]
- Singh, S.P.; Shrivastava, S.K.; Sengar, S.; Nath, S. Fiberless optical communication: Issues and challenges. J. Opt. Commun. 2023, 44, 20220280. [Google Scholar]
- Mane, S. Fiber Optics in Communication Networks: Trends, Challenges, and Future Directions. Int. J. All Res. Educ. Sci. Methods 2023, 11, 2455–6211. [Google Scholar]
- Sharma, P.; Arora, R.K.; Pardeshi, S.; Singh, M. Fibre Optic Communications: An Overview. Int. J. Emerg. Technol. Adv. Eng. 2008, 3, 474–479. [Google Scholar]
- Singh, G.; Singh, T.; Vinaykant; Kaushal, V. Free Space Optics: Atmospheric Effects & Backhaul. Int. J. Res. Comput. Sci. 2011, 1, 25–30. [Google Scholar]
- Zhu, M.; Zhang, J.; Li, X.; Wang, Y.; Chen, Z. Ultra-wideband fiber-thz-fiber seamless integration communication system toward 6g: Architecture, key techniques, and testbed implementation. Sci. China Inf. Sci. 2023, 66, 012301. [Google Scholar]
- Soundarapandian, K.P.; Rajendran, S.; Kumar, R.; Gupta, A. High-Speed Graphene-Based Sub-Terahertz Receivers Enabling Wireless Communications for 6G and Beyond. arXiv 2024, arXiv:2411.02269. [Google Scholar]
- Ali, M.A.A. Analysis of Data Rate for Free Space Optical Communications System. Int. J. Electron. Commun. Technol. 2014, 5, 20–23. [Google Scholar]
- Siddiky, M.N.A.; Rahman, M.E.; Uzzal, M.S. Beyond 5G: A Comprehensive Exploration of 6G Wireless Communication Technologies. Preprints 2024, 2024050715. [Google Scholar]
- Grant, P.D.; Laframboise, S.R.; Dudek, R.; Graf, M.; Bezinger, A.; Liu, H.C. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector. Electron. Lett. 2009, 45, 952–954. [Google Scholar]
- Cap, G.; Refai, H.; Sluss, J. Optical Tracking and Auto-Alignment Transceiver System. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 26–34. [Google Scholar]
- Ito, T.; Matsuura, Y.; Miyagi, M.; Minamide, H.; Ito, H. Flexible terahertz fiber optics with low bend-induced losses. J. Opt. Soc. Am. B 2007, 24, 1230–1235. [Google Scholar] [CrossRef]
- Seeds, A.J.; Liu, C.P.; Fice, M.J.; Renaud, C.C. Coherent terahertz photonics. Opt. Express 2013, 21, 22988–23000. [Google Scholar] [CrossRef]
- Moldovan, A.; Ruder, M.; Akyildiz, I.; Gerstacker, W. LOS and NLOS channel modeling for terahertz wireless communication with scattered rays. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 388–392. [Google Scholar]
- Singhal, P.; Gupta, P.; Rana, P. Basic concept of free space optics communication (fso): An overview. In Proceedings of the International Conference on Communication Systems and Processing (ICCSP), Chennai, India, 20–22 March 2015; pp. 439–442. [Google Scholar]
- Kaushal, H.; Jain, V.; Kar, S. Free Space Optical Communication; Springer: New Delhi, India, 2017. [Google Scholar]
- Fahs, B.; Romanowicz, M.; Kim, J.; Hella, M.M. A Self-Alignment System for LOS Optical Wireless Communication Links. IEEE Photonics Technol. Lett. 2017, 29, 2167–2170. [Google Scholar] [CrossRef]
- Major, K.; Gross, J.; Conrad, J.; Lee, S. Fiber optic coupled quantum cascade infrared laser system for detection of explosive materials on surfaces. Opt. Laser Technol. 2019, 119, 105635. [Google Scholar] [CrossRef]
- Helal, S.; Sarieddeen, H.; Dahrouj, H.; Al-Naffouri, T.; Alouini, M. Signal Processing and Machine Learning Techniques for Terahertz Sensing: An Overview. arXiv 2021, arXiv:2104.06309. [Google Scholar] [CrossRef]
- Yu, J. THz and Optical Fiber Communication Seamless Integration System. In Terahertz Technology; Springer: Singapore, 2021; pp. 265–275. [Google Scholar]
- Jiang, W.; Chen, X.; Wang, L.; Li, Z.; Zhang, Y. Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review. IEEE Commun. Surv. Tutor. 2024, 26, 3385908. [Google Scholar] [CrossRef]
- Shafie, A.; Yang, N.; Han, C.; Jornet, J.M.; Juntti, M.; Kurner, T. Terahertz Communications for 6G and Beyond Wireless Networks: Challenges, Key Advancements, and Opportunities. IEEE Netw. 2023, 37, 162–169. [Google Scholar] [CrossRef]
- Jamali, V.; Ajam, H.; Najafi, M.; Schmauss, B.; Schober, R.; Poor, H.V. Intelligent Reflecting Surface Assisted Free-Space Optical Communications. IEEE Commun. Mag. 2021, 59, 57–63. [Google Scholar] [CrossRef]
- Vitiello, M.S.; De Natale, P. Terahertz Quantum Cascade Lasers as Enabling Quantum Technology. Adv. Quantum Technol. 2022, 5, 2100082. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Wavefront Engineering for Mid-Infrared and Terahertz Quantum Cascade Lasers [Invited]. J. Opt. Soc. Am. B 2010, 27, B18–B35. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Li, Y.; Wang, J.; Liu, F. Terahertz Wireless Communications for 2030 and Beyond: A Cutting-Edge Frontier. IEEE Commun. Mag. 2021, 59, 66–72. [Google Scholar] [CrossRef]
- Akyildiz, I.; Han, C.; Hu, Z.; Nie, S.; Jornet, J. Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade (Invited Paper). IEEE Trans. Commun. 2022, 70, 4250–4285. [Google Scholar] [CrossRef]
- Moroz, A.V.; Davydov, V.V.; Gubareva, D.V.; Rud, V.Y. Development of a fiber-optic microwave signal transmission system for an x-band receiving module with dual frequency conversion. J. Phys. Conf. Ser. 2021, 2086, 012061. [Google Scholar]
- Fadeenko, V.B.; Pchelkin, G.A.; Davydov, V.V.; Rud, V.Y. Features of the transmission of microwave signals in the range of 8–12 ghz in the maritime radar station over fiber-optic communication line. J. Phys. Conf. Ser. 2019, 1400, 044010. [Google Scholar]
- Nallappan, K.; Skorobogatiy, M. Photonics-based frequency hopping spread spectrum system for secure terahertz communications. Opt. Express 2022, 30, 27028–27040. [Google Scholar]
- Fang, Z.; Guerboukha, H.; Shrestha, R.; Hornbuckle, M.; Amarasinghe, Y.; Mittleman, D.M. Secure Communication Channels Using Atmosphere-Limited Line-of-Sight Terahertz Links. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 363–375. [Google Scholar] [CrossRef]
- Wang, X.; Han, Q.; Ding, X. Stable Terahertz Wave Dissemination over Underground Fiber Network with Optical Phase Correction. SSRN Electron. J. 2022, 4171609. [Google Scholar]
- Shao, W.; Li, X.; Zhang, Y.; Wang, J.; Liu, F. Terabit FSO communication based on a soliton microcomb. Photonics Res. 2022, 10, 2130–2138. [Google Scholar] [CrossRef]
- Gezimati, M.; Singh, G. Terahertz Data Extraction and Analysis Based on Deep Learning Techniques for Emerging Applications. IEEE Access 2024, 12, 21174–21198. [Google Scholar] [CrossRef]
- Park, G.; Mai, V.; Lee, H.; Lee, S.; Kim, H. Free-Space Optical Communication Technologies for Next-Generation Cellular Wireless Communications. IEEE Commun. Mag. 2024, 63, 24–30. [Google Scholar]
- Sharma, S.; Madhukumar, A. On the Performance of Hybrid THz/FSO system. IEEE Commun. Lett. 2023, 27, 3325379. [Google Scholar]
- Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H.E.; Linfield, E.H. Terahertz quantum cascade lasers. In Proceedings of the IEEE 10th International Conference on Terahertz Electronics (THz), Cambridge, UK, 9–10 September 2002; pp. 1–6. [Google Scholar]
- Marinho, C.; Silva, J.; Costa, P.; Fernandes, M.; Albuquerque, A. Machine Learning Applied to Terahertz Signal Analysis for Hygrothermal Aging Characterization of Composites. Mater. Eval. 2024, 82, 48–58. [Google Scholar]
- Khan, M.F.N.; Khalil, H.; Qamar, F.; Ali, M.; Shahzadi, R.; Qamar, N. FSO Communication: Benefits, Challenges and Its Analysis in DWDM Communication System. Sir Syed Univ. Res. J. Eng. Technol. 2020, 9, 45–53. [Google Scholar]
- Liu, Y.; Zhang, X.; Li, Z.; Wang, J.; Chen, H. Optical Terahertz Sources Based on Difference Frequency Generation in Nonlinear Crystals. Crystals 2022, 12, 936. [Google Scholar] [CrossRef]
- Song, H.J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 105–117. [Google Scholar]
- Li, Y.Y.; Liu, J.Q.; Liu, F.Q.; Wang, Z.G. High performance terahertz quantum cascade lasers. J. Semicond. 2020, 13, 61–72. [Google Scholar]
- Zhu, N.H.; Shi, Z.; Zhang, Z.K.; Zhang, Y.M.; Zou, C.W.; Zhao, Z.P.; Liu, Y.; Li, W.; Li, M. Directly Modulated Semiconductor Lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–19. [Google Scholar]
- Fujita, K.; Jung, S.; Jiang, Y.; Kim, J.H.; Nakanishi, A.; Ito, A.; Hitaka, M.; Edamura, T.; Belkin, M.A. Recent Progress in Terahertz Difference-Frequency Quantum Cascade Laser Sources. Nanophotonics 2018, 7, 1795–1817. [Google Scholar]
- Kürner, T.; Hosako, I. Spectrum and Standardization for THz Communications. In Terahertz Technology; Springer: Singapore, 2024; pp. 1141–1163. [Google Scholar]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification Framework for Free Space Optical Communication Links and Systems. IEEE Commun. Surv. Tutor. 2019, 21, 1346–1382. [Google Scholar] [CrossRef]
- Sivalingam, T.; Ali, S.; Mahmood, N.H.; Rajatheva, N.; Latva-Aho, M. Terahertz Sensing using Deep Neural Network for Material Identification. In Proceedings of the International Symposium on Advanced Networks and Telecommunication Systems (ANTS), New Delhi, India, 18–21 December 2022; pp. 1–6. [Google Scholar]
- Lu, J.Y.; Chen, L.; Bao, X.; Zhang, C.; Wang, L. Terahertz scanning imaging with a subwavelength plastic fiber. Appl. Phys. Lett. 2008, 92, 084102. [Google Scholar]
- Brossard, M.; Steinmann, A.; Faist, J.; Wolf, J.P. Direct wavefront measurement of terahertz pulses using two-dimensional electro-optic imaging. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 741–746. [Google Scholar]
- Agour, M.; Fallorf, C.; Taleb, F.; Castro-Camus, E.; Koch, M.; Bergmann, R.B. Terahertz referenceless wavefront sensing by means of computational shear-interferometry. Opt. Express 2022, 30, 7068–7080. [Google Scholar]
- Abas, N.; Kalair, A.R.; Khan, N.; Saleem, M.S. Experimental study of optical fiber conditions in service on data communication. Nonlinear Opt. Quantum Opt. 2017, 48, 225–235. [Google Scholar]
- Nagatsuma, T.; Horiguchi, S.; Minamikata, Y.; Yoshimizu, Y.; Hisatake, S. Terahertz wireless communications based on photonics technologies. Opt. Express 2013, 21, 23736–23747. [Google Scholar] [CrossRef]
- Ummethala, S.; Harter, T.; Koehnlechner, A.; Freude, W.; Koos, C. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 2019, 13, 519–524. [Google Scholar]
- Islam, M.S.; Cordeiro, C.M.B.; Franco, M.A.R.; Sultana, J.; Cruz, A.L.S.; Abbott, D. Terahertz optical fibers [invited]. Opt. Express 2020, 28, 16089–16100. [Google Scholar]
- Sarieddeen, H.; Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.S. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 2020, 58, 69–75. [Google Scholar]
- Lu, H.H.; Lin, Y.P.; Tsai, W.S.; Huang, C.Y.; Li, C.Y. Transmission of sub-terahertz signals over a fiber-fso-5g nr hybrid system with an aggregate net bit rate of 227.912 gb/s. Opt. Express 2023, 31, 33320–33330. [Google Scholar]
- Gu, X.J.; He, Y.; Kosek, H.; Fernando, X. Transmission efficiency improvement in microwave fiber-optic link using sub-picometer optic bandpass filter. Proc. SPIE 2005, 5971, 597123. [Google Scholar]
- Jiang, Y.; Li, X.; Zhang, Z.; Wang, J.; Liu, F. Machine Learning and Application in Terahertz Technology: A Review on Achievements and Future Challenges. IEEE Access 2022, 10, 53761–53776. [Google Scholar]
- Limbacher, B.; Hofer, C.; Hübler, N.; Koepfli, S.; Keller, J. Terahertz optical machine learning for object recognition. APL Photonics 2020, 5, 126101. [Google Scholar] [CrossRef]
- Ahi, K.; Jessurun, N.; Hosseini, M.P.; Asadizanjani, N. Survey of terahertz photonics and biophotonics. Opt. Eng. 2020, 59, 061629. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Li, X.; Gou, P.; Zhou, W. Fiber-thz-fiber link for thz signal transmission. IEEE Photonics J. 2018, 10, 7201508. [Google Scholar] [CrossRef]
- Paries, F.; Hu, Y.; Peytavit, E.; Lampin, J.F.; Ducournau, G. Fiber-tip spintronic terahertz emitters. Opt. Express 2023, 31, 30884–30895. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Schotten, H.D. Full-Spectrum Wireless Communications for 6G and Beyond: From Microwave, Millimeter-Wave, Terahertz to Lightwave. In Proceedings of the IEEE 3rd International Conference on Computer, Communication and Artificial Intelligence (CCAI), Xi’an, China, 26–28 May 2023; pp. 353–357. [Google Scholar]
- Singya, P.K.; Makki, B.; D’Errico, A.; Alouini, M.S. Hybrid FSO/THz-Based Backhaul Network for mmWave Terrestrial Communication. IEEE Trans. Wirel. Commun. 2023, 22, 4342–4359. [Google Scholar] [CrossRef]
- Eichler, T.; Ziegler, R. Fundamentals of THz Technology for 6G; White Paper; Rohde & Schwarz: Munich, Germany, 2022. [Google Scholar]
- Liu, R.; Zhang, X.; Li, Y.; Wang, J.; Chen, Z. Performance analysis of FSO/THz-RF dual-hop link based on NOMA. Opt. Commun. 2024, 557, 130332. [Google Scholar] [CrossRef]
- Liang, J.; Chen, M.; Ke, X. Performance Analysis of Hybrid FSO/RF-THz Relay Communication System. IEEE Photonics J. 2024, 16, 3353194. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, X.; Zhang, Y.; Wang, J.; Liu, F. Terahertz communication windows and their point-to-point transmission verification. Appl. Opt. 2018, 57, 7673–7679. [Google Scholar] [CrossRef]
- Huang, X.H.; Li, X.; Zhang, Y.; Wang, J.; Liu, F. WDM Free-Space Optical Communication System of High-Speed Hybrid Signals. IEEE Photonics J. 2018, 10, 7907408. [Google Scholar] [CrossRef]
- Chaudhary, L.; Yadav, S.; Mathur, S. Next Generation Free Space Optics System in Wireless Communication Technology. Int. J. Adv. Electr. Electron. Eng. 2012, 1, 255–261. [Google Scholar]
- Ma, J.; Song, Y.; Zhang, M.; Liu, G.; Li, W.; Federici, J.F.; Mittleman, D.M. Terahertz channels in atmospheric conditions: Propagation characteristics and security performance. Fundam. Res. 2024; in press. [Google Scholar] [CrossRef]
Sr. No. | Microwave Communication [17,18] | Optical FSO Communication [1,7] | THz-FSO Communication [5,19] |
---|---|---|---|
1 | Bandwidth is limited to the GHz range. Suitable for long-distance links but offers lower data rates. | Moderate bandwidth (100s of GHz) with higher data rates compared to microwave systems. | Extremely high bandwidth (THz range), enabling data rates beyond 1 Tbps. |
2 | Minimal atmospheric attenuation ensures stable links even under adverse conditions. | Moderate attenuation due to environmental factors like fog and rain. | High atmospheric attenuation caused by water vapor absorption. |
3 | Long transmission distances are supported by lower frequencies and minimal loss. | Medium-range communication is suitable for urban and controlled environments. | Short to medium-range communication requiring advanced alignment mechanisms. |
4 | Cost-effective due to well-established hardware technologies. | Higher hardware costs are driven by advanced optical components and alignment systems. | High costs due to nascent THz components like QCLs and high-power detectors. |
5 | Security is moderate due to wide beam propagation, making interception easier. | High security with narrow beamwidths reducing interception risks. | Very high security due to highly directional and narrow beams. |
Studies | Technology | Frequency Range | Bandwidth (GHz) | Applications |
---|---|---|---|---|
[23] | Microwave | 300 MHz–30 GHz | 1–10 GHz | IoT, mobile communication, satellite links |
[24] | Millimeter-Wave | 30 GHz–300 GHz | 10–100 GHz | 5G, short-range backhaul, automotive radar |
[25] | Terahertz (THz) | 300 GHz–10 THz | 100 GHz–10 THz | 6G, ultra-HD streaming, inter-satellite links |
[26] | Technology | Frequency Range | Bandwidth (GHz) | Applications |
[27] | Microwave | 300 MHz–30 GHz | 1–10 GHz | IoT, mobile communication, satellite links |
Studies | Technology | Frequency Range | Wavelength Range | Component Size |
---|---|---|---|---|
[31] | Microwave | 300 MHz–30 GHz | 1 mm–1 m | Bulky antennas |
[32] | Millimeter-Wave | 30 GHz–300 GHz | 1 mm–10 mm | Compact antennas |
[33] | Terahertz (THz) | 300 GHz–10 THz | 30 µm–1 mm | Ultra-compact devices |
[21] | Technology | Frequency Range | Wavelength Range | Component Size |
[34] | Microwave | 300 MHz–30 GHz | 1 mm–1 m | Bulky antennas |
Studies | Technology | Data Rates (Gbps) | Applications | Key Challenges |
---|---|---|---|---|
[21] | Microwave Communication | 10–100 | IoT, mobile networks | Limited spectrum |
[35] | Optical Communication | 100–400 | Datacenters, fiber-optic networks | High cost of deployment |
[38] | THz Communication | 1000–10,000 | 6G networks, inter-satellite links | Atmospheric attenuation |
[39] | Photonic-Assisted Systems | 1000+ | High-speed backhauling | Limited scalability |
[40] | Nanofabricated THz Systems | 4000+ | Real-time analytics, AR/VR | Complex integration |
Studies | Challenge | Cause | Proposed Solution | Limitation |
---|---|---|---|---|
[16] | Signal attenuation | Water vapor absorption | Photonic crystal fibers | High fabrication cost |
[54] | High absorption | Atmospheric composition | Low-loss materials | Limited bandwidth |
[55] | Reduced range | Resonance of water vapor molecules | Frequency selection | Bandwidth constraints |
[56] | Absorption peaks | Atmospheric pressure variations | Metamaterial-based designs | Manufacturing costs |
[57] | Limited range | Scattering and absorption | Dynamic path optimization | Energy overhead |
[58] | Variable losses | Environmental changes | Real-time sensing systems | Algorithm complexity |
[57] | Bandwidth reduction | Selective frequency operation | Dynamic reconfigurations | System overhead |
[59] | Environmental sensitivity | Temperature and pressure effects | Advanced atmospheric models | Limited precision in dynamic conditions |
Study | Challenge | Cause | Solution | Key Limitation |
---|---|---|---|---|
[48] | Misalignment | Turbulence, vibrations | Adaptive optics | High complexity |
[49] | Precision requirement | Short wavelengths | Beam-steering mechanisms | Costly hardware |
[50] | Environmental instability | Platform vibrations | Vibration compensation systems | Increased energy usage |
[51] | Beam divergence | Large aperture size constraints | Phased array antennas | Complex manufacturing |
[52] | Dynamic conditions | Moving platforms | Adaptive real-time controls | Hardware scalability |
[53] | Atmospheric effects | Refraction and scattering | Dynamic path optimization | Computational overhead |
[16] | Alignment drift | Structural vibrations | Feedback-based alignment | Delay in adjustments |
[54] | High sensitivity | Shorter wavelengths | Precision beamforming | High computational requirements |
Parameter | Device Type | Value/Range | Challenge | Cause | Solution | Citation |
---|---|---|---|---|---|---|
Operating Temperature | Quantum Cascade Lasers (QCLs) | ~77 K (Cryogenic Cooling) | Cooling requirements | High thermal dissipation in QCLs | Cryogen-free designs and better thermal management | [57] |
Difference-Frequency Generation QCLs (DFG-QCLs) | Room Temperature | Limited operational efficiency | Higher energy loss at room temp | Material advancements in active regions for better efficiency | [57] | |
Detector Sensitivity | Schottky Diode Mixers | ~10–100 pW/Hz0.5 | Limited responsivity | High noise levels in mixers | Noise-reduction techniques and improved materials | [59] |
Bolometers | Sub-pW Sensitivity | High cost | Expensive cryogenic cooling needs | Development of room-temperature bolometers | [60] | |
Photoconductive Antennas | ~100 fW/Hz0.5 | Low efficiency | Carrier lifetime limitations | Advanced semiconductor material integration | [60] | |
Output Power | Quantum Cascade Lasers (QCLs) | ~10 mW | Low power output | High threshold current | Novel gain media and cavity optimizations | [61] |
Photonic Mixers | ~100 µW | Low conversion efficiency | Energy loss in photomixing process | Enhanced phase-matching techniques | [62] | |
Free-Electron Lasers (FELs) | Watt-level Power Output | High power consumption | Large-scale accelerator requirements | Miniaturization and compact FEL designs | [62] | |
Modulation Bandwidth | Direct Modulation | Limited to GHz-range | Limited carrier transport | Device material constraints | High-speed heterostructures for improved modulation | [63] |
External Modulation | Extends to THz-range | Complexity in integration | Coupling losses in external modulators | Low-loss integration techniques | [63] |
Studies | Challenge | Cause | Solution | Limitation |
---|---|---|---|---|
[28] | High distortion | Atmospheric turbulence | Adaptive equalization | Computational cost |
[12] | Scattering effects | Environmental factors | Beam-shaping techniques | Implementation complexity |
[64] | High error rates | Signal distortion | Error-correction codes | Latency overhead |
[65] | Beam divergence | Uneven wavefront distortion | Real-time sensing systems | Hardware costs |
[66] | Environmental variability | Rapid atmospheric changes | Polarization techniques | Limited scalability |
[67] | Turbulence impact | regions | Kolmogorov turbulence | Precision challenges |
[68] | Range limitations | Attenuation and absorption | Enhanced receiver designs | Increased energy demand |
Studies | Material | Applications | Advantages | Limitations |
---|---|---|---|---|
[43] | Graphene | THz modulators | High mobility, tunable properties | Fabrication scalability |
[74] | 2D materials | Photodetectors | Ultra-fast response | Integration challenges |
[70] | Metamaterials | Beam shaping | High precision | High cost |
[41] | Nanoparticles | Loss reduction in photonic fibers | Reduced dispersion | Limited bandwidth |
[75] | Metamaterials | Polarization control | Enhanced stability | Complex design |
[22] | ITO/SeO2 | Optical modulators | Enhanced link performance | Modulation instability |
Studies | Device | Functionality | Advantages | Challenges |
---|---|---|---|---|
[23] | Quasi-optic modules | Wireless links | Ultra-broadband | Signal alignment |
[28] | MZI-MRR circuits | Pulse processing | Programmability | Fabrication precision |
[31] | Cascaded MIMO equalizers | Data integration | Enhanced bandwidth | Energy demand |
[35] | Integrated antennas | Beamforming | Compact size | Thermal stability |
[39] | Phase modulators | Signal modulation | High precision | Design complexity |
[16] | Photonic waveguides | Light propagation | Low dispersion | Material losses |
Studies | Source | Advantages | Limitations | Applications |
---|---|---|---|---|
[12] | QCLs | Compact, high tunability | Cooling requirements | Long-range communication |
[50] | Photonic Mixers | Broad bandwidth | Phase coherence issues | Spectroscopy, imaging |
[52] | FELs | Extremely high power | Large size, high cost | Scientific research |
Studies | Technology | Advantages | Limitations | Applications |
---|---|---|---|---|
[91] | Wavefront correction | Improves Strehl ratio | Computational cost | Signal integrity |
[92] | Real-time AO systems | Dynamic correction | Requires high-speed hardware | Long-distance communication |
[93] | Phase-only SLMs | High-resolution phase control | Limited by modulation speed | Turbulence compensation |
Study | Frequency Band | Advantages | Limitations | Applications |
---|---|---|---|---|
[104] | Microwave | Long-range, robust to weather | Limited data rates | Weather-independent communications |
[105] | Millimeter-wave | Higher data rates, moderate range | Susceptible to rain attenuation | Short-range mobile networks |
[106] | THz band | Ultra-high data rates, narrow beam | Short range, high attenuation | High-capacity backhaul |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, R.; Ullah, S.; Ren, J.; Alwageed, H.S.; Mao, Y.; Qi, Z.; Wang, F.; Khan, S.A.; Farooq, U. Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication. Sensors 2025, 25, 2109. https://doi.org/10.3390/s25072109
Ullah R, Ullah S, Ren J, Alwageed HS, Mao Y, Qi Z, Wang F, Khan SA, Farooq U. Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication. Sensors. 2025; 25(7):2109. https://doi.org/10.3390/s25072109
Chicago/Turabian StyleUllah, Rahat, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan, and Umar Farooq. 2025. "Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication" Sensors 25, no. 7: 2109. https://doi.org/10.3390/s25072109
APA StyleUllah, R., Ullah, S., Ren, J., Alwageed, H. S., Mao, Y., Qi, Z., Wang, F., Khan, S. A., & Farooq, U. (2025). Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication. Sensors, 25(7), 2109. https://doi.org/10.3390/s25072109